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0000-0002-9130-2893 and 0000-0001-6587-4479

Abstract. This paper deals with the system of a class of nonlinear higher-
order Kirchhoff-type equations with logarithmic nonlinearities. Under the ap-

propriate assumptions, the theorem of global nonexistence is established at
positive initial energy levels.

1. Introduction

In this paper, we study the following initial-boundary value problem
(1.1)

utt +M
(
‖Dmu‖2 + ‖Dmv‖2

)
(−4)

m
u+ (−4)

m
ut = |u|r−2

u ln |u| , x ∈ Ω, t > 0,

vtt +M
(
‖Dmu‖2 + ‖Dmv‖2

)
(−4)

m
v + (−4)

m
vt = |v|r−2

v ln |v| , x ∈ Ω, t > 0,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , v (x, 0) = v0 (x) , vt (x, 0) = v1 (x) , x ∈ Ω,
∂i

∂νiu (x, t) = 0, ∂i

∂νi v (x, t) = 0, i = 0, 1, 2, ...m− 1, x ∈ ∂Ω, t ≥ 0,

where Du = ∇u =
(
∂u
∂x1

, ∂u∂x2
, ... ∂u∂xn

)
and r ≥ 2γ + 2 are real numbers and m ≥ 1

are positive integers. The Kirchhoff term M (s) = β1 +β2s
γ , γ > 0, β1 ≥ 1, β2 ≥ 0.

We will take β1 = β2 = 1 for simplify. Ω ⊂ Rn is a regular and bounded domain
with smooth boundary ∂Ω. And v denotes the outer normal.

Problem (1.1) is a generalization of a model considered by Kirchhoff [9]. Kirch-
hoff type equation has in the mathematical description of small amplitude vibra-
tions of an elastic string. In the case M (s) = 1, m = 1 and p ≥ 2, a problem of
the single wave equation of the (1.1) form becomes

(1.2) utt −4u+ f (ut) = |u|p−2
u ln |u| .

Several results of the problem (1.2) concerning local or global existence and qual-
itative theory have been studied by many mathematicians(see [1, 2, 4, 5, 6, 7, 10,
13, 19]). In the case M (s) 6= 1, m = 1 and p ≥ 2, a problem of the single wave
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GLOBAL NONEXISTENCE OF SOLUTIONS 173

equation of (1.1) becomes the Kirchhoff-type equation which has been investigated
by many authors [3, 14, 18].

In the case M (s) 6= 1, m > 1 the single form of the problem (1.1) without
logarithmic source terms have been discussed by many authors (see [12, 16, 15, 11]).

Let us finally mention that wave equation system with logarithmic nonlinearies
was studied by Wang et al [17].They proved global existence and finite time blow up
under the different conditions by employing the potential well method and concavity
method. In [8], the authors studied (1.1) problem with nonlinear damping terms.
They established global existence and decay estimates.

The rest of this work is organized as follows. In Section 3, our aim is to prove
the blow up of solution for E (0) > 0. In section 2, we give some lemmas which will
be useful.

2. Preliminaries

Now we define the potential energy functional of problem (1.1)

J(u, v) =
1

2

(
‖Dmu‖2 + ‖Dmv‖2

)
+

1

2γ + 2

(
‖Dmu‖2 + ‖Dmv‖2

)γ+1

−1

r

∫
Ω

|u|r ln |u| dx+

∫
Ω

|v|r ln |v| dx

+
1

r2
(‖u‖rr + ‖v‖rr)(2.1)

and the Nehari functional

I(u, v) =
(
‖Dmu‖2 + ‖Dmv‖2

)
+
(
‖Dmu‖2 + ‖Dmv‖2

)γ+1

−

∫
Ω

|u|r ln |u| dx+

∫
Ω

|v|r ln |v| dx

 .(2.2)

By (2.1) and (2.2) we obtain

J(u, v) =
I(u, v)

r
+

(r − 2)

2r

(
‖Dmu‖2 + ‖Dmv‖2

)
+

(r − 2γ − 2)

2γ + 2

(
‖Dmu‖2 + ‖Dmv‖2

)γ+1

+
1

r2
(‖u‖rr + ‖v‖rr) .(2.3)

Then we can introduce the stable set

W = {(u, v) ∈ Hm
0 (Ω)×Hm

0 (Ω) : I(u, v) > 0} ∪ {0} ,

the outer space of the potential well

V = {(u, v) ∈ Hm
0 (Ω)×Hm

0 (Ω) : I(u, v) < 0} .
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We introduce the total energy

