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Abstract
In general, the coefficient estimates of linear models are carried out using the ordinary
least squares (OLS) method. Since the analysis of variance is also a linear model, the
coefficients can be estimated using the least-squares method. In this study, the coeffi-
cient estimates in the two-way analysis of variance were performed by using the Cholesky
decomposition. The purpose of using the Cholesky decomposition in finding coefficient
estimates make variables used in model being orthogonal such that important variables
can be easily identified. The sum of squares in two-way analysis of variance (row, column,
interaction) were also found by using the coefficient estimates obtained as a result of the
Cholesky decomposition. Thus, important variables that affect the sum of squares can be
determined more easily because the Cholesky decomposition makes the variables in the
model orthogonal. By representing the sum of squares with vectors, how the prediction
vector in two-way ANOVA model was created was shown. It was mentioned how the
Cholesky decomposition affected the sum of squares. This method was explained in detail
on a sample data and shown geometrically.
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1. Introduction
Statistical methods generally guide scientific learning. As a part of this type of learning,

linear statistical methods are widely used. In basic and social sciences as well as in
business and engineering, linear models benefit both the planning of the research and
the analysis of the data obtained [20]. Linear models are called "analysis of variance
(ANOVA)" in conditions where the independent variables are categorical. Analysis of
variance can be considered as a special case of linear models [7]. So far, many studies have
been conducted with two-way analysis of variance [1–3, 14]. There are studies in which
the Cholesky decomposition is used both in social sciences and basic sciences [8, 13, 24].
Studies in which linear models and the Cholesky decomposition are used together are
also included in the literature [5, 15, 16, 22, 26]. Moreover, there are studies conducted
by applying the Cholesky decomposition to the correlation matrix [11, 12, 18, 19]. In this
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study, unlike the previous studies, the two-way analysis of variance (two-way ANOVA)
model was obtained using the Cholesky decomposition. In our previous study, the one-
way ANOVA model was performed using the Cholesky decomposition [23]. In this study,
the advantages of the Cholesky decomposition are shown on the two-way ANOVA model,
and the geometric representation of the sum of squares in two-way analysis of variance
(row, column, interaction) was performed. The purpose of using Cholesky decomposition
is to make the variables used in two-way ANOVA model orthogonal (orthonormal). Thus,
variables that affect the sum of squares in two-way ANOVA can be determined more easily.
This also makes it easier to identify important variables.

The organization of this article is as follows. In Section 2, ANOVA, two-way ANOVA,
and the Cholesky decomposition theory are mentioned. In Section 3, two-way ANOVA
design, the design matrix, and the Cholesky decomposition are presented on the sample
data set, and the sum of squares and vector representations are shown geometrically in
detail. Finally, the conclusion of the study is presented in Section 4.

2. Linear models - Analysis of variance (ANOVA)
Linear models are statistical techniques widely used in behavioral science, medical re-

search, marketing research, and other fields [4]. Generally, a linear model whose mathe-
matical form is shown in Equation (2.1) is used to estimate the values of the Y variable,
which is called the dependent variable, from the series of x estimators for p amount of
variables called independent variables. The most important feature to be considered in
linear models is that the dependent variable Y is obtained as result of measurement. In
some cases, values such as age and income obtained from the interval scale result can be
also used [4].

Yj = β0 + β1x1j + β2x2j + ... + βpxpj + εj , j = 1, 2, ..., n i = 1, 2, ..., m (2.1)


Y1
Y2
...

Yn

 =


1 x11 x12 . . . x1p

1 x21 x22 . . . x2p
...

...
... . . .

...
1 xn1 xn2 . . . xnp




β1
β2
...

βp

 +


ε1
ε2
...

εn

 (2.2)

Y = Xβ + ε

Equation (2.1) is shown with matrices in Equation (2.2). In linear models, Y refers
to the dependent variable column vector, x refers to the independent variable matrix, β
refers to the column vector of regression coefficients, and ε refers to the error term column
vector [22]. Linear models are called analysis of variance when independent variables are
categorical. Analysis of variance can be considered as a special case of linear models. This
method was discovered by [7].

