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ABSTRACT 

 
 

This paper aims to improve one of the recently proposed metaheuristic approaches known as Lévy flight 

distribution (LFD) algorithm by adopting a well-known simplex search algorithm named Nelder-Mead 
(NM) method. Three new strategies were utilized to demonstrate the improved capability of the original 

LFD algorithm. In the first strategy, NM was run twice as much the number of iterations of LFD after the 

latter completes its task. In the second strategy, NM was applied after each iterations of LFD instead of 
waiting for the completion of the latter. Lastly, in the third strategy, NM was applied after each iterations 

of LFD and run for the total number of current iterations of the latter algorithm. Well-known unimodal 

and multimodal benchmark functions were adopted, and statistical analysis was performed for 
performance evaluation. Further assessment was carried out through a nonparametric statistical test. The 

obtained results have shown the proposed versions of LFD algorithm provide significant performance 

improvement in general. In addition, the efficiency of the third strategy was found to be better for NM 
modified LFD algorithm which has greater balance between global and local search stages and can be 
used as an effective tool for function optimization. 
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approaches that can avoid those issues and 
able to solve complex and nonlinear problems 
effectively [3]. As part of this effort, different 
metaheuristic algorithms have emerged [4]. 
The latter approaches have stochastic natures, 
thus, can explore entire search space by 
avoiding local optima [5] since they do not 
need the derivative information. 

There are many metaheuristic algorithms 
which have already been used for different 
optimization problems [6]. Despite the 
existing ones and their various applications, it 
is still quite common to encounter with newer 
metaheuristics nowadays [7] which is 
motivated by “No free lunch theorem” [8]. 

 

Introduction 

The optimization techniques have been 
gaining a greater demand in recent decades 
due to the need for reliable and effective 
methods to deal with real-life problems that 
present increased complexity [1]. In addition 
to this fact, the increasing number of 
optimization problems of different fields has 
led the optimization techniques to be one of 
the major research areas [2]. 

Due to inherent disadvantages of 
deterministic techniques such as being 
derivative dependent and stagnating in local 
optimum, this field of research tends to 
develop different alternative  
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As stated by this theorem, there is not any single 
algorithm that is convenient to solve all existing 
optimization problems. Therefore, there is a 
growing appetite for developing newer 
algorithms that may be quite effective for some 
of the problems [9]. Lévy flight distribution 
(LFD) algorithm [10] has been developed as part 
of the latter effort. The wireless sensor nodes 
that have connections related to Lévy flight 
motions have inspired the development of this 
algorithm. 

Having a balance between global and local 
search stages is an of important feature that 
make metaheuristic algorithms desired tools to 
tackle with various problems [3]. However, due 
to their stochastic nature, it may not always be 
feasible to offer such integrity in those 
algorithms. One way of dealing with this issue is 
to benefit from the feature of existing algorithms 
instead of developing new ones. Hybridization is 
a great choice to do so since it allows the 
combination of existing and complementary 
algorithms [11]. In this way, a new structure 
with balanced feature in terms of exploration and 
exploitation can be achieved. 

In terms of LFD algorithm, it has good 
explorative behavior due to Lévy Flight motions, 
however, lacks from exploitative structure. 
Bearing the above discussion in mind, the LFD 
algorithm can be improved by adopting another 
complementary approach so that a novel and 
more capable hybrid algorithm can be obtained. 
To achieve such a structure, the Nelder-Mead 
(NM) simplex search method [12] can be used. 

The latter is a well-known simplex search 
method which is quite capable for local search. 
In terms of hybridization, several examples are 
available in the literature which adopts NM 
algorithm. Some of them are firefly algorithm 
for optimal reactive power dispatch [13], particle 
swarm optimization for modeling Li-ion 
batteries for electric vehicles [14], Harris hawks 
optimization for solving design and 
manufacturing problems [15], ant lion optimizer 
algorithm for structural damage detection [16], 
moth flame optimization for parameter 
identification of photovoltaic modules [17] and 
artificial electric field algorithm for optimization 
problems [18]. 

Considering the discussion so far, this paper 
aims to develop different hybrid versions by 

modifying LFD algorithm using NM method and 
investigate the promise of those variations for 
optimization problems. Therefore, three novel 
strategies were used to achieve NM modified 
LFD algorithms. All these strategies are 
discussed in related section of this paper. 