E(u, v) =
1

2

(
‖ut‖2 + ‖vt‖2

)
+

1

2

(
‖Dmu‖2 + ‖Dmv‖2

)
+

1

2γ + 2

(
‖Dmu‖2 + ‖Dmv‖2

)γ+1

−1

r

∫
Ω

|u|r ln |u| dx+

∫
Ω

|v|r ln |v| dx

+
1

r2
(‖u‖rr + ‖v‖rr) .(2.4)

For (u, v) ∈ Hm
0 (Ω)×Hm

0 (Ω) , t ≥ 0

E(0) =
1

2

(
‖u1‖2 + ‖v1‖2

)
+

1

2

(
‖Dmu0‖2 + ‖Dmv0‖2

)
+

1

2γ + 2

(
‖Dmu0‖2 + ‖Dmv0‖2

)γ+1

−1

r

∫
Ω

|u0|r ln |u0| dx+

∫
Ω

|v0|r ln |v0| dx

+
1

r2
(‖u0‖rr + ‖v0‖rr) .(2.5)

is the initial total energy. We introduce by (2.4) and (2.3)

(2.6) E(u, v) =
1

2

(
‖ut‖2 + ‖vt‖2

)
+ J (u, v) ,

Lemma 2.1. Let k be a number with 2 ≤ k < ∞ if n ≤ 2s and 2 ≤ k ≤ 2n
n−2k if

n > 2s. Then there is a constant such that

‖u‖k ≤ C ‖D
mu‖ ,∀(u, v) ∈ Hm

0 (Ω)×Hm
0 (Ω) .

Lemma 2.2. E(t) is a nonincreasing function for t ≥ 0 and

(2.7) E′ (t) = −
(
‖Dmut‖2 + ‖Dmvt‖2

)
≤ 0.

Proof. Multiplying the first equation of (1.1) by ut and the second equation of (1.1)
by vt, and integrating on Ω, we have

1

2

d

dt
‖ut‖2 +

d

dt

 1

r2
‖u‖rr −

1

r

∫
Ω

|u|r ln |u| dx


1

2

(
1 +

(
‖Dmu‖2 + ‖Dmv‖2

)γ) d

dt
‖Dmu‖2

= −
∫
Ω

|Dmut|2 dx,(2.8)

and

1

2

d

dt
‖vt‖2 +

d

dt

 1

r2
‖v‖rr −

1

r

∫
Ω

|v|r ln |v| dx


1

2

(
1 +

(
‖Dmu‖2 + ‖Dmv‖2

)γ) d

dt
‖Dmv‖2

= −
∫
Ω

|Dmvt|2 dx.(2.9)
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A summarization of (2.8) and (2.9) hence gives

1

2

d

dt

(
‖ut‖2 + ‖vt‖2

)
+

1

2

(
1 +

(
‖Dmu‖2 + ‖Dmv‖2

)γ) d

dt

(
‖Dmu‖2 + ‖Dmv‖2

)
d

dt

−1

r

∫
Ω

|u|r ln |u| dx+

∫
Ω

|v|r ln |v| dx

+
1

r2
(‖u‖rr + ‖v‖rr)


= −

∫
Ω

|Dmut|2 dx+

∫
Ω

|Dmvt|2 dx

 .(2.10)

Integrating (2.10) with respect to t on [0, t], we arrive at

1

2

(
‖ut‖2 + ‖vt‖2

)
+

1

2

(
‖Dmu‖2 + ‖Dmv‖2

)
+

1

2γ + 2

(
‖Dmu‖2 + ‖Dmv‖2

)γ+1

+
1

r2
(‖u‖rr + ‖v‖rr)

−1

r

∫
Ω

|u|r ln |u| dx+

∫
Ω

|v|r ln |v| dx


+

 t∫
0

‖Dmuτ‖2 dτ +

∫
Ω

‖Dmvτ‖2 dτ


=

1

2

(
‖u1‖2 + ‖v1‖2

)
+

1

2

(
‖Dmu0‖2 + ‖Dmv0‖2

)
+

1

2γ + 2

(
‖Dmu0‖2 + ‖Dmv0‖2

)γ+1

+
1

r2
(‖u0‖rr + ‖v0‖rr)

−1

r

∫
Ω

|u0|r ln |u0| dx+

∫
Ω

|v0|r ln |v0| dx

 .(2.11)

By using the definition of total energy and initial total energy, we restate (2.11) as

(2.12) E (t) +

 t∫
0

‖Dmuτ‖2 dτ +

∫
Ω

‖Dmvτ‖2 dτ

 = E (0) .

