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Abstract  Öz 

Graph representationion learning (network embedding) is at 

the heart of network analytics techniques to reveal and 

examine the complex dependencies among nodes. Owing its 

importance, many computational methods have been 

proposed to solve a large volume of learning tasks on graphs, 

such as node classification, link prediction and clustering. 

Among various network embedding techniques, linear 

Matrix Factorization-based (MF) network embedding 

approaches have demonstrated to be very effective and 

efficient as they can be stated as singular value 

decomposition (SVD) problem, which can be efficiently 

solved by off-the-shelf eigen-solvers, such as Lanczos 

method. Despite the effectiveness of these linear methods, 

they rely on high order proximity measures, i.e., random 

walk restarts (RWR) and/or Katz, which have their own 

limitations, such as degree biasness, hyper-parameter 

dependency. In this paper, to alleviate the RWR and Katz 

depended high proximity usage in the linear embedding 

methods, we propose an algorithm that uses label 

propagation and shift-and-invert approach to resort RWR 

and Katz related problems. Testing our methods on real-

networks for link prediction task, we show that our algorithm 

drastically improves link prediction performance of network 

embedding comparing against an embedding approach that 

uses RWR and Katz high order proximity measures.  

 Ağ gömülümü öğrenme problemi bir çok ağ analizi 

gerektiren problemin ifade ve çözümlenmesi için çok büyük 

önem arz etmektedir. Bu bağlamda, ağ içerisinde bulunan 

düğümlerin birbirleri ile olan gizli ilişkilerini açığa çıkarmak 

için, son yıllarda ağ gömülümü öğrenme problemi çokça 

çalışılmaktadır. Bu gizli ilişkinin açığa çıkarılması, bağlantı 

tahminleme, öbekleme ve sınıflandırma gibi öğreme 

problemlerinin daha iyi çözümlenmesinde kullanılmaktadır. 

Ağ gömülümünü öğrenmek için, farklı yaklaşım ve 

algoritmalar geliştirilmiş olsada, matris ayrışımı bazlı 

algoritmalar hızlı olmasından dolayı araştırmacılar 

tarafından büyük ilgi görmekteler. Matris ayraşım bazlı ağ 

gömülümü öğrenmede genel anlamı ile yüksek dereceli 

yakınlık ölçüleri kullanılmaktadır, örneğin random walk 

with restart (RWR) ve Katz ölçüleri. Ancak, bu ölçülerle 

yapılan ağ benzerlik ölçüleri matris ayrışımında sıfıra 

karşılık gelen eigenvectors (özvektörler) üretebilmektedir. 

Bu ise öğrenilen ağ gömülümün yanlış olmasına sebeb 

olmaktadır. Bu prolemi aşmak için, bu makalede shift-and-

invert (kaydır ve tersini al) yaklaşımına dayanarak bir 

yaklaşım önerdik. Bağlantı tahimini baz problemi alarak, 

geliştirdiğimiz algoritmayı üç gerçek veride kullanık ve 

sonuçların var olan matris ayrışımlı algoritmasını bütün 

metrik değerlendirmelerinde var olan algoritmanın 

performansını ciddi miktarda artırdığını gözlemledik.  

Keywords: Graph representation learning, Node embedding, 

Linear embedding 

 Anahtar kelimeler: Ağ gömülümü, Düğüm gömülümü, 

Lineer ağ gömülümü 

1 Introduction 

Networks (graphs) are ubiquitous in the real-world 

applications to represent the relationships (edges) among 

entities (nodes), such as social networks are used to represent 

the social relationship among people and protein-protein 

interaction networks are formed from genetic or physical 

associations among genes. To understand and examine the 

complex dependencies among the nodes, networks’ 

association information might not be enough. Thus, we need 

to state and encode networks’ topological structural 

information (association information) in a continues latent 

space, which could then be used in the off-the-shelf machine 

learning algorithms as features. There are at least two valid 

reasons to use the latent representations of a network instead 

of its plain representation: sparseness of networks and 

computational complexity of underlying machine learning 

algorithms. 