Analysis of variance (ANOVA) is used that split an observed total variability inside a
data set. Total variability is consists of into two parts: systematic factors and random
factors. The systematic factors have a statistical influence on the given data set, while the
random factors do not. Analysis-of-variance (ANOVA) models are interested in comparing
several populations or conditions. Therefore, ANOVA is a method that compares means
of results[20]. In analysis of variance, independent variables are called factors and the
categories of each factor are called the level of that factor. For example, the occupation
variable is a factor, and worker and manager are the levels of the occupation factor. The
use of factor instead of variable emphasizes that the factors cannot be measured with
cardinal values. The word variable is used for phenomena that can be measured in this
way [21]. If there is only one factor in model, it is called one-way analysis of variance
(one-way ANOVA), if there is two factor, it is called two-way analysis of variance (two-
way ANOVA).
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2.1. Two-way ANOVA
The notation for two-way ANOVA is shown in the Table 1 [7].

Table 1. Two-way ANOVA design.

C1 C2 . . . Cc

R1 µ11 µ12 . . . µ1c µ1.

R2 µ21 µ22 . . . µ2c µ2.
...

...
... . . .

...
...

Rr µr1 µr2 . . . µrc µr.

µ.1 µ.2 . . . µ.c µ..

• µj. =
∑c

k=1 µjk

c is the marginal mean of dependent variable on row j

• µ.k =
∑r

j=1 µjk

r is the marginal mean of dependent variable on column k

• µ.. =
∑r

j=1

∑c

k=1 µjk

rc =
∑r

j=1 µj.

r =
∑c

k=1 µ.k

c is the general mean.

R and C (for the table of meanings, "row" and "column" respectively ) are factors. There
are categories (levels) of R and C, respectively. Factor categories are denoted by Rj and
Ck , j = 1, 2, ..., r and k = 1, 2, ..., c . In each cell of the table, there is a cell mean (µjk)
of the dependent variable (response variable) in each category combination of two factors.
Using point notation shows the marginal effects of the mean.

If there is no interaction between R and C, the partial relationship between each factor
and the dependent variable does not depend on whether the other factor is constant or not.
The mean difference (µjk − µj′k) between rows (categories Rj and Rj′) is constant for all
categories of the column. This difference (µjk−µj′k) is the same for all Ck (k = 1, 2, ..., c)
categories. As a result, the mean difference between rows equals the difference of marginal
row means:

µjk − µj′k = µjk′ − µj′k′ = µj. − µj′. for all j, j′ and k, k′

In two-way ANOVA, groups are classified across two factors, and each level of a factor
appears together with each combination of the levels of other factor. This allow a re-
searcher to investigate both the main effect of each factor on the dependent variable and
the modulating of the effects of a factor by the levels of other factor. The second effects
known as interactions are of central importance in many studies [25].

yijk = µ + αj + βk + γjk + εijk, (2.3)

where Yijk is the ith observation on row j and column k; µ is the general mean of Y ; αj and
βk are main-effect parameters for row effects and column effects, respectively; γjk are in-
teraction parameters, and εijk are errors satisfying the usual linear-model assumptions[7].
Assumptions of the model in Equation (2.3):

(1) E (εijk) = 0 for all i, j, k,
(2) var (εijk) = σ2,
(3) cov (εijk, εrst) = 0 (i, j, k) ̸= (r, s, t),

where is assumption 1;
E (yijk) = µij = µ + αj + βk + γjk and with reference to this equation, Equation (2.4)

is obtained.
yijk = µij + εijk, (2.4)

where µij = E(yijk) (ij) refers to the mean of a random observations in the (ij)th cell [20].