�

Now, we give some properties related with J(u, v) and I(u, v), respectively.

Lemma 2.3. For any (u, v) ∈ Hm
0 (Ω)×Hm

0 (Ω) , ‖Dmu‖ 6= 0 and ‖Dmu‖ 6= 0,let
g (λ) = J (λu, λv). Then we have

i) lim
λ→0

g (λ) = 0, lim
λ→∞

g (λ) = −∞,
ii) There is a unique λ∗ such that g′ (λ) = 0,
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iii) Then we have

I (λu, λv) = λg′ (λ)

 > 0, 0 ≤ λ < λ∗,
= 0, λ = λ∗,
< 0, λ∗ < λ.

Proof. By the definition of J (u, v) , we obtain

g (λ) = J (λu, λv)

=
1

2
λ2
(
‖Dmu‖2 + ‖Dmv‖2

)
+

1

r2
λr (‖u‖rr + ‖v‖rr)

−1

r
ln |λ|λr (‖u‖rr + ‖v‖rr)−

1

r
λr

∫
Ω

ur ln |u| dx+

∫
Ω

vr ln |v| dx


+

1

2γ + 2
λ2γ+2

(
‖Dmu‖2 + ‖Dmv‖2

)2γ+2

.(2.13)

Since ‖Dmu‖ 6= 0, and ‖Dmv‖ 6= 0, lim
λ→0

g (λ) = 0, lim
λ→∞

g (λ) = −∞. Now, differen-

tiating g (λ) with respect to λ, we have

g′ (λ) = λ
(
‖Dmu‖2 + ‖Dmv‖2

)
+ λ2γ+1

(
‖Dmu‖2 + ‖Dmv‖2

)2γ+2

−λr−1

∫
Ω

ur ln |u| dx+

∫
Ω

vr ln |v| dx

− λr−1 ln |λ| (‖u‖rr + ‖v‖rr)

= λ

((
‖Dmu‖2 + ‖Dmv‖2

)
+ β2λ

2γ
(
‖Dmu‖2 + ‖Dmv‖2

)2γ+2

−λr−2

∫
Ω

ur ln |u| dx+

∫
Ω

vr ln |v| dx

− λr−2 ln |λ| (‖u‖rr + ‖v‖rr)

 .(2.14)

Let

ψ (λ) = λ2γ
(
‖Dmu‖2 + ‖Dmv‖2

)2γ+2

−λr−2

∫
Ω

ur ln |u| dx+

∫
Ω

vr ln |v| dx


−λr−2 ln |λ| (‖u‖rr + ‖v‖rr) .

Then from 2γ ≤ r − 2 we can deduce that lim
λ→∞

ψ (λ) = −∞, ψ (λ) is monotone

decreasing when λ > λ1 and there exists a unique λ1 such that ψ
(
λ1
)

= 0. Then we

obtain there is a λ∗ > λ1 such that λ
[(
‖Dmu‖2 + ‖Dmv‖2

)
+ ψ (λ)

]
= 0, which

means g′ (λ) = 0.
The last property (iii), is only a simple corollary of the fact that

(2.15) λ
dJ (λu, λv)

dλ
= λg′ (λ) = I (λu, λv) .

�
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Lemma 2.4. i) The definition of the potential well depth

(2.16) d = inf
u∈N

J (u, v) ,

where

N = {(u, v) : (u, v) ∈ Hm
0 (Ω)×Hm

0 (Ω) \ {0} : I (u, v) = 0} ,
is equivalent to
(2.17)

d = inf

{
sup
λ≥0

J (λu, λv) | (u, v) ∈ Hm
0 (Ω)×Hm

0 (Ω) , ‖Dmu‖2 6= 0, ‖Dmv‖2 6= 0

}
.

ii) The constant d in (2.16) satisfies

d =
(r − 2)

2r

(
1

Cr+1
1

) 2
r−1

,

where C1 is the optimal constant of Lemma 2.1 (Hm
0 (Ω) ↪→ Lr+1) and

(2.18)

{
2γ + 2 ≤ r ≤ n+2m

n−2m , n > 2m,

2γ + 2 ≤ r ≤ ∞, n ≤ 2m.

Proof. i) The definition of d from (iii) of Lemma 2.3 it implies that for any (u, v) ∈
Hm

0 (Ω)×Hm
0 (Ω) , there exist a λ∗ such that I (λ∗u, λ∗v) = 0, that is (λ∗u, λ∗v) ∈

N. By the definition of d we obtain

(2.19) J (λ∗u, λ∗v) ≥ d for any (u, v) ∈ Hm
0 (Ω)×Hm

0 (Ω) / {0} .