In order to evaluate the performances of the 
original and the modified LFD versions, well-
known benchmark functions of unimodal and 
multimodal features were adopted. Then, 
statistical analysis was performed using metrics 
of average, standard deviation, best and worst. 
Besides, all approaches, including the original 
LFD algorithm were ranked. In this way, the 
ability of the algorithms was assessed for global 
and local searches. Further assessment took 
place by performing a nonparametric statistical 
test known as Wilcoxon’s signed-rank test to 
confirm the capability does not occur by chance. 
The obtained results have shown that 
hybridizing LFD algorithm with NM method 
provides a significant performance improvement 
in general as was expected. Besides, it has also 
been found that the efficiency is increased if the 
NM method is applied after each iteration of 
LFD algorithm and run each time for the total 
number of LFD algorithm’s current iteration.       

Lévy Flight Distribution Algorithm 

Wireless sensor networks having a Lévy flight 
(𝐿𝐹) motions related connection is the main 
inspiration for LFD algorithm [10]. 
Mathematically, the LFD algorithm is initialized 
by calculating the Euclidean distance (𝐸𝑑𝑖𝑠𝑡) 
between adjacent nodes which determines the 
position replacement of sensor nodes. To locate 
a sensor node, LF is performed. In such a case, 
the sensor node is placed close to another one 
with lower number of neighbors or in a position 
that has no sensor node. The latter behavior 
increases the effectiveness of the exploration. 
Two important parameters for generating 
random walks are the step length and the 
direction of the walk. To determine the step 
length (𝑠𝑙), the following equation can be used 
where 𝛽 is the Lévy distribution index having 
limits of 0 < 𝛽 ≤ 2. 

𝑠𝑙 =
𝑈

|𝑉|1/𝛽
 (1) 

The parameters of 𝑈 and 𝑉, given in the above 
equation, can be determined using (2). 
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𝑈~𝑁(0, 𝜎𝑢
2), 𝑉~𝑁(0, 𝜎𝑣

2) (2) 

𝜎𝑢 and 𝜎𝑣 represent standard deviation and 
calculated as in (3): 

𝜎𝑢 = (
ζ(1 + 𝛽) × sin(𝜋𝛽 2⁄ )

ζ((1 + 𝛽) 2⁄ ) × 𝛽 × 2(𝛽−1) 2⁄
)

1 𝛽⁄

,  

𝜎𝑣 = 1 

(3) 

where ζ is a function having the following 
definition for an integer 𝑧. 

ζ(𝑧) = ∫ 𝑡𝑧−1
∞

0
𝑒−𝑡𝑑𝑡 (4) 

The 𝐸𝑑𝑖𝑠𝑡 value is calculated as in (5) for the 
locations of adjacent agents (𝑋𝑖 and 𝑋𝑗): 

𝐸𝑑𝑖𝑠𝑡(𝑋𝑖, 𝑋𝑗) = √(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2
 (5) 

where 𝑋𝑖 and 𝑋𝑗 positions are represented by 

(𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗), respectively. A pre-defined 

threshold value is compared with the value of 
𝐸𝑑𝑖𝑠𝑡 through iterations. The positions of search 
agents are re-adjusted using (6) for smaller 𝐸𝑑𝑖𝑠𝑡 
values than the threshold. 

𝑋𝑗(𝑡 + 1) = 𝐿𝑓(𝑋𝑗(𝑡), 𝑋𝐿 , 𝐿𝑏 , 𝑈𝑏) (6) 

In the above equation, 𝑡 is used for the number 
of iterations whereas 𝐿𝑏 and 𝑈𝑏 denote the 
lowest and the highest limits of the search space. 
𝐿𝑓 function represents the 𝑠𝑙 value and the LF 

direction. 𝑋𝐿 is used as LF direction since it 
represents the position of the agent with the 
lowest number of neighbors. In order to increase 
the exploration capability, the agent of 𝑋𝑗 is 

moved towards the agent with the lowest 
number of neighbors using (7). 