Two-way ANOVA by using Cholesky decomposition and graphical representation 1177

There are three effects in a two-way ANOVA; these are the main effects representing
row factor and column factor and the interaction that reflects the position of these factors
relative to each other. When it is observed that the measurement difference between levels
of row factor is not the same at all levels of column factor, it is said relatively that there
is an interaction between the two factors [25].

From a geometric perspective, each of the effects in Equation (2.3) corresponds to a
subspace of the observation space, and the effects are measured by taking the projection
of Y vector (dependent variable) onto these spaces [22].

2.2. Cholesky decomposition
The Cholesky decomposition is a method found by André-Louis Cholesky and used for

real matrices. The Cholesky decomposition is a decomposition method (A = LL′ ) that
allows the formation of a real, symmetric (A′ = A), and positively defined (x′Ax > 0)
matrix A by multiplying the lower triangular matrix (L) with the transpose of this lower
triangular matrix (upper triangular matrix) (L′) [10]. The Cholesky decomposition is also
called triangular factorization. Equivalently, it is also called square root factorization [6].
For S = LL′ (2x2 matrix of order), L matrix is found as described below. Suppose S is
the variance-covariance matrix belonging to a data set of 2 variables (s12 = s21)

S =
[

s2
1 s12

s21 s2
2

]
.

The purpose here is to make the matrix S diagonal. For this, elementary operations
are performed on the rows and the columns of the matrix S. For the elementary row
operation, the first row of the matrix S is added to the second row by multiplying with
−s21/s2

1. This elementary row operation is also applied to the identity matrix I and thus
the elementary matrix E1 is obtained [10].

I =
[
1 0
0 1

]
← R1
← R2

(−s21/s2
1)R1 + R2 → R2

E1 =
[

1 0
−s21/s2

1 1

]
Since the matrix S is symmetric, the elementary row operation used to obtain the

matrix E1 is applied to the columns of the identity matrix I and the elementary matrix
E2 is obtained. Also, the transpose of the elementary matrix E1 equals the elementary
matrix E2.

E1
′ = E2 =

[
1 −s21/s2

1
0 1

]
The matrix S is transformed into the diagonal matrix (D) using the E1 and E2 elemen-

tary matrices [
1 0

−s21/s2
1 1

] [
s2

1 s12
s21 s2

2

] [
1 −s21/s2

1
0 1

]
=

[
s2

1 0
0 s2

2 − s2
12/s2

1

]
E1SE2 = D. (2.5)

Using the equation of E1
′ = E2, Equation (2.5) can be written as E1SE1

′ = D.
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With the help of the equation above and by using the matrix inverses, the following
equation is obtained.[

1 0
s21/s2

1 1

] [
s2

1 0
0 s2

2 − s2
12/s2

1

] [
1 s21/s2

1
0 1

]
=

[
s2

1 s12
s21 s2

2

]
E−1

1 D(E−1
1 )′ = S (2.6)

Here, Equation (2.6) can be rearranged as

E−1
1 D1/2D1/2(E−1

1 )′ = S.

It is seen that the equation below is valid.[
s1 0
0

√
s2

2 − s2
12/s2

1

] [
s1 0
0

√
s2

2 − s2
12/s2

1

]
=

[
s2

1 0
0 s2

2 − s2
12/s2

1

]
D1/2D1/2 = D

L and L′ matrices are obtained in the way shown below:

E−1
1 D1/2 = L (2.7)

L =
[

1 0
s21/s2

1 1

] [
s1 0
0

√
s2

2 − s2
12/s2

1

]
=

[
s1 0

s21/s1

√
s2

2 − s2
12/s2

1

]

D1/2(E−1
1 )′ = L′ (2.8)

L′ =
[
s1 0
0

√
s2

2 − s2
12/s2

1

] [
1 s21/s2

1
0 1

]
=

[
s1 s21/s1

0
√

s2
2 − s2

12/s2
1

]
,

for matrix L

L =
[

s1 0
s21/s1

√
s2

2 − s2
12/s2

1

]
=

[
l11 0
l21 l22

]
√

s2
2 − s2

12/s2
1 = s2.1.