And because of Lemma 2.3

sup
λ≥0

J (λu, λv) = J (λ∗u, λ∗v) ,

which by virtue of (2.19) means

(2.20) inf
(u,v)∈Hm0 (Ω)×Hm0 (Ω)

sup
λ≥0

J (λu, λv) = inf
(u,v)∈Hm0 (Ω)×Hm0 (Ω)

J (λ∗u, λ∗v) ≥ d,

As (u, v) ∈ Hm
0 (Ω)×Hm

0 (Ω) / {0} , we obtain d is not equivalent to 0, which gives
(2.17). On the other hand, from the definition of d given by (2.17) it implies that
there exists λ1 such that

sup
λ≥0

J (λu, λv) = supJ
(
λ1u, λ1∗v

)
.

Then from Lemma 2.3 we can deduce λ∗ = λ1. And it shows that

I
(
λ1u, λ1v

)
= I (λ∗u, λ∗v) = 0,

which means
(
λ1u, λ1v

)
∈ N. By the definition of d, we get,

d = inf
(λ∗u,λ∗v)∈N

J
(
λ1u, λ1v

)
,

that is

(2.21) d = inf
(u,v)∈N

J (u, v) .

This complete our proof for (i).
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ii) By virtue of I (u, v) = 0 and definition of I (u, v) and the embedding theorems
we obtain(
‖Dmu‖2 + ‖Dmv‖2

)
+
(
‖Dmu‖2 + ‖Dmv‖2

)γ+1

=

∫
Ω

|u|r ln |u| dx+

∫
Ω

|v|r ln |v| dx,

(
‖Dmu‖2 + ‖Dmv‖2

)
≤

∫
Ω

|u|r ln |u| dx+

∫
Ω

|v|r ln |v| dx

≤ ‖u‖r+1
r+1 + ‖v‖r+1

r+1

≤ Cr+1
1

(
‖Dmu‖r+1

+ ‖Dmv‖r+1
)

≤ Cr+1
1

(
‖Dmu‖2 + ‖Dmv‖2

) r−1
2
(
‖Dmu‖2 + ‖Dmv‖2

)
,(2.22)

which means

(2.23) ‖Dmu‖2 + ‖Dmv‖2 ≥
(

1

Cr+1
1

) 2
r−1

.

From the definition of d, we have (u, v) ∈ N. By the definition of J (u, v), (2.22),
(2.3) and I (u, v) = 0, we get

J (u, v) =
I (u, v)

r
+

(r − 2)

2r

(
‖Dmu‖2 + ‖Dmv‖2

)
+

(r − 2γ − 2)

2γ + 2

(
‖Dmu‖2 + ‖Dmv‖2

)γ+1

+
1

r2
(‖u‖rr + ‖v‖rr)

≥ (r − 2)

2r

(
‖Dmu‖2 + ‖Dmv‖2

)
≥ (r − 2)

2r

(
1

Cr+1
1

) 2
r−1

,

where 2γ ≤ r − 2 . Combining of (2.21) and (2.23), we can see clearly that

d =
(r − 2)

2r

(
1

Cr+1
1

) 2
r−1

.

�

Lemma 2.5. Let (u, v) be a weak solution problem of (1.1) and (u0, v0) ∈ Hr1
0 (Ω)×

Hr2
0 (Ω) , (u1, v1) ∈ L2 (Ω)× L2 (Ω). Suppose that E (0) < d
i) if (u0, v0) ∈W, then (u, v) ∈W for 0 ≤ t ≤ T ;
ii) if (u0, v0) ∈ V, then (u, v) ∈ V for 0 ≤ t ≤ T,
where T is the maximum existence time of (u (t) , v (t)) .

Proof. We only prove case (i), case (ii) is similar. Let (u (t) , v (t)) be a weak solution
problem of (1.1) under the conditions and (u0, v0) ∈ W and T can define of the
maximum existence time of (u (x, t) , v (x, t)) . Then by (2.7) the energy functional
is nonincreasing about t. So that, we have E ((u (t) , v (t))) < E (0) < d which
means I ((u (t) , v (t))) > 0 for 0 < t < T. We will use contradiction and we suppose
that; there is a t1 ∈ (0, T ) such that I (u (t1) , v (t1)) < 0. In this way there is
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a t∗ ∈ (0, T ) to make I (u (t∗) , v (t∗)) = 0 because of continuity of I (u (t) , v (t))
about time. Then by (2.16), we get

d > E (0) ≥ E (u (t∗) , v (t∗)) ≥ J (u (t∗) , v (t∗)) ≥ d,

which is a contradiction. �

Lemma 2.6. Under the condition of Lemma 2.5 (ii), we get

d <
(r − 2)

2r

(
‖Dmu‖2 + ‖Dmv‖2

)
.