Graph representation learning (network embedding) is an 

emerging research topic that is used to learn the structural 

representations of networks. Specifically, the representation 

learning aims at mapping the topological structure of the 

networks into a continuous lower-dimension so that off-the-

shelf machine learning algorithms can readily be applied on 

continuous vector representation for various learning tasks, 

such as node classification and clustering. Here the basic 

premise behind the graph representation learning is to map a 

graph into a k-dimensional continues vector space, such that 

if two nodes are close in the network, they should be close to 

each other in the vector representation.      

There are a plethora of papers and methods for network 

embedding, which we can broadly catagorize into three 

groups: Matrix Factorization (MF)-based, random walk-

based and neural network-based [1]. Among these 

categories, random walk-based methods rely on computing 

https://orcid.org/0000-0003-4805-1416
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latent representation via random walk restart procedure, such 

as DeepWalk [2] and LINE [3], while neural network-based 

methods, such as GAE [4] and DGI [5] require additional 

attribute information which might not be available for every 

network.  On the other hand, MF-based approaches have 

been soaring many research attentions due to their easy 

implementation and low cost computational complexity. As 

such, one of the well-known MF-based methods, HOPE [6], 

has been used for many learning tasks [1]. 

Despite the effectiveness of HOPE network embedding 

method [6], it computes an embedding using the idea of high 

order proximity preservation, which relies on personalized 

random walk (i.e., RWR) or Katz measures. However, these 

high order proximity measures do not take the ill-

conditioning problem into account. More specifically, the 

very first step of RWR, degree normalization, can cause 

close-to-zero diagonal entries for low degree nodes which 

result in wrong matrix inversion, which is known as ill-

conditioning problem [7] in computational mathematics.    

In this paper, to circumvent the ill-conditioning problem 

introduced by HOPE method [6] in its high order proximity 

measure computation, we use the idea of shift-and-invert to 

take the ill-conditioning problem into account [7]. This way, 

we eliminate the adversely effects of the low degree nodes 

and define a new high order proximity measure, HOPE++, 

for computing network embeddings. To test our proposed 

method’s performance against HOPE method, computed by 

RWR and Katz measures, we use the link prediction as a 

benchmark problem on three real-world datasets. 

Experimental results on these three datasets show that our 

approach drastically improves performance of HOPE 

method across all evaluation metrics: Accuracy, Area Under 

Precision Curve, Area Under ROC Curve and Macro-F1 

scores, used in this paper. 

2 Related work 

We can trace back the original idea of network 

embedding to the early 2000s, including but not limited to 

Isomap [8] and Locally Linear Embedding [9]. These ideas 

revolve around the use of a linear system of equation solution 

and singular value decomposition (SVD) of a matrix, usually 

graph Laplacian, created by the adjacency matrix of a graph 

[10]. These methods aim at learning an embedding with the 

constraint: local manifold structure must be preserved.  

More recently, with the advent of the large-scale graphs, 

a variety of scalable graph representation learning methods, 

[2,3,5,6,11,12] which rely on random walk procedure to 

capture the global properties of nodes in the graph have been 

proposed. While powerful, random walk-based methods 

suffer from known limitations, such as degree biasness 

[13,14]. 

In addition to random walk-based embedding 

approaches, inspired by the remarkable success of Deep 

Learning methods in the field of computer vision, neural 

network based approaches have been utilized for graph 

embedding [4,5,15]. These methods use both attribute of 

nodes and graph topology in their propagation step. As using 

many layers of neural network causes feature mix-matching 

problem [16], these methods limit their feature propagation 

step into 1-hop proximity. Recently, Coskun and Kuyuturk 

[17] show that usage of 2-hop proximity-based graph 

convolutional networks can improve performance link 

prediction. However, all the above methods do not consider 

the high-order proximity measure in their propagation. There 

exist high-order proximity-based propagation neural 

network methods, such as [18] however these methods still 

rely on random walk procedure.    