𝑋𝑗(𝑡 + 1) = 𝐿𝑏 + (𝑈𝑏 − 𝐿𝑏)𝑟𝑑() (7) 

In the above equation, 𝑟𝑑() is used to generate 
uniformly distributed random numbers 𝑅 in a 
range of [0, 1]. The following identification 
helps discovering the search space with more 
opportunities: 

𝑅 = 𝑟𝑑(), 𝐶𝑠𝑐𝑎𝑙𝑎𝑟 = 0.5 (8) 

where 𝐶𝑠𝑐𝑎𝑙𝑎𝑟 is the comparative scalar value 
with 𝑅 in each position update of 𝑋𝑗. The value 

of 𝑅 is checked and compared with 𝐶𝑠𝑐𝑎𝑙𝑎𝑟. In 
case of smaller 𝑅 values than 𝐶𝑠𝑐𝑎𝑙𝑎𝑟 values (6) 

is executed whereas (7) is used otherwise. The 
position of 𝑋𝑖 is updated using (9) and (10). 

𝑋𝑖(𝑡 + 1) = 𝑇𝑝𝑜𝑠 + 𝛼1 × 𝑇𝐹𝑖𝑡𝑁

+ 𝑟𝑑() × 𝛼2

× ((𝑇𝑝𝑜𝑠 + 𝛼3𝑋𝐿) 2⁄

− 𝑋𝑖(𝑡)) 

(9) 

𝑋𝑖
𝑛𝑒𝑤(𝑡 + 1) = 𝐿𝑓(𝑋𝑖(𝑡

+ 1), 𝑇𝑝𝑜𝑠, 𝐿𝑏 , 𝑈𝑏) 
(10) 

𝑋𝑖 position is calculated using (9) whereas (10) 
provides the final position of 𝑋𝑖. The solution 
with the best fitness value (target position) is 
denoted by 𝑇𝑝𝑜𝑠. The parameters of 𝛼1, 𝛼2 and 

𝛼3 are used to represent random numbers of 0 <
𝛼1, 𝛼2, 𝛼3 ≤ 10. The following gives the total 
target fitness of neighbors (𝑇𝐹𝑖𝑡𝑁) around 𝑋𝑖(𝑡) 
where the neighbor index and neighbor position 
of 𝑋𝑖(𝑡) are denoted by 𝑘 and 𝑋𝑘, respectively. 

𝑇𝐹𝑖𝑡𝑁 = ∑
𝐷(𝑘) × 𝑋𝑘

𝑁𝑁

𝑁𝑁

𝑘=1

 (11) 

The total number of 𝑋𝑖(𝑡) neighbors is 
represented by 𝑁𝑁. 𝐷(𝑘) denotes the fitness 
degree for each neighbor and given by (12). 

𝐷(𝑘) =
𝛿1(𝑉 − 𝑀𝑖𝑛(𝑉))

𝑀𝑎𝑥(𝑉) − 𝑀𝑖𝑛(𝑉)
+ 𝛿2 (12) 

𝑉 =
𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑋𝑗(𝑡))

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖(𝑡))
, 𝛿1 > 0 𝑎𝑛𝑑 𝛿2 ≤ 1 (13) 

A detailed flowchart of LFD algorithm is 
demonstrated in Figure 1. 

Nelder-Mead Method 

This algorithm is a simplex search method and 
developed to solve nonlinear functions using 
gradient-free computations [19]. An optimal 
point of 𝑋1 is determined by generating 𝑝 + 1 
points of 𝑋1, 𝑋2, … X𝑝+1. Then, the respective 

fitness function values of 𝑓(𝑋1), 

𝑓(𝑋2),…𝑓(𝑋𝑝+1) are evaluated and sorted in 

ascending order. Four scalar coefficients of 
reflection (𝜌), expansion (𝛾) contraction (𝛽) and 
shrinkage (𝛿) are used to replace the worst point 
of 𝑋𝑝+1. The computed fitness values allow 

determination of the best (𝑋1), the worst (𝑋𝑝+1) 
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and the centroid (�̅�) points. To identify the 
reflection, 𝑋𝑟𝑓, (14) is used: 

𝑋𝑟𝑓 = �̅� + 𝜌(�̅� − 𝑋𝑝+1) (14) 

The reflection point is expanded using (15): 

𝑋𝑒𝑥 = �̅� + 𝛾(𝑋𝑟𝑓 − �̅�) (15) 

where 𝑋𝑒𝑥 denotes the expansion point and 

replaces the worst value for 𝑓(𝑋𝑒𝑥) < 𝑓(𝑋𝑟𝑓). 
Otherwise, this point is replaced by 𝑋𝑟𝑓. The 

contraction step is performed for 𝑓(𝑋𝑝) ≤

𝑓(𝑋𝑟𝑓). An outer contraction (𝑋𝑜𝑢𝑡𝑐) is 

generated using (16) to obtain the fitness value 

of 𝑓(𝑋𝑜𝑢𝑡𝑐) in case of 𝑓(𝑋𝑟𝑓) < 𝑓(𝑋𝑝+1). 

