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Abstract
A new relation on the subset of the space is defined via `-difference in this work. This is a pre-order relation on
the family of nonempty sets. Some relations between this pre-order relation and well-known order relations are
investigated. Also, the solution points of a set-valued optimization problem via set and vector approaches are
examined.
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1. Introduction
Optimization problems appear in all parts of our lives. These problems are classified according to the type of objective functions.
For example, when the objective function is a set-valued function/mapping/map, the optimization problem is named set-valued
optimization problem (shortly, SVOP). Recently, SVOP has attracted increasing attention because it has many applications
such as finance, control theory, game theory, engineering, statistic, etc.

In the SVOP, there are several approaches to solve these optimization problems. Vector and set approaches are the most
commonly used types. The first used is the vector approach. In this approach, efficient vectors of the image set of the objective
map are investigated. In order to be a solution of a point, the image set of this point has to contain an efficient vector of the
image set. The set approach, which is given by Kuroiwa [16, 17], depends on the comparison among values of the objective
map. So, an order relation must be used to compare sets in this approach. More information about these approaches and the
solution concepts are also available in [4, 6, 8–15, 17, 18], and references therein. In this current investigation, vector and set
approaches are considered.

Firstly, Kuroiwa et al. [19] mentioned about set relation based on the ordering cone. Then, they defined six order relations.
They gave relationships with each other. By using these order relations, the set optimization approach is constructed by
Kuroiwa [16, 17]. Kuroiwa obtained the solutions of SVOP with respect to (shortly, wrt) set approach. Jahn & Ha [6] obtained
some new order relations for SVOP. Two new partial order relations are defined by Karaman et al. [13] for SVOP. There are
still sets that can not be compared with these partial and the other order relations. That’s why we define a new order relation to
compare such sets in this paper.

In order to solve SVOP, some methods are used as vectorization, scalarization, directional derivative, subdifferential,
embedding space, and so on [1–4, 7–9, 11–15, 21, 23]. The well-known scalarization functions are Gerstewitz, the oriented
function of Hiriart-Urruty [5] and generalizations of them. Hernández & Rodrı́guez-Marı́n [4] found some optimality conditions
for SVOP via derived an extension of Gerstewitz function. Recently, some authors like Khushboo & Lalitha [15], Xu & Li [23],
Jiménez et al. [7], Ansari et al. [1] and Chen et al. [2] obtained scalarizations via some extension of the oriented function.
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A new relation on the subset of the space is defined via `-difference in this work. We show that this order relation is a
pre-order on the family of nonempty sets. Some properties of this pre-order relation are obtained. This pre-order relation is
compared with some well-known order relations in the literature. Also, the solutions of SVOP wrt set and vector approaches
are examined.

The layout of the study is ordered as follows: The basic definitions and concepts of SVOP are stated and mentioned in
section 2. In section 3, a pre-order relation is introduced and some properties are discovered. In section 4, after the solutions
concept of SVOP are recalled wrt set approach, the solutions of SVOP are compared according to set and vector approaches.

2. Mathematical Preliminaries
In this study, Y is denoted as a normed space and X is a vector space. Let K ⊂ Y be given. If λx ∈ K for all x ∈ K, λ > 0,
then K is called a cone. Assume that cone K is a convex, pointed (K∩ (−K) = {0Y}) and closed with the nonempty interior,
and Y be ordered by cone K. P(Y ) is denoted the family of proper and nonempty subsets of Y , that is, P(Y ) := {A ⊂ Y :
A 6= Y and A is nonempty}. Topological interior and convex hull of any set A ∈P(Y ) are indicated by int(A) and convA,
respectively.

It is denoted that the algebraic sum of A and B by A+B, the algebraic difference of A and B by A−B, Minkowski
(Pontryagin) difference of A and B by A−̇B := {x ∈ Y | x+B⊂ A} and `-difference of A and B by A	` B := {x ∈ Y | x+B⊂
A+K}= (A+K)−̇B for any A,B ∈P(Y ). Readers can find more information about these in [20–22].

The cone K induces an ordering relations on Y as follow: For x,x′ ∈Y , x≤K x′ iff x′−x ∈ K, and x <K x′ iff x′−x ∈ int(K).
Let A ∈P(Y ) be a set and a0 ∈ A. If A∩ (a0−K) = {a0} (A∩ (a0 +K) = {a0}), then a0 is called a minimal (maximal)

point of A. The set of all minimal and maximal points of A is indicated by minA and maxA, respectively. Likewise, if
A∩ (a0− int(K)) = /0 (A∩ (a0 + int(K)) = /0), then we say that a0 is a weak minimal (weak maximal) point of A.