While l11 element of matrix L gives the standard deviation of the 1st variable, element
l22 will give us the conditional standard deviation (s2.1) of the 2nd variable when the 1st

variable is constant. Looking at this definition, it is better understood why the Cholesky
decomposition is called square root factorization. The same method is also applied for
matrices in different sizes. For 3-variable variance-covariance matrix (s12 = s21, s13 =
s31, s23 = s32)

S =

 s2
1 s12 s13

s21 s2
2 s23

s31 s32 s2
3

 .

If the Cholesky decomposition is applied, the matrix L is found as follows:

L =

 s1 0 0
s21/s1 s2.1 0
s31/s1 s32.1 s3.12


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If matrix L written in more detail

L =


√

s2
1 0 0

s21/
√

s2
1

√
s2

2 − s2
12/s2

1 0
s31/

√
s2

1

√
s2

3 − s2
13/s2

1

√
s2

3 −
[
s2

23s2
1 + s2

13s2
2 − 2s12s13s23/

(
s2

1s2
2 − s2

12
)]

 .

s2.1 gives the conditional standard deviation of the 2nd variable when the 1st variable is
constant, and s32.1 gives the conditional covariance between the 2nd and the 3rd variables
when the 1st variable is constant. s3.12 gives the conditional standard deviation of the 3rd

variable when the 1st and 2nd variables are constant [6]. How to calculate these values
is given in detail in the matrix L above. Here, the matrix L is the matrix found as a
result of the Cholesky decomposition. Depending on this, it can be said that the Cholesky
decomposition relatively reduces the calculation load.

Using the Cholesky decomposition, a different formulation of the coefficients β in the
linear model can also be obtained. As known, for linear model Y = Xβ + ε , the least-
squares estimator of β is found as [9]

β̂ =
(
X ′X

)−1
X ′Y. (2.9)

As a result of the Cholesky decomposition to be applied to the matrix X ′X, by com-
bining Equations (2.9) and (2.10) and by using the U = L′β̂ equation, Equation (2.11) is
obtained [6]:

X ′X = LL′(
X ′X

)−1 =
(
L′)−1

L−1 (2.10)

U = L′β̂ = L′ (
X ′X

)−1
X ′Y = L′ (

L′)−1
L−1X ′Y = IL−1X ′Y = L−1X ′Y (2.11)

The coefficients in Equation (2.11) are also called orthogonal regression coefficients.
Thus, an alternative way to find β̂ coefficients is obtained. With this transformation in
Equation (2.11), the independent variables corresponding to β̂ coefficients become orthog-
onal to each other. The transformation may be accomplished through the Gram-Schmidt
orthonormalization of matrix X. The Gram-Schmidt will create columns of X that at
each stage are orthogonal to (and uncorrelated with) all preceding columns. An alterna-
tive method to the Gram-Schmidt process is shown in Equation (2.12) [6].

X∗ = X
(
L′)−1 = X

(
L−1

)′
(2.12)

Equation (2.12) transforms to orthonormal vectors the vectors in the matrix X.

X∗′ = L−1X ′

X∗X∗ = L−1X ′X
(
L′)−1 = L−1LL′ (

L′)−1 = I

Thus, it is seen that the matrix X∗ is orthonormal.

U = X∗′Y (2.13)
Equation (2.13) can also be used as an alternative to Equation (2.11). Unlike β̂, each

row of U contains the regression coefficients for the corresponding predictor variable,
eliminating all preceding predictors. The values of the conditional predictor variables
themselves are the columns of X∗. Thus, variables that affect the sum of squares in
two-way ANOVA can be determined more easily. This also makes it easier to identify
important variables.
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3. Applications
In the study, the sample data set in Table 2 was used. To be able to apply the analysis

of variance on the data set to be used in practice, it will be assumed that the assumptions
are fulfilled (α = 0.05)

Table 2. Sample data set.