𝑋𝑜𝑢𝑡𝑐 = �̅� + 𝛽(𝑋𝑟𝑓 − �̅�) (16) 

The point of 𝑋𝑝+1 is replaced by 𝑋𝑜𝑢𝑡𝑐, then the 

iterations are terminated for 𝑓(𝑋𝑜𝑢𝑡𝑐) ≤ 𝑓(𝑋𝑟𝑓). 

Otherwise, the shrinkage occurs in the next 
action. An inner contraction (𝑋𝑖𝑛𝑐), provided in 
(17), may also be constructed in the contraction 

step to obtain fitness of 𝑓(𝑋𝑖𝑛𝑐) for 𝑓(𝑋𝑝+1) ≤

𝑓(𝑋𝑟𝑓).

Start

Calculate the Euclidean distance 𝐸𝑑𝑖𝑠𝑡  between 𝑋𝑖  and 𝑋𝑗  

𝐸𝑑𝑖𝑠𝑡 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

End

no

Initialize iteration counter 𝑡 = 1, maximum iteration 

(𝑡𝑚𝑎𝑥 ),  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑅 = 𝑟𝑑(), 𝐶𝑠𝑐𝑎𝑙𝑎𝑟 = 0.5, 𝐿𝑏 , 𝑈𝑏   

Calculate the fitness value of each agent

Update the 𝑋𝑗  position 

𝐶𝑠𝑐𝑎𝑙𝑎𝑟 < 𝑅 

𝑋𝑗 (𝑡 + 1) = 𝐿𝑓 (𝑋𝑗 (𝑡), 𝑋𝐿 , 𝐿𝑏 ,  𝑈𝑏 ) 𝑋𝑗 (𝑡 + 1) = 𝐿𝑏 + (𝑈𝑏 − 𝐿𝑏 )𝑟𝑑() 

no yes

Update the 𝑋𝑖  position using 

𝑋𝑖
𝑛𝑒𝑤 (𝑡 + 1) = 𝐿𝑓 (𝑋𝑖(𝑡 + 1), 𝑇𝑝𝑜𝑠 , 𝐿𝑏 , 𝑈𝑏 ) 

Bring the agent back if it goes outside the boundaries

Calculate the new fitness for new agent and save the best in a target

𝑡 = 𝑡𝑚𝑎𝑥  

it
er

at
io

n
 c

o
u
n
te

r 
𝑡

=
𝑡

+
1

 

yes

no

yes

Initialize the size of population
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Figure 1. A detailed flowchart of LFD algorithm 

Start

End

Sort the 𝑝 + 1 vertices to satisfy 

𝑓(𝑋1) ≤ 𝑓(𝑋2) ≤ ⋯ ≤ 𝑓(𝑋𝑝+1) 

𝑋𝑟𝑓 = �̅� + 𝜌(�̅� − 𝑋𝑝+1) 

𝑓(𝑋𝑟𝑓 ) < 𝑓(𝑋1) 

𝑋𝑒𝑥 = �̅� + 𝛾(𝑋𝑟𝑓 − �̅�) 

𝑓(𝑋𝑒𝑥 ) < 𝑓(𝑋𝑟𝑓 ) 

Replace 𝑋𝑝+1 with 𝑋𝑒𝑥  

𝑓(𝑋1) ≤ 𝑓(𝑋𝑟𝑓 ) < 𝑓(𝑋𝑝 ) 

Replace 𝑋𝑝+1 with 𝑋𝑟𝑓  

𝑓(𝑋𝑟𝑓 ) < 𝑓(𝑋𝑝+1) 

𝑋𝑜𝑢𝑡𝑐 = �̅� + 𝛽(𝑋𝑟𝑓 − �̅�) 

𝑓(𝑋𝑜𝑢𝑡𝑐 ) ≤ 𝑓(𝑋𝑟𝑓 ) 

Replace 𝑋𝑝+1 with 𝑋𝑜𝑢𝑡𝑐  

𝑋𝑖𝑛𝑐 = �̅� + 𝛽(𝑋𝑝+1 − �̅�) 

𝑓(𝑋𝑖𝑛𝑐 ) < 𝑓(𝑋𝑝+1) 