Proof. By using definition of the d, we get

d =
(r − 2)

2r

(
1

Cr+1
1

) 2
r−1

,

which together I (u, v) < 0. Then similar calculations at (2.22), we get

(2.24) ‖Dmu‖2 + ‖Dmv‖2 ≥
(

1

Cr+1
1

) 2
r−1

,

which means

d <
(r − 2)

2r

(
1

Cr+1
1

) 2
r−1

.

�

3. Finite time blow up of solutions for positive initial energy

In tis part we introduce the finite time blow up solution to problem (1.1) with
E (0) > 0. Now we give some lemmas which will be used the proof of the Theorem
3.3.

Lemma 3.1. Let (u, v) be a weak solution problem of (1.1) and (u0, v0) ∈ Hm
0 (Ω)×

Hm
0 (Ω) , (u1, v1) ∈ Hm

0 (Ω) × Hm
0 (Ω). Suppose that E (0) > 0 and initial data

supplies

(3.1) ‖Dmu0‖2 + ‖Dmv0‖2 + 2 (u0, u1) + 2 (v0, v1) >
2r (C + 2)

(r − 2)C
E (0) > 0,

where C is the best constant of Lemma 2.1.

By (u, v) ∈ V, the map{
t 7→ ‖Dmu‖2 + ‖Dmv‖2 + 2 (u, ut) + 2 (v, vt)

}
is strictly increasing.

Proof. Defining the following auxiliary function

(3.2) G (t) = ‖Dmu‖2 + ‖Dmv‖2 + 2 (u, ut) + 2 (v, vt) ,

where

(3.3) G (0) = ‖Dmu0‖2 + ‖Dmv0‖2 + 2 (u0, u1) + 2 (v0, v1) .
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By taking derivative of above function, we get

G′ (t) = 2 (Dmu,Dmut) + 2 (Dmv,Dmvt)

+2
(
‖ut‖2 + ‖vt‖2

)
+ 2 [(u, utt) + (v, vtt)]

= 2
(
‖ut‖2 + ‖vt‖2

)
− 2I (u, v) .

By I (u, v) < 0, for all t ∈ [0,∞) it gives that

(3.4) G′ (t) > 0.

From (3.1), (3.3) and (3.4) we obtain

G (t) > G (0) > 0,

which gives that the map{
t 7→ ‖Dmu‖2 + ‖Dmv‖2 + 2 (u, ut) + 2 (v, vt)

}
is strictly increasing. �

Lemma 3.2. Under the conditions of Lemma 3.1 (u, v) is the solution of problem
(1.1) with the maximum existence time interval [0, T ) and T ≤ ∞. If (u0, v0) ∈ V,
then the all solutions (u, v) belong to V .

Proof. Our purpose is to show that (u, v) ∈ V. Arguing by contradiction, we con-
sider that t∗ ∈ (0, T ) is the first time which satisfies

I (u (t∗) , v (t∗)) = 0,

and

I (u (t) , v (t)) < 0 for t ∈ [0, t∗) .

Then from Lemma 3.1 and the continuity of (u, v) and (ut, vt) in t, for t ∈ (0, t∗)
we get

‖Dmu‖2 + ‖Dmv‖2 + 2 (u, ut) + 2 (v, vt)

> ‖Dmu0‖2 + ‖Dmv0‖2 + 2 (u0, u1) + 2 (v0, v1)

>
2r (C + 2)

(r − 2)C
E (0) .(3.5)

By (2.3), (2.6) and (2.12) we arrive at

E (0) = E (t) +

 t∫
0

‖Dmuτ‖2 dτ +

∫
Ω

‖Dmvτ‖2 dτ


=

1

2

(
‖ut‖2 + ‖vt‖2

)
+
I(t)

r
+

(r − 2)

2r

(
‖Dmu‖2 + ‖Dmv‖2

)
+

(r − 2γ − 2)

2γ + 2

(
‖Dmu‖2 + ‖Dmv‖2

)γ+1

+
1

r2
(‖u‖rr + ‖v‖rr)

+

 t∫
0

‖Dmuτ‖2 dτ +

∫
Ω

‖Dmvτ‖2 dτ


≥ 1

2

(
‖ut‖2 + ‖vt‖2

)
+
I(t)

r
+

(r − 2)