Column(1) = C1 Column(2) = C2 Column(2) = C2

Row(1) = R1 =

128 166 151

= R1(Mean) = 150.8
150 178 125
174 187 117
116 153 155
109 195 158

Row(2) = R2 =

175 140 167

= R2(Mean) = 155.1
132 145 183
120 159 142
187 131 167
184 126 168

C1(Mean) = 147.5 C2(Mean) = 158 C3(Mean) = 153.3 General Mean(GM) = 152.9

Table 3 was created by taking the cell means in Table 2. Table 3 contains only the
means values.

Table 3. Summary data set.

Column(1) = C1 Column(2) = C2 Column(2) = C2 Row Means
Row(1) = R1 CellR1C1(Mean) = 135.4 CellR1C2(Mean) = 175.8 CellR1C3(Mean) = 141.2 R1(Mean) = 150.8
Row(2) = R2 CellR2C1(Mean) = 159.6 CellR2C2(Mean) = 140.2 CellR2C3(Mean) = 165.3 R1(Mean) = 155.1

Column Means C1(Mean) = 147.5 C2(Mean) = 158 C3(Mean) = 153.3 General Mean(GM) = 152.9

Hypotheses
Hypotheses can be proposed as follows:

• If α1 and α2 show the row means (α1 = R1(Mean) and α2 = R2(Mean)),

H0 : α1 = α2

H1 : α1 ̸= α2

• If β1, β2, β3 show the column means (β1 = C1(Mean), β2 = C2(Mean), β3 =
C3(Mean)),

H0 : β1 = β2 = β3

H1 : βi ̸= βj i ̸= j = 1, 2, 3

• If γij shows cell mean values to test the presence of interaction between rows and
columns,

H0 : γ11 = γ12 = · · · = γ23

H1 : γij ̸= γik i = 1, 2 j, k = 1, 2, 3

Interaction Graph
Before starting the analysis, a preliminary information about whether there is any inter-
action is obtained by examining the graph.
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Figure 1. Plot of cell means (horizontal axis columns).

As seen in Figure 1, there is no parallelism. Differences are observed in the row means
depending on the different values of the column mean. This difference is called interaction
[21].

Figure 2. Plot of cell means (horizontal axis rows).

As seen in Figure 2, There is no parallel between the lines. Differences are observed in
the column means depending on the different values of the row mean. This difference is
called interaction [21].

The following outputs in Table 4 can be obtained using different programs. Here, the
following model output was obtained using SPSS.

Table 4. SPSS results of two-way ANOVA table.

Source Type III Sum
of Squares

Degree of
Freedom Mean Square F-Value P-Value

Corrected Model 6649.87 5 1329.97 2.95 0.03
Intercept 701658.137 1 701658.13 1558.08 0.00
Column 553.27 2 276.63 0.61 0.55
Row 136.53 1 136.53 0.30 0.59
Interaction 5960.07 2 2980.03 6.61 0.01
Error 10808 24 450.33 2.95 0.03
Total 719116 30
Corrected Total 17457.88 29
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When looking at the table, it is seen that F values were calculated for the sum of
three squares. The null hypothesis, which assumes that there is no difference between the
column means, cannot be rejected because the F-value (0.61) calculated for the sum of
column squares is less than 3.41 which is the value of the F table with (2,24) degrees of
freedom (p = 0.55 > 0.05). The null hypothesis, which assumes that there is no difference
between the row means, cannot be rejected because the F value (0.30) calculated for the
sum of row squares is less than 4.26 which is the value of the F table with (1,24) degrees of
freedom (p = 0.59 > 0.05). The null hypothesis, which assumes that there is no interaction
between the row and the column, is rejected because the F value (6.61) calculated for the
sum of interaction squares is greater than 3.40 which is the value of the F table with (2,24)
degrees of freedom (p = 0.01 < 0.05).

The sum of rows, columns, interactions, and error squares in the table will be found
using the Cholesky decomposition. Also, it will be easier to understand what the values
in the SPSS output. The advantages of using this method will be mentioned.