Note that the binary relation � on S ⊂P(Y ) is called a pre-order on S if � is reflexive and transitive. Also, if pre-order
relation � is antisymmetric then the order relation is called a partial order on S .

Definition 2.1. Let S ⊂P(Y ) and A,B,C ∈S be any sets. The relation � on S is said to be

(i) compatible with the addition if A� B implies A+C � B+C,

(ii) compatible with positive scalar multiplication if A� B implies λA� λB for all scalars λ > 0.

Let F : X ⇒Y be a set-valued function such that F(x)∈P(Y ) for all x ∈ X , and dom(F) := {x ∈ X | F(x) 6= /0} be efficient
domain set of the set-valued mapping F . S⊂ dom(F) be given. Basic SVOP is described by

SVOP
{

min(max)F(x)
s.t. x ∈ S.

We denote the problem by (v− SVOP) when SVOP considers wrt vector approach. Efficient points of the set F(S) :=⋃
x∈S

F(x) are investigated to solve (v− SVOP), that is, if F(x0) contains a minimal (maximal) point of F(S), then x0 ∈ S is

called a solution of (v−SVOP). In the same way, if F(x0) contains a weak minimal (weak maximal) point of F(S), then x0 ∈ S
is entitled a weak solution of (v−SVOP).

In the set approach, a comparison among the values of the set-valued mapping is considered. Namely, efficient sets of
F (S) := {F(x) | x ∈ S} are investigated to solve SVOP. So, an order relation is needed to solve a SVOP by using the set
approach. In the following definition, some order relations are given:

Definition 2.2. [6, 13, 17] Let A,B ∈P(Y ).

(i) A�1 B is described by ∀a ∈ A, ∀b ∈ B, a≤K b,

(ii) A�2 B is described by ∃a ∈ A such ∀b ∈ B, a≤K b,

(iii) A�3 B is described by ∀b ∈ B, ∃a ∈ A such a≤K b,

(iv) A�4 B is described by ∃b ∈ B, such ∀a ∈ A, a≤K b,

(v) A�5 B is described by ∀a ∈ A, ∃b ∈ B such that a≤K b,

(vi) A�6 B is described by ∃a ∈ A, ∃b ∈ B such that a≤K b,

(vii) A�s B is described by A�3 B and A�5 B,
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(viii) A�m1 B is described by (B−̇A)∩K 6= /0,

(ix) A�m2 B is described by (A−̇B)∩ (−K) 6= /0.

It is assumed that ∗ ∈ {1,2,3,4,5,6,s,m1,m2} in the rest of the study. In the set approach, the problem is denoted by
(∗− SVOP) when SVOP considers wrt order relation �∗. The efficient set of F (S) is investigated to solve (∗− SVOP).
That is, if F(x0) ∈F (S) is a minimal (resp., maximal) set of F (S), then x0 is called a solution of (∗−SVOP). Similarly, if
F(x0) ∈F (S) is a weak minimal (resp., weak maximal) set of F (S), then x0 is named a weak solution of (∗−SVOP).

3. A new Order Relation for Set Approach
In this section, a pre-order relation is derived by using `-difference and some properties of this relation are examined.

Definition 3.1. Let A,B ∈P(Y ). `1 relation is defined as

A�`1 B :⇐⇒ (B	` A)∩K 6= /0.

When A and B are taken as singleton, there is a relation between �`1 and vector order relation ≤K on Y as:

a≤K b =⇒{a} �`1 {b}

for any A = {a},B = {b} and a,b ∈ Y .
When two sets don’t compare wrt partial order relation �m1 , they may be compared wrt order relation �`1 . For example,

when A = {(x,0) ∈ R2 | 1≤ x≤ 3} and B = {(0,y) ∈ R2 | 1≤ y≤ 3}, we have A�`1 B and A 6�m1 B.
Now, some properties of �`1 are presented.

Proposition 3.2. The order relation �`1 has the following properties;

(i) �`1 is compatible with the addition,

(ii) �`1 is compatible with the positive scalar multiplication.

Proof.

(i) Let A,B,C ∈P(Y ) and A�`1 B be given. Since A�`1 B, we have (B	` A)∩K 6= /0. That means there exists x̄ ∈ K such
that x̄ ∈ B	` A. Then, we get x̄+A⊂ B+K. So, x̄+A+C ⊂ B+C+K, that is x̄ ∈ (B+C)	` (A+C). Therefore,

[(B+C)	` (A+C)]∩K 6= /0.

Thus, we obtain A+C �`1 B+C that implies �`1 is compatible with the addition.