In this paper, we present a simple yet very effective 

network embedding method that consider high-order 

proximity of a graft while it eliminates ill-conditioning 

problem introduced by random walk procedure. As our 

proposed method is a linear approach, it is computationally 

very efficient comparing to neural network-based 

approaches [4,5,17,18,19,20]. Furthermore, our approach 

does not require add-on information, such as node attributes 

as in neural network-based methods [4,5,17,18,19,20]. Last 

but not the least, our method eliminates adversely effects of 

low-degree nodes which has not been considered in other 

linear methods [2,3,6]. 

3 Material and methods 

In this section, we first define the link prediction problem 

[21] in the context of graph representation learning and then 

we introduce our proposed network embedding approach to 

solve the link prediction problem.  

3.1 Link prediction  

The problem of link prediction can be loosely defined as 

follows: given a graph, predict the missing links among the 

nodes. More formally, given a graph 𝒢 = (𝒱, ℰ), where 𝒱 

denotes set of 𝑛 nodes in the graph and ℰ reptesents the set 

of 𝑚 edges among 𝑛 nodes, the task is to predict some of the 

missing edges in graph. The link prediction problem has 

many real-world applications ranging from co-authorship 

prediction [13] to drug response prediction [14]. 

Earlier algorithms for solving link prediction problem 

have focused on local graph topological informations, such 

as commong neighbor, adamic-adar, and etc [21] while 

recent studies have shown that global graph structural 

information, which can be seen as toplogical graph 

representations and can be more informative to determine the 

missing links [13].  Very recently, graph representation 

learning algorithms have been applied to link prediction 

problem to circumvent the curse of dimensionality problem, 

high dimensionality problem [13] pronounced in global 

representations of the underlying graph [2,3,4,5,6].  

These embedding techniques first map the graph 

structural information into a lower dimensional continues 

space, such that each node is represented by a 𝑘-dimensional 

vector. Then, for a given pair of nodes, their corresponding 

𝑘-dimensional latent vector are fused to generate a feature 

vector for learning. To be more specific, the fused networks 

are used in training with their associated labels (1 if two 

nodes are connected in the graph and 0 otherwise). Finally, 

any supervised machine learning algoritm, such as Support 

Vector Machine (SVD), is used to train and test the existence 

of links.    
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3.2 Network embedding 

Graph representation learning (Network Embedding) 

aims at learning a lower continues representation of each 

node in a given graph. More formally, given a graph 𝒢 =
(𝒱, ℰ), network embedding maps the graph’s structural 

information into an embedding matrix, 𝐻 ∈  ℝ𝑛×𝑑, where 

𝑑 ≪ 𝑛, such that if given two nodes 𝑖 and 𝑗 are “close” to 

each other in the graph, their representations ℎ𝑖 and ℎ𝑗, 

respectively, should be “close” to each other. 

The abstract term “close” is concreted by the different 

mean of proximity measures. For example, random walk-

based embedding techniques [2,3] rely on random walk-

based closeness global measures, such as random walk with 

restarts (RWR), while neural network-based approaches use 

more local closeness measures, see e.g., [4,5].  

Despite the effectiveness of these methods, random walk-

based approaches [2,3] suffer from random-walk related 

limitations, such as degree biasness [4], and Neural 

Network-based methods [4,5] are limited to small network 

as training time of these methods are extremely costly. On 

the other hand, MF-based approaches, such as singular value 

decomposition (SVD) and HOPE [6] enjoy efficient 

algorithms from numerical linear algebra literature, such as 

Lanczos [7].  

Inspired by the effectiveness and efficiency of the MF-

based approaches, in this paper, we use HOPE [6] algorithm 

as our baseline algorithm. In the following subsections, we 

first define HOPE algorithm [6] in a formal framework and 

then present our approach to overcome some limitations of 

HOPE algorithm, rooted in random walk-based closeness 

measure. 