Table 5. Representation of the data with the design matrix.

Design Matrix X
Constant Variable Row Variable Column Variables Interaction Variables Dependent Variable

x0 x1 x2 x3 x1x2 x1x3 Y
1 1 1 0 1 0 128
1 1 1 0 1 0 150
1 1 1 0 1 0 174
1 1 1 0 1 0 116
1 1 1 0 1 0 109
1 0 1 0 0 0 175
1 0 1 0 0 0 132
1 0 1 0 0 0 120
1 0 1 0 0 0 187
1 0 1 0 0 0 184
1 1 0 1 0 1 166
1 1 0 1 0 1 178
1 1 0 1 0 1 187
1 1 0 1 0 1 153
1 1 0 1 0 1 195
1 0 0 1 0 0 140
1 0 0 1 0 0 145
1 0 0 1 0 0 159
1 0 0 1 0 0 131
1 0 0 1 0 0 126
1 1 0 0 0 0 151
1 1 0 0 0 0 125
1 1 0 0 0 0 117
1 1 0 0 0 0 155
1 1 0 0 0 0 158
1 0 0 0 0 0 167
1 0 0 0 0 0 183
1 0 0 0 0 0 142
1 0 0 0 0 0 167
1 0 0 0 0 0 168

3.1. Finding the design matrix and the sum of squares
Before proceeding to Cholesky method, we need to create design matrix X, dependent

and independent variables. As seen in the data set, the dependent variable Y consists of
the numbers in the cells. In the independent variables, there will be x0 variable consisting
of the number 1′s to represent the mean of the dependent variable and x1, x2, and x3
variable that will show the factor memberships. These variables are also called dummy
variables [25].
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Dummy variables have two properties. First, a dummy variable has the same value for
every member of a group. Second, this value is not the same for other group memberships.
For number of groups g, distinguishing can be made between groups using the linearly
independent variables (vector) at any number of g − 1 [25].

x1 =
{

1, Row(1)
0, Other

x2 =
{

1, Column(1)
0, Other

x3 =
{

1, Column(2)
0, Other

The values of variables (vectors) x1, x2, and x3 are coded as described above. x1x2 was
formed as a result of the mutual multiplication of x1 and x2 variables. Likewise, x1x3
variable is also formed as a result of the multiplication of x1 and x3 variables. Thus, the
design matrix X is created and it is shown in Table 5.

The data set shown in Table 5 above corresponds to Table 2 with 2 row factors and
3 column factors. Here, x1 variable was created for the row factors, while x2 and x3
variables were created for the column factors. The variables x1x2 and x1x3 were created
for interaction.

3.2. Cholesky decomposition
The Cholesky decomposition is applied to the matrix X ′X obtained after the design

matrix X is created. The matrix X ′X formed by taking the cross product of the design
matrix X obtained in Table 5 and the matrices formed as a result of the Cholesky decom-
position are given below. The Cholesky decomposition can be performed by using various
programs. How to perform the decomposition in MS Excel is included in our previous ar-
ticle in detail [23]. The matrix X ′X resulting from the cross product of the design matrix
X is given below.

X ′X =



30 15 10 10 5 5
15 15 5 5 5 5
10 5 10 0 5 0
10 5 0 10 0 5
5 5 5 0 5 0
5 5 0 5 0 5


The matrix L obtained by applying the Cholesky decomposition to matrix X ′X is given

below.

L =



5.48 0 0 0 0 0
2.74 2.74 0 0 0 0
1.83 0 2.58 0 0 0
1.83 0 −1.29 2.24 0 0
0.91 0.91 1.29 0 1.29 0
0.91 0.91 −0.65 1.12 −0.65 1.12


Using Equation (2.11), U coefficients are obtained.

U = L−1X ′Y =

u0 →
u1 →
u2 →
u3 →
u4 →
u5 →



837.65
−11.68
−21.04

10.51
−38.60

66.86


When the Cholesky decomposition is applied to the matrix X ′X, the variables in design

matrix X are transformed, so new variables are obtained as follows.