Replace 𝑋𝑝+1 with 𝑋𝑖𝑛𝑐  

𝑋𝑖 = 𝑋1 + 𝛿(𝑋𝑖 − 𝑋1), 
𝑖 = 2, 3, … , 𝑝 + 1 

yes

no

yes

no no

yes

yes

no

no no

yesyes

 

Figure 2. Flowchart of NM method 

𝑋𝑖𝑛𝑐 = �̅� + 𝛽(𝑋𝑝+1 − �̅�) (17) 

The point of 𝑋𝑝+1 is replaced by 𝑋𝑖𝑛𝑐, then the 

iterations are terminated for 𝑓(𝑋𝑖𝑛𝑐) < 𝑓(𝑋𝑝+1). 

Otherwise, the shrinkage occurs. The shrinkage 
step is the final operation which constructs new 
points using (18). 

𝑋𝑖 = 𝑋1 + 𝛿(𝑋𝑖 − 𝑋1), 

𝑖 = 2, 3, … , 𝑝 + 1 
(18) 

The flowchart of NM simplex method is 
provided in Figure 2. 

Proposed Hybrid Strategies 

This section provides information about different 
approaches to hybridize LFD algorithm with 
NM simplex search method. In order to improve 

the performance of the original LFD algorithm, 
three different strategies were employed to adopt 
NM method for modifying LFD algorithm. To 
have a fair assessment, a dimension of 30, 
maximum iterations of 500 and a population size 
of 50 were adopted for all approaches.  

In the first proposed strategy, LFD algorithm is 
performed. Then, the NM method is applied 
after LFD algorithm completes its task entirely. 
The NM is run twice as much the number of 
iterations in this strategy which means the NM is 
performed for 1000 iterations since the chosen 
number of iterations was 500. This strategy was 
named as LFDNM-S1. 

In the second proposed strategy, unlike the first 
one, the NM method is applied after each 
iterations of LFD algorithm instead of waiting 
for the completion of the latter algorithm. 
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However, the NM method is performed for 𝑑 +
1 iterations where 𝑑 is the dimension of the 
problem. This strategy was named as LFDNM-
S2. 

The third proposed strategy is the last approach 
that was adopted for modifying LDF algorithm 
using NM method. Similar to the second 
strategy, the NM method is applied after each 
iterations of LFD algorithm in this strategy, as 
well. However, the implementation of NM 
method lasts for 𝑙 iterations after each iteration 
of the LFD algorithm where 𝑙 is the current 
iteration of the latter algorithm. That means, for 
example, the NM method would run for 10 
iterations if it is implemented after the 10th 
iteration of LFD algorithm, and run for 11 
iterations after 11th iteration of LFD algorithm 
and so on. The last strategy was named as 
LFDNM-S3. 

Experiments and Discussions 

The performance validation of the original and 
NM modified versions of LFD algorithms 
together with the parameter settings are 
presented in this section. The performances of 
the respective algorithms were tested using well-
known four unimodal and four multimodal test 
functions provided in the following subsection. 
The algorithms were tested against each other 
using a set of fixed parameters for the sake of 
fair comparison. Therefore, a swarm size (search 
agents) of 50 and maximum iterations of 500 
along with dimension (𝑛) of 30 were adopted for 
all algorithms. Besides, each algorithm was 
performed on each test function for 30 
independent runs. 

The parameter values for LFD were chosen to be 
2 for threshold, 0.5 for 𝐶𝑠𝑐𝑎𝑙𝑎𝑟, 1.5 for 𝛽, 10 for 
𝛼1, 0.00005 for 𝛼2, and 0.005 for 𝛼3 along with 
0.9 for 𝛿1 and 0.1 for 𝛿2 [10]. In terms of NM 
method, the parameter values were chosen to be 
1 for 𝜌, 2 for 𝛾, 0.5 for 𝛽 and 0.5 for 𝛿 [19]. 

In terms performance evaluation of the 
algorithms for global and local search abilities, 
the statistical values of average, standard 
deviation (Sdev), best and worst were used. 
Besides, the algorithms were ranked. In addition 
to those statistical metrics, a nonparametric 
statistical test known as Wilcoxon’s signed-rank 
test [20] was also performed for further 
assessment of the algorithms. The adopted 

statistical metrics of average, Sdev, best and 
worst can mathematically be defined as given in 
(19), (20), (21) and (22), respectively. 