(ii) Let A �`1 B. We show that λA �`1 λB for all scalars λ > 0. Since A �`1 B, there exists an x̄ ∈ K such x̄ ∈ B	` A,
i.e., x̄+A ⊂ B+K. So, we have λ x̄+ λA ⊂ λB+ λK = λB+K and λ x̄ ∈ K because K is cone. Then, we obtain
(λB	` λA)∩K 6= /0, i.e., λA�`1 λB. Hence, �`1 is compatible with the positive scalar multiplication.

Proposition 3.3. The order relation �`1 has the following properties;

(i) �`1 is reflexive,

(ii) �`1 is transitive.

Proof.

(i) Let A ∈P(Y ). Because 0Y ∈ A	` A and 0Y ∈ K, we have (A	` A)∩K 6= /0. Hence, A�`1 A.

(ii) Assume that A�`1 B and B�`1 C for any A,B,C ∈P(Y ). We have (B	` A)∩K 6= /0 since A�`1 B. Then, there exists
x1 ∈ K such

x1 +A⊂ B+K. (3.1)

Since B�`1 C, (C	` B)∩K 6= /0 yields. Then, there exists x2 ∈ K such

x2 +B⊂C+K. (3.2)

From (3.1) and (3.2) we get x1 + x2 +A⊂ x2 +B+K ⊂C+K +K =C+K. As x1 + x2 +A⊂C+K and x1 + x2 ∈ K,
we obtain (C	` A)∩K 6= /0, i.e., A�`1 C.
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Remark 3.4. The order relation �`1 isn’t antisymmetric. For example, let Y = R2, K = R2
+, A = {(1,1)} and B = {(2,2)}

be given. Then, we get B	` A = {x ∈ R2 | x+A ⊂ B+K} = [1,∞)× [1,∞) and A	` B = {x ∈ R2 | x+B ⊂ A+K} =
[−1,∞)× [−1,∞). So, we have (B	` A)∩K 6= /0 and (A	` B)∩K 6= /0, i.e., A�`1 B and B�`1 A. But A 6= B. Hence, �`1 isn’t
antisymmetric.

Corollary 3.5. The order relation �`1 is a pre-order relation on P(Y ).

Now, a relation between the order relation �`1 and order relation �m1 are given.

Proposition 3.6. Let A,B ∈P(Y ). If A�m1 B, then A�`1 B.

Proof. Let A �m1 B, i.e., (B−̇A)∩K 6= /0 be given. There exists an x ∈ K such x+A ⊂ B. Because K is pointed, we get
x+A⊂ B+K, i.e., x ∈ B	` A. As x ∈ K and (B	` A)∩K 6= /0, we obtain A�`1 B

Note that �`1 doesn’t imply �m1 . This is presented in the following example.

Example 3.7. Let Y = R2, K = R2
+, A = conv{(0,0),(1,2)} and B = conv{(0,0),(2,1)}.

Figure 3.1. A = conv{(0,0),(1,2)}, B = conv{(0,0),(2,1)}, A	` B and B	` A

As seen in Figure 3.1, since (B	` A) = K, we have (B	` A)∩K = K, i.e., A�`1 B. On the other hand, as B−̇A = /0, we get
(B−̇A)∩K = /0, i.e., A 6�m1 B.

In the following definition, strict version of �`1 is given.

Definition 3.8. Let A,B ∈P(Y ). The strict `1 order relation is defined by

A≺`1 B :⇐⇒ (B	` A)∩ int(K) 6= /0

Note that ≺`1 implies �`1 . Namely, if A≺`1 B, then A�`1 B for all A,B ∈P(Y ).

Remark 3.9. The order relation ≺`1 is compatible with not only the addition but also the positive scalar multiplication.
Moreover, it is reflexive and transitive. But it isn’t antisymmetric.

One of the most important problems in the set order relations is that some sets can not be compared according to any order
relation. Although two sets may not be compared wrt order relation �∗, these sets can be compared wrt `1 order relation. This
is illustrated in the accompanying example.

Example 3.10. Let K = R2
+, A = {(x,y) ∈ R2 | 1≤ x≤ 2 and 3≤ y≤ 4} and B = {(x,y) ∈ R2 | 3≤ x≤ 4 and 1≤ y≤ 2}.

As seen Figure 3.2, while A 6�∗ B we obtain (B	` A)∩K 6= /0, i.e., A�`1 B.
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Figure 3.2. A = {(x,y) ∈ R2 | 1≤ x≤ 2 and 3≤ y≤ 4}, B = {(x,y) ∈ R2 | 3≤ x≤ 4 and 1≤ y≤ 2} and B	` A

Proposition 3.11. Let A,B ∈P(Y ). Then, the following assertions are satisfied:

(i) If there exist a ∈ A and b ∈ B such that b≤K a, then A�`1 B,

(ii) if there exist a ∈ A and b ∈ B such that b <K a, then A≺`1 B.