X∗ = X
(
L′)−1 = X

(
L−1

)′
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X∗′ = L−1X ′ =

x0 →
x1 →
x2 →
x3 →

x1x2 →
x1x3 →

x∗
0

x∗
1

x∗
2

x∗
3

x∗
4

x∗
5

The properties of x∗ independent variables is that they are perpendicular to each other
and their lengths is 1′s. Therefore, the coefficient matrix U is called the orthogonal
(orthonormal) regression coefficient matrix [6].

Ŷ = u0x∗
0 + u1x∗

1 + u2x∗
2 + u3x∗

3 + u4x∗
4 + u5x∗

5
The values in Table 6 are obtained by using the coefficient matrix U elements.

Table 6. Vector lengths.

Vector Lengths
Y ′Y 719116
Ŷ ′Ŷ 708308
U ′U 708308
u2

0 701658.13
u2

1 136.53
u2

2 442.82
u2

3 110.45
u2

4 1490.02
u2

5 4470.04

The values in Table 6 can be considered as the vector lengths. Y ′Y refers to the vector
length of the observation values, U ′U refers to the vector length of the prediction values,
and u2

i (i = 0, 1, 2, 3, 4, 5) refers to the vector lengths of the independent variables to which
they belong. u2

0 gives the length of the x0 independent variable (vector), u2
1 gives the length

of the x1 independent variable (vector), u2
2 gives the length of the x3 independent variable

(vector), u2
4 gives the length of the x1x2 independent variable (vector), u2

5 gives the length
of the x1x3 independent variable (vector) in design matrix X. Also, U ′U = Ŷ ′Ŷ equation
is also valid as seen below:

Ŷ = Xβ̂

X ′X = LL′

U = L′β̂

Ŷ ′Ŷ =
(
Xβ̂

)′
Xβ̂ = β̂′X ′Xβ̂ = β̂′LL′β̂ = U ′U

Based on this, Ŷ ′Ŷ showing the prediction vector length is rewritten with the following
equation.

Ŷ ′Ŷ = u2
0 ∥x∗

0∥
2 + u2

1 ∥x∗
1∥

2 + u2
2 ∥x∗

2∥
2 + u2

3 ∥x∗
3∥

2 + u2
4 ∥x∗

4∥
2 + u2

5 ∥x∗
5∥

2 (3.1)
∥x∗

i ∥
2 = 1 i = 0, 1, 2, 3, 4, 5

As previously explained, the properties of x∗ independent variables is that they are per-
pendicular to each other and their lengths is 1′s.

As seen in Table 7, the sum of squares required for two-way ANOVA was obtained by
using U variables. Thus, the variables (vectors) that make up the sum of squares became
orthogonal (orthonormal). This gives the individual contribution of each variable in the
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sum of squares. The sum of column squares 553.27 is found using the u2
2 + u2

3 equation.
Here, the individual contribution of u2

2 was found to be 442.82 as seen in Table 6, while
the individual contribution of u2

3 was found as 110.45. Based on this, it can be said that
the variable x∗

2 corresponding to the coefficient u2
2 is a more important variable in creating

sum of column squares. The sum of interaction squares 5960.07 is found using the u2
4 + u2

5
equation. Here, the individual contribution of u2

4 was found to be 1490.02 as seen in Table
6, while the individual contribution of u2

5 was found as 4470.04. it can be said that the
variable x∗

5 corresponding to the coefficient u2
5 is a more important variable in creating

sum of interaction squares. The sum of corrected model squares 6649.87 is found using the
u2

1 + u2
2 + u2

3 + u2
4 + u2

5 equation. Here, the individual contribution of u2
4 and u2

5 are more
than other as seen in Table 6. It can be said that the variables x∗

4 and x∗
5 corresponding

to the coefficients u2
4 and u2

5 respectively is a more important variables in creating sum of
corrected model squares. Also, it is seen that the variables x∗

4 and x∗
5 corresponding to the

interaction are important for the two-way ANOVA model. Thus, variables that affect the
sum of squares in two-way ANOVA can be determined more easily. This makes it easier
to identify important variables. Also in here, it is easier to understand what the values in
the SPSS output.