Average =
∑ (𝑓𝑖)

𝑀
𝑖=1

𝑀
 (19) 

Sdev = √
1

𝑀 − 1
∑ (𝑓𝑖 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒)2

𝑀

𝑖=1
 (20) 

𝐵𝑒𝑠𝑡 = min
1≤𝑖≤𝑀

𝑓𝑖  (21) 

Worst = max
1≤𝑖≤𝑀

𝑓𝑖  (22) 

where 𝑀 is the number of runs and 𝑓𝑖 is the 
function fitness value. 

Benchmark Functions 

The following benchmark functions listed in 
Table 1 have been adopted for this study. The 
related table contains unimodal test functions of 
Sphere, Schwefel 2.22, Rosenbrock and Step 
together with multimodal benchmark functions 
of Schwefel, Rastrigin, Ackley and Griewank. 
Those are all well-known test functions with 
different properties and present a good 
environment for performance evaluation of the 
algorithm such that the exploitation and the 
exploration capabilities of the algorithm can be 
assessed using unimodal and multimodal 
functions, respectively [21]. 

For example, the unimodal benchmark functions 
have one global optimum with no local optima 
and are good for assessment of exploitation 
ability of the algorithms. On the other hand, the 
multimodal benchmark functions have 
considerable number of local optima which 
make them good for assessing the exploration 
capability of the algorithms. The properties of 
both unimodal (Sphere, Schwefel 2.22, 
Rosenbrock, Step) and multimodal (Schwefel, 
Rastrigin, Ackley, Griewank) benchmark 
functions can also be seen visually as 
demonstrated in Figure 3. The performance of 
the proposed NM modified LFD algorithms 
together with the original LFD algorithm was 
tested against each other using those benchmark 
functions. 

In terms of implementation of the algorithms on 
these benchmark functions, the related search 
domains listed in Table 1 for the respective test 
functions along with a dimension of 30 for each 
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function were adopted. Then the population size, 
and number of iterations were defined, and the 
related algorithms were tested against those test 
functions in terms of statistical performance. The 

results were then compared with each other. 
Figure 4 shows the implementation steps in 
brief. 

Table 1. Unimodal and multimodal test functions 

Name Description n Search domain Optimum 

Sphere 𝑓1(𝑥) = ∑ 𝑥𝑖
2𝑛

𝑖=1   30 [−100, 100] 0 

Schwefel 2.22 𝑓2(𝑥) = ∑ |𝑥𝑖| + ∏ |𝑥𝑖|𝑛
𝑖=1

𝑛
𝑖=1   30 [−10, 10] 0 

Rosenbrock 𝑓3(𝑥) = ∑ (100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2)𝑛−1

𝑖=1    30 [−30, 30] 0 

Step 𝑓4(𝑥) = ∑ (𝑥𝑖 + 0.5)2𝑛
𝑖=1     30 [−100, 100] 0 

Schwefel 𝑓5(𝑥) = − ∑ (𝑥𝑖sin(√|𝑥𝑖|))𝑛
𝑖=1   30 [−500, 500] −418.9829 × 𝑛 

Rastrigin 𝑓6(𝑥) = ∑ [𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10]𝑛

𝑖=1   30 [−5.12, 5.12] 0 

Ackley 
𝑓7(𝑥) = −20exp (−0.2√

1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1 ) −

exp (
1

𝑛
∑ cos(2𝜋𝑥𝑖)

𝑛
𝑖=1 ) + 20 + 𝑒  

30 [−32, 32] 0 

Griewank 𝑓8(𝑥) =
1

4000
∑ 𝑥𝑖

2 − ∏ cos (
𝑥𝑖

√𝑖
)𝑛

𝑖=1
𝑛
𝑖=1 + 1  30 [−600, 600] 0 

 

Figure 3. Surface plots of the two-variable benchmark functions used in experiment 

Exploitation Capability 

As mentioned in the previous subsection, the 
unimodal functions (𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), 𝑓4(𝑥)) 
provided in Table 2 can help assessing the local 
search capability of the algorithms under 
consideration [22]. It can easily be spotted that 
the average values for all test functions obtained 
by the LFDNM-S3 algorithm (shown in bold) 
are well below the other values achieved by the 
other algorithms. In addition, the LFDNM-S3 

algorithm has achieved better values in terms of 
other statistical metrics. Besides, the constructed 
LFDNM-S3 algorithm has also been ranked the 
first, as well. The obtained results clearly show 
the third proposed strategy for NM modified 
LFD algorithm has a strong competitiveness in 
terms of exploitation.  