Proof. (i) Assume that there exist a ∈ A and b ∈ B such that b ≤K a. By contradiction, suppose that A 6�l1 B. Then,
(B	` A)∩K = /0, and we have k+A 6⊂ B+K for all k ∈ K. So, k+a 6∈ B+K for all k ∈ K, a ∈ A. From here, we get
k+a 6∈ b+K for all k ∈ K, a ∈ A and b ∈ B. Let k = 0Y , then a 6∈ b+K for all a ∈ A and b ∈ B. Therefore, for all a ∈ A
and b ∈ B we get b 6≤K a, which is a contradict.

(ii) This can be proven by similarly to (i).

4. Solution Concepts of SVOP According to Set and Vector Approaches

In this part of the study, we obtain relations between the solutions of (v−SVOP) and (`1−SVOP).
In the following definition, the efficient elements of a family are given wrt pre-order relation �`1 .

Definition 4.1. Let S ⊂P(Y ) and A ∈S be given. We call that

(i) A is an `1-minimal (`1-maximal) element of S iff

B�`1 A for some B ∈S =⇒ A�`1 B (A�`1 B for some B ∈S =⇒ B�`1 A),

(ii) A is a weak `1-minimal (weak `1-maximal) element of S iff

B≺`1 A for some B ∈S =⇒ A≺`1 B (A≺`1 B for some B ∈S =⇒ B≺`1 A).

If we consider SVOP wrt `1 order relation, then problem is denoted by

(`1−SVOP)
{

min(max)F(x)
s.t. x ∈ S.

Let x0 ∈ S be given. x0 is called a solution of (`1−SVOP) if F(x0) ∈F (S) is an `1-minimal (`1-maximal) set of F (S).
Similarly, x0 is called a weak solution of (`1−SVOP) if F(x0) ∈F (S) is a weak `1-minimal (weak `1-maximal) set of F (S).

The solution of (`1−SVOP) may not be the solution of (v−SVOP). Now, we will give an example related to this situation.
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Figure 4.1. F(A) = {(x,0) ∈ R2 | x > 0} and F(B) = {(0,y) ∈ R2 | y > 0}

Example 4.2. Let Y = R2, K = R2
+, set-valued map F : {A,B}⇒ R2 be defined as F(A) = {(x,0) ∈ R2 | x > 0} and

F(B) = {(0,y) ∈ R2 | y > 0}. Consider the following set-valued optimization problem

SVOP
{

minF(x)
s.t. x ∈ {A,B}.

As seen in Figure 4.1, F(A)∩min{F(A)∪F(B)} = /0 and F(B)∩min{F(A)∪F(B)} = /0. So, A and B pairs of sets are
not a solution of (v− SVOP). On the other hand, A and B are solution of (`1− SVOP) because F(A) �`1 F(B) implies
F(B)�`1 F(A), and F(B)�`1 F(A) implies F(A)�`1 F(B).

Conversely, the solution of (v−SVOP) may not be the solution of (`1−SVOP). The following example is related to this
situation.

Example 4.3. Let Y =R2, K =R2
+, set-valued map F : {1,2}⇒R2 be defined as F(1) = {(x,y) ∈R2| x = y and x≥ 0} and

F(2) = {(x,y) ∈ R2 | y =−x and x≥ 0}. Let’s consider the following problem

SVOP
{

minF(x)
s.t. x ∈ {1,2}.

Figure 4.2. F(1) = {(x,y) ∈ R2| x = y and x≥ 0} and F(2) = {(x,y) ∈ R2 | y =−x and x≥ 0}

As seen in Figure 4.2, because min{F(1)∪F(2)}∩F(1) 6= /0 and min{F(1)∪F(2)}∩F(2) 6= /0, 1 and 2 are solution of
(v−SVOP).
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Since (F(2)	` F(1))∩K 6= /0, we have F(1)�`1 F(2). As F(1)	` F(2) = /0, we obtain (F(1)	` F(2))∩K = /0. Hence,
we get F(2) 6�`1 F(1). Because F(1)�`1 F(2) doesn’t imply F(2)�`1 F(1), 2 isn’t a solution of (`1−SVOP). Although 2 is
a solution of (v−SVOP), it isn’t a solution of (`1−SVOP).

5. Conclusion
In this study, a new pre-order relation on the family of nonempty sets is introduced, and set-valued optimization problems
(`1−SVOP) are derived. Some optimality conditions can be obtained by using different tools such as vectorization, directional
derivative, scalarization, subdifferential etc. for (`1−SVOP).
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optimization, Turk. J. Math., 42 (2018), 1815-1832.
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