2r

(
‖Dmu‖2 + ‖Dmv‖2

)
.(3.6)
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By using r ≥ 2γ + 2, I (u (t∗) , v (t∗)) = 0 , Young’s inequality and Lemma 211, we
conclude that

E (0) ≥ E (t∗)

≥ 1

2

(
‖ut(t∗)‖2 + ‖vt(t∗)‖2

)
+
I(t∗)

r
+

(r − 2)

2r

(
‖Dmu(t∗)‖2 + ‖Dmv(t∗)‖2

)
≥

(
1

2
− 1

r

)(
‖ut(t∗)‖2 + ‖vt(t∗)‖2

)
+

(r − 2)

2r

(
‖Dmu(t∗)‖2 + ‖Dmv(t∗)‖2

)
≥ (r − 2)C

2r (C + 2)

(
‖ut(t∗)‖2 + ‖vt(t∗)‖2

)
+

(r − 2)

2r

(
‖Dmu(t∗)‖2 + ‖Dmv(t∗)‖2

)
=

(r − 2)C

2r (C + 2)

(
‖ut(t∗)‖2 + ‖vt(t∗)‖2 + ‖Dmu(t∗)‖2 + ‖Dmv(t∗)‖2

)
+

(r − 2)

r (C + 2)

(
‖Dmu(t∗)‖2 + ‖Dmv(t∗)‖2

)
≥ (r − 2)C

2r (C + 2)

(
‖ut(t∗)‖2 + ‖vt(t∗)‖2 + ‖Dmu(t∗)‖2 + ‖Dmv(t∗)‖2

)
+

(r − 2)C

r (C + 2)

(
‖u(t∗)‖2 + ‖v(t∗)‖2

)
≥ (r − 2)C

2r (C + 2)

[
‖ut(t∗)‖2 + ‖vt(t∗)‖2

+ ‖Dmu(t∗)‖2 + ‖Dmv(t∗)‖2 +
(
‖u(t∗)‖2 + ‖v(t∗)‖2

)]
≥ (r − 2)C

2r (C + 2)
{[2 (ut(t

∗), u(t∗)) + 2 (vt(t
∗), v(t∗))]

+ ‖Dmu(t∗)‖2 + ‖Dmv(t∗)‖2
}
.(3.7)

Clearly, we show that (3.7) contradicts (3.5). This completes the proof of lemma.
�

Theorem 3.3. Let (u, v) be a weak solution of problem of (1.1) and (u0, v0) ∈
Hm

0 (Ω)×Hm
0 (Ω) , (u1, v1) ∈ Hm

0 (Ω)×Hm
0 (Ω). Suppose that (3.1) holds. Therefore

the solution of problem (1.1) blows up in finite time as long as E (0) > 0 and
(u0, v0) ∈ V.

Proof. We prove the finite time blow up of solution to (1.1). If it is not this case ,
we suppose existence time T =∞. For any T0 > 0, we define the auxiliary function

Φ (t) = ‖u‖2 + ‖v‖2 +

t∫
0

(
‖Dmu‖2 + ‖Dmv‖2

)
dτ

(T0 − t)
(
‖Dmu‖2 + ‖Dmv‖2

)
.(3.8)

It is clear that Φ (t) > 0 for all t ∈ [0, T0] . In view of continuity of Φ (t) in t, we
obtain that there is a ξ > 0 which is independent on T0 such that

(3.9) Φ (t) > ξ.
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Then by t ∈ [0, T0] ,we derive

Φ′ (t) = 2

∫
Ω

uutdx+

∫
Ω

vvtdx


+
(
‖Dmu‖2 + ‖Dmv‖2

)
−
(
‖Dmu0‖2 + ‖Dmv0‖2

)
= 2

∫
Ω

uutdx+

∫
Ω

vvtdx


+2

 t∫
0

(Dmu (τ) , Dmuτ (τ)) + (Dmv (τ) , Dmvτ (τ))

 ,(3.10)

and

Φ′′ (t) = 2
(
‖ut‖2 + ‖vt‖2

)
+ 2 (u, utt) + 2 (v, vtt)

2 (Dmu,Dmut) + 2 (Dmv,Dmvt)

= 2
(
‖ut‖2 + ‖vt‖2

)
− 2I (u, v) .(3.11)

From (3.10) it implies

(B′ (t))
2

= 4
(

(u, ut)
2

+ (v, vt)
2
)

+4

 t∫
0

(Dmu (τ) , Dmuτ (τ)) + (Dmv (τ) , Dmvτ (τ))