Exploration Capability 

In terms of assessment of global search 
capability, the multimodal functions (𝑓5(𝑥), 
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𝑓6(𝑥), 𝑓7(𝑥), 𝑓8(𝑥)) provided in Table 3 can be 
used [22]. Similar to local search ability, the 
LFDNM-S3 algorithm has also achieved better 
results than the other algorithms in terms of all 
statistical metrics. Besides, the constructed 
LFDNM-S3 algorithm has also been ranked the 
first for multimodal functions, as well. The 

obtained results clearly show the LFDNM-S3 
algorithm’s strong competitiveness in terms of 
exploration, as well. Considering both global 
and local search capabilities, it can be concluded 
that the third proposed strategy for improving 
LFD algorithm through NM method has a good 
balance in terms of exploration and exploitation.

Table 2. Results of the unimodal functions 

Function Measure Basic LFD LFDNM-S1 LFDNM-S2 LFDNM-S3 

𝑓1(𝑥)  

Average 1.5220E−07 3.6282E−08 1.1919E−08 1.4697E−42 

Sdev 5.4715E−08 1.2058E−08 9.0745E−09 3.1618E−42 

Best 8.0419E−08 1.9756E−08 1.5254E−09 1.7217E−44 

Worst 2.3698E−07 5.7184E−08 3.9174E−08 1.2261E−41 

Rank 4 3 2 1 

𝑓2(𝑥)  

Average 3.0625E−04 1.3472E−04 3.7902E−05 2.0705E−27 

Sdev 5.9240E−05 2.7256E−05 8.9938E−06 2.3826E−27 

Best 1.8925E−04 9.9580E−05 2.2527E−05 4.7253E−29 

Worst 3.8394E−04 2.0202E−04 6.0360E−05 9.0123E−27 

Rank 4 3 2 1 

𝑓3(𝑥)  

Average 27.8977 27.0939 23.6612 0.4302 

Sdev 0.1187 0.2811 0.1142 0.1802 

Best 27.7517 26.5653 23.4629 0.2515 

Worst 28.0630 27.6308 23.8389 0.9410 

Rank 4 3 2 1 

𝑓4(𝑥)  

Average 1.1480 0.5076 2.3949E−06 1.7721E−07 

Sdev 0.2349 0.2549 8.0920E−07 4.1048E−08 

Best 0.5739 0.1592 6.8912E−07 5.6266E−08 

Worst 1.4370 0.9830 4.3665E−06 2.3634E−07 

Rank 4 3 2 1 

Table 3. Results of the multimodal functions 

Function Measure Basic LFD LFDNM-S1 LFDNM-S2 LFDNM-S3 

𝑓5(𝑥)  

Average −4.3960E+03 −7.8148E+03 −7.6089E+03 −8.2171E+03 

Sdev 283.6078 391.0008 661.1682 772.6186 

Best −4.8243E+03 −8.3413E+03 −8.9003E+03 −9.8013E+03 

Worst −3.8051E+03 −7.0629E+03 −6.5018E+03 −7.4562E+03 

Rank 4 2 3 1 

𝑓6(𝑥)  

Average 2.8745 0.4463 0.0665 2.2578E−11 

Sdev 3.8130 0.5498 0.1319 8.6173E−12 

Best 1.5259E−05 2.9721E−06 2.0053E−06 1.2108E−11 

Worst 13.2109 1.6631 0.5054 4.3315E−11 

Rank 4 3 2 1 

𝑓7(𝑥)  

Average 8.8859E−05 4.4928E−05 2.9489E−05 2.1202E−12 

Sdev 1.1628E−05 9.3227E−06 8.5630E−06 5.2423E−13 

Best 7.0401E−05 3.5371E−05 8.3122E−06 1.4611E−12 

Worst 1.0701E−04 7.3164E−05 4.2522E−05 3.0349E−12 

Rank 4 3 2 1 

𝑓8(𝑥)  

Average 3.7917E−07 1.0317E−07 4.5251E−08 5.8538E−14 

Sdev 1.2776E−07 5.0798E−08 2.4069E−08 1.8298E−14 

Best 1.8918E−07 4.3454E−08 1.4857E−08 4.1078E−14 

Worst 6.7854E−07 2.0082E−07 9.5037E−08 1.0003E−13 

Rank 4 3 2 1 
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Figure 4. Optimization stage for the benchmark 
functions 