Table 7. Reconstructing the ANOVA table (sum of squares).

Source Sum of
Squares Reconstructing

Corrected Model 6649.87 u2
1 + u2

2 + u2
3 + u2

4 + u2
5

Intercept 701658.13 u2
0

Column 553.27 u2
2 + u2

3
Row 136.53 u2

1
Interaction 5960.07 u2

4 + u2
5

Error 10808 Y ′Y − U ′U
Total 719116 Y ′Y
Corrected Total 17457.88 Y ′Y − u2

0

3.3. Graphical display
The corrected model is the sum of squares of cross product of the Ŷ values, the total is

the sum of cross product of Y values, and intercept corresponds to the u2
0 value in Table

7. Other values in Table 7 are seen in Figure 3. The findings obtained in practice can also
be displayed on Figure 3.

In the Figure 3, the sum of squares can be thought as the lengths of the related vectors.
When looking at Figure 3, it is seen that the length of the prediction vector is formed by
summing the lengths of the row, column, and interaction vectors. When calculating the
prediction vector, it is seen that the interaction vector is longer. Based on this, it can
be said that interaction is important. As seen in Figure 3, vectors are not perpendicular
to each other (anyway, it is also impossible to be). It is unimaginable that 3 different
vectors (row, column, and interaction) in the plane are perpendicular to each other. The
figure was drawn for just information. By making these 3 different vectors perpendicular
to each other, the Cholesky decomposition reveals the individual contributions of vectors
in the formation of the prediction vector. This also makes it easier to identify important
variables.

Looking at Figure 4, it is seen that the prediction vector overlaps the real vector.
Because the error vector was not visible due to the point of view, it was shown in red in
the figure to indicate its location. Based on this, it is also said that there is no error in
the prediction space. In the Figure 4, it is seen that the prediction vector is obtained by
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summing 3 different (row, column, and interaction) vectors. By making these 3 different
vectors orthogonal, the Cholesky decomposition reveals the individual contributions of the
vectors in the formation of the prediction vector. Thus, variables that affect the sum of
squares in two-way ANOVA can be determined more easily.

Figure 3. Representation of the decomposition of squares as vector lengths.

Figure 4. An overview of the prediction space.
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4. Conclusion
In this study, it was tried to obtain the decomposition of squares in the two-way anal-

ysis of variance, which is a type of linear models, by using the Cholesky decomposition.
Coefficients of variables in the model were predicted with the Cholesky decomposition
and the sum of squares (rows columns and interactions) were obtained from these coeffi-
cients. The purpose here is to make the variables in model orthogonal. Thus, variables
that affect the sum of squares in two-way ANOVA can be determined more easily. This
makes it easier to identify important variables. Also, with the method used in this study,
it is easier to understand what the values in the SPSS output. In the study in which
graphical representations were made too, the sum of squares is represented by the vector
lengths.Thus, advantages of Cholesky decomposition was shown in the formation of the
prediction vector. It was determined which sums of squares in two-way ANOVA (row, col-
umn, interaction) were more important while finding the length of the prediction vector.
All of these were carried out by taking advantage of the Cholesky decomposition.

In this study, the Cholesky decomposition was applied to matrix X ′X the cross product
of the design matrix X. As another way, QR decomposition could be applied directly to
the design matrix X. The fact that the average calculation load for the QR decomposition
is two to four times longer than the Cholesky decomposition has been shown by [17]. The
methods used in this study can be applied in multiple regression analysis, multivariate
regression analysis, factorial ANOVA, MANOVA, MANCOVA, etc., and the advantages
said of the Cholesky decomposition can be exploited.
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