2

+8

 (
t∫

0

(Dmu (τ) , Dmuτ (τ)) + (Dmv (τ) , Dmvτ (τ)) dτ

)
((u, ut) + (v, vt))

 .(3.12)

Our aim is to estimate each terms in (3.12) by Cauchy-Schwarz and Young’s in-
equalities. We obtain the first and second terms as follow

(u, ut)
2

+ (v, vt)
2 ≤ (‖u‖ ‖ut‖+ ‖v‖ ‖vt‖)2

≤
(
‖u‖2 + ‖v‖2

)(
‖ut‖2 + ‖vt‖2

)
,(3.13)
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and

 t∫
0

(Dmu (τ) , Dmuτ (τ)) + (Dmv (τ) , Dmvτ (τ)) dτ

2

≤

 t∫
0

‖Dmu (τ)‖ ‖Dmuτ (τ)‖+ ‖Dmv (τ)‖ ‖Dmvτ (τ)‖ dτ

2

≤

 t∫
0

(
‖Dmu (τ)‖2 + ‖Dmv (τ)‖2

) 1
2

+
(
‖Dmuτ (τ)‖2 ‖Dmvτ (τ)‖2

) 1
2

dτ

2

≤
t∫

0

(
‖Dmu (τ)‖2 + ‖Dmv (τ)‖2

)
dτ

t∫
0

(
‖Dmuτ (τ)‖2 + ‖Dmvτ (τ)‖2

)
dτ.(3.14)

For the last term by using again Cauchy-Schwarz and Young’s inequalities we obtain

2

((u, ut) + (v, vt))

t∫
0

(Dmu (τ) , Dmuτ (τ)) + (Dmv (τ) , Dmvτ (τ)) dτ


≤ 2

((
‖u‖2 + ‖v‖2

) 1
2
(
‖ut‖2 + ‖vt‖2

) 1
2

)
 t∫

0

(
‖Dmu (τ)‖2 + ‖Dmv (τ)‖2

)
dτ

t∫
0

(
‖Dmuτ (τ)‖2 + ‖Dmvτ (τ)‖2

)
dτ


1
2

≤
(
‖ut‖2 + ‖vt‖2

) t∫
0

(
‖Dmu (τ)‖2 + ‖Dmv (τ)‖2

)
dτ

+
(
‖u‖2 + ‖v‖2

) t∫
0

(
‖Dmuτ (τ)‖2 + ‖Dmvτ (τ)‖2

)
dτ.(3.15)

Substituting (3.13)-(3.15) into (3.12) becomes
(3.16)

(Φ′ (t))
2 ≤ 4Φ (t)

(‖ut‖2 + ‖vt‖2
)

+

t∫
0

(
‖Dmuτ (τ)‖2 + ‖Dmvτ (τ)‖2

)
dτ

 .
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Combining (3.11) and (3.16) we obtain

Φ′′ (t) Φ (t)− ζ

4
(Φ′ (t))

2

≥ Φ (t)

Φ′′ (t)− ζ


(
‖ut‖2 + ‖vt‖2

)
+

t∫
0

(
‖Dmuτ (τ)‖2 + ‖Dmvτ (τ)‖2

)
dτ




≥ Φ (t)
(

2
(
‖ut‖2 + ‖vt‖2

)
− 2I (u, v)

−ζ

(‖ut‖2 + ‖vt‖2
)

+

t∫
0

(
‖Dmuτ (τ)‖2 + ‖Dmvτ (τ)‖2

)
dτ

 .(3.17)

Let

η (t) = (2− ζ)
(
‖ut‖2 + ‖vt‖2

)
− 2I (u, v)

−ζ

 t∫
0

(
‖Dmuτ (τ)‖2 + ‖Dmvτ (τ)‖2

)
dτ

 .(3.18)

By Lemma 2.2 we get

E (0) = E (t) +

 t∫
0

‖Dmuτ‖2 dτ +

∫
Ω

‖Dmvτ‖2 dτ


=

1

2

(
‖ut‖2 + ‖vt‖2

)
+
r − 2

2r

(
‖Dmu‖2 + ‖Dmv‖2

)
+
r − 2γ − 2

2γ + 2

(
‖Dmu‖2 + ‖Dmv‖2

)γ+1

I(u, v)

r
+

1

r2
(‖u‖rr + ‖v‖rr)

+

 t∫
0

‖Dmuτ‖2 dτ +

∫
Ω

‖Dmvτ‖2 dτ

 .(3.19)
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Then by combining (3.18) and (3.19), noting ζ = 4C+2r+4
C+2 , which guarantees