The Wilcoxon’s Test 

The Wilcoxon’s signed-rank test was used in 
this study as a non-parametric statistical test 
which was performed to have a meaningful 
conclusion for the performances of the proposed 
hybrid strategies since this test helps evaluating 

the significance level between different 
algorithms [23]. The respective 𝑝 values of the 
algorithms can be obtained along with the 
calculations of 𝑇 + and 𝑇 − related to 
comparisons between two algorithms using 
Wilcoxon’s signed-rank test. Table 4 
demonstrates the respective test results on 8 
benchmark functions in 30 runs for the original 
and the proposed NM modified LFD algorithms. 
In the table, the sign of ‘+’ indicates statistically 
significant difference, thus, better performance 
of the algorithm and the sign of ‘−’ indicates 
vice versa. In case of no statistically significant 
difference between the compared algorithms, the 
sign of ‘=’ is used. 

Evaluating the demonstrated results, the 
LFDNM-S3 algorithm can clearly be seen to be 
significantly superior to the original LFD and 
LFDNM-S2 algorithms for all test functions. 
The comparison between LFDNM-S3 and the 
LFDNM-S1 algorithms shows no significant 
difference only for 𝑓5(𝑥), however, for the rest 
of the functions LFDNM-S3 has clear 
superiority. 

Table 4. Wilcoxon signed-rank test results for LFDNM-S3 vs LFD, LFDNM-S1 and LFDNM-S2  

Function 
LFDNM-S3 vs. LFD LFDNM-S3 vs. LFDNM-S1 LFDNM-S3 vs. LFDNM-S2 

𝒑 value 𝑻 + 𝑻 − 𝑾 𝒑 value 𝑻 + 𝑻 − 𝑾 𝒑 value 𝑻 + 𝑻 − 𝑾 

𝑓1(𝑥)  1.7181E−06 465 0 + 1.7181E−06 465 0 + 1.7181E−06 465 0 + 

𝑓2(𝑥)  1.7181E−06 465 0 + 1.7094E−06 465 0 + 1.7181E−06 465 0 + 

𝑓3(𝑥)  1.7181E−06 465 0 + 1.7181E−06 465 0 + 1.7181E−06 465 0 + 

𝑓4(𝑥)  1.7181E−06 465 0 + 1.7181E−06 465 0 + 1.7181E−06 465 0 + 

𝑓5(𝑥)  1.7344E−06 465 0 + 0.2208 292 173 = 3.0481E−04 408 57 + 

𝑓6(𝑥)  1.7181E−06 465 0 + 1.7181E−06 465 0 + 1.7181E−06 465 0 + 

𝑓7(𝑥)  1.7181E−06 465 0 + 1.7181E−06 465 0 + 1.7181E−06 465 0 + 

𝑓8(𝑥)  1.7181E−06 465 0 + 1.7181E−06 465 0 + 1.7181E−06 465 0 + 

Conclusion 

In this work, novel approaches for improving the 
capability of the original LFD algorithm were 
proposed and discussed through modifications 
using NM method. The NM method was 
implemented after LFD algorithm in each of the 
strategies, however, by following different 
patterns. In the first approach, NM was run twice 
as much the number of iterations of LFD 

algorithm after the LFD algorithm finishes its 
task. In the second approach, NM was run after 
each iterations of LFD algorithm instantly 
whereas for the third approach, NM was run for 
the total number of current iterations after each 
iteration of the LFD algorithm. Four unimodal 
and four multimodal test functions were used to 
observe the performance of the algorithms 
through statistical and nonparametric statistical 
analyses. The obtained results have shown the 



DUJE (Dicle University Journal of Engineering) 12:3 (2021) Page 487-497 

 

496 
 

modified versions of LFD algorithm can provide 
better capability in general. In addition, the 
efficiency of the third approach was found to be 
better for NM modified LFD algorithm since it 
has demonstrated a greater balance between 
exploration and exploitation phases. Therefore, 
the latter can be used as an effective tool for 
optimization problems. Bearing the obtained 
results in mind, the constructed algorithms have 
the potential to be used for several different real-
life optimization problems for future works. 
Some of them can be listed as controlling an 
automatic voltage regulator system, regulating 
the speed of a direct current motor, and 
operating a magnetic levitation system. 
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