2 < ζ < r + 2, and using Lemma 2.1 again, it gives that

ζ (t) = (r + 2− ζ)
(
‖ut‖2 + ‖vt‖2

)
− 2rE (0)

+ (2r − ζ)

t∫
0

(
‖Dmuτ (τ)‖2 + ‖Dmvτ (τ)‖2

)
dτ

+ (r − 2)
(
‖Dmu‖2 + ‖Dmv‖2

)
+
r − 2γ − 2

γ + 1

(
‖Dmu‖2 + ‖Dmv‖2

)γ+1

+
2

r
(‖u‖rr + ‖v‖rr)

≥ (r + 2− ζ)
(
‖ut‖2 + ‖vt‖2

)
− 2rE (0)

+ (r − 2)
(
‖Dmu‖2 + ‖Dmv‖2

)
≥ (r + 2− ζ)

(
‖ut‖2 + ‖vt‖2

)
− 2rE (0)

+
2 (r + 2− ζ)

C

(
‖Dmu‖2 + ‖Dmv‖2

)
+

(
(r − 2)− 2 (r + 2− ζ)

C

)(
‖Dmu‖2 + ‖Dmv‖2

)
≥ (r + 2− ζ)

(
‖ut‖2 + ‖vt‖2 + 2

(
‖u‖2 + ‖v‖2

))
− 2rE (0)

+

(
(r − 2)− 2 (r + 2− ζ)

C

)(
‖Dmu‖2 + ‖Dmv‖2

)
≥ C (r − 2)

C + 2

[
‖ut‖2 + ‖vt‖2 + 2

(
‖u‖2 + ‖v‖2

)
+ ‖Dmu‖2 + ‖Dmv‖2

]
− 2rE (0)

≥ C (r − 2)

C + 2

[
2 (u, ut) + 2 (v, vt) + ‖Dmu‖2 + ‖Dmv‖2

]
−2rE (0) .(3.20)

Therefore by Lemma 3.1 and Lemma 3.2, we conclude that

ζ (t) ≥ C (r − 2)

C + 2

[
2 (u, ut) + 2 (v, vt) + ‖Dmu‖2 + ‖Dmv‖2

]
− 2rE (0)

=
C (r − 2)

C + 2

[
2 (u, ut) + 2 (v, vt) + ‖Dmu‖2 + ‖Dmv‖2 − 2r (C + 2)

C (r − 2)

]
≥ C (r − 2)

C + 2

[
2 (u0, u1) + 2 (v0, v1) + ‖Dmu0‖2 + ‖Dmv0‖2 −

2r (C + 2)

C (r − 2)

]
> σ2 > 0,

which shows that

Φ′′ (t) Φ (t)− ζ

4
(Φ′ (t))

2
> Φ (t)σ2 > 0.
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Let y (t) = Φ (t)
− ζ−4

4 , then we obtain

y′′ (t) ≤ −ζ − 4

4
σ2y (t)

ζ
ζ−4 , t ∈ [0, T0] ,

where ζ = 4C+2r+4
C+2 ≥ 4.

That is

lim
t→T∗

y (t) = 0,

where T ∗ is independent of initial choice of T0 and T ∗ < T0. Therefore, we can
conclude that

lim
t→T∗

Φ (t) =∞.

�

4. Conclusion

This paper has been able to prove the blow up result for a higher order Kirchhoff
type system with logarithmic nonlinearities. This result is new for these types of
systems, and it generalises many related problems in the literature.
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[8] N. Irkıl, E. Pişkin Global existence and decay of solutions for a higher-order Kirchhoff-type

systems with logarithmic nonlinearities, Quaestiones Mathematicae, 1-24, (2021), (in press).
[9] G. Kirchhoff, Vorlesungen über Mechanik, 3rd ed., Teubner, Leipzig, 1883.

[10] W. Lian, M. S. Ahmed, R. Xu, Global existence and blow up of solution for semilinear

hyperbolic equation with logarithmic nonlinearity, Nonlinear Analysis, 184, 239-257, (2019).
[11] G. Lin, L. Hu, The gloabal attractor for a class of higher-order coupled Kirchhoff-type equa-

tions with strong linear damping, European Journal of Mathematics and Computer Science,

4(1), 63-77, (2017).
[12] A. Peyravi, Blow up solutions to a system of higher-order Kirchhoff-type equations with

positive initial energy, Taiwanese Journal of Mathematics, 21(4), 767-789, (2017).
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