3.2.1 HOPE [6] Algorithm 

Ou et. al., [6] has presented HOPE algorithm as one of 

the MF-based approaches. In essence, they obtain a graph 

representation, H ∈  ℝn×d, by using various form of 

closeness measures. To be more specific, they define 

following objective function to obtain the embedding matrix 

[6]: 

 

𝑚𝑖𝑛‖𝑺 − 𝑯𝑯𝑻‖2 (1) 

where  𝑺 is a proximity matrix (encodes closeness of two 

nodes by using various proximity measures) and 𝐻 denotes 

embedding matrix, which best represents 𝑺 matrix in the 

latent space.   Here, the most important part of the objective 

function is that how we construct the proximity matrix from 

which we learn the representations of nodes. To do so, Ou et. 

al., [6] use four well-known proximity measures: Common 

Neighbour (CN), Adamic-Adar (AA), RWR and Katz [8], 

respectively: 

 

𝑺𝐶𝑁 = 𝑨𝟐 (2) 

 

𝑺𝐴𝐴 = 𝑨 𝑫−𝟏𝑨 (3) 

 

𝑺𝑅𝑊𝑅 = (1 − 𝛼)(𝑰 − 𝛼𝑷)−1 (4) 

 

𝑺𝐾𝑎𝑡𝑧 = (𝑰 − 𝛽𝑨)−1𝛽𝑨 (5) 

 

where  𝑨 denotes adjacency matrix of the graph, 𝑫 

denotes diagonal degree matrix, 𝑰 denotes the identity 

matrix, 𝑷 = 𝑫−𝟏𝑨 represents degree normalized adjacency 

matrix, i.e., transition probability matrix, and 𝛼 and 𝛽 are 

hyper-parameters. 

By using various form of 𝑺 matrix, Ou et. al., [6] solve, 

Equation (1) as singular value decomposition and return the 

top singular vectors corresponding to the top singular values 

as embedding matrix.  Furthermore, they show that high-

order proximity measures presented in Equation (4) and 

Equation (5) outperform lower-order proximity measures in 

Equation (2) and Equation (3) on link prediction tasks [6].  

3.2.2 Our proposed method 

Despite the effectiveness and efficiency of HOPE 

method [6], they do not take the ill-conditioned problem [7] 

of high-order proximity measures employed in their 

algorithm. More specifically, proximity measures in 

Equation (4) and Equation (5) might be ill-conditioned, 

which result in 0 singular value corresponding singular 

values because of “dangling nodes”, i.e., nodes that do not 

have any connected nodes or close-zero values, smaller than 

the machine epsilon, due to normalization for small degree 

nodes. To see this, pay attention to inner part of Equation (4) 

, (𝑰 − 𝛼𝑷). When 𝛼 is set to a large constant, which is 

usually preferred to rely on network structural information, 

inversion of the matrix faces with round-off error [7] which 

might result in wrong embedding matrix. 

In this paper, to alleviate this problem, we regularize the 

matrix, (𝑰 − 𝛼𝑷), with a sparsity constraint, considering 

“dangling node” and small degree nodes, to attain a better 

and more correct embedding matrix. First, we write general 

assumption of network embedding: if nodes are close to each 

other in the graph, they must be close in the latent space, that 

can mathematically be states as follows: 

 

𝓙 = min ∑ 𝑨𝒊𝒋

𝒊𝒋

‖𝒉𝒊 − 𝒉𝒋‖ (6) 

 

where  𝒉𝒊 and 𝒉𝒋are embedding vectors of nodes 𝑖 and 𝑗. 

It is well-known that Equation (6) can be stated in the matrix 

form as follows [11]:  

 

𝓙 = min 𝒉𝑻 (𝑫 − 𝑨)𝒉 (7) 

 

Now, by scaling 𝑨 with 𝛼 and multiplying with 𝑫−𝟏, we 

obtain the same equation in Equation (6). However, as 

aforementioned this matrix does not consider “dangling 

nodes” and/or small degree nodes. To overcome this 

limitation, we propose regularize  Equation (7) with 𝜎𝑰 and 

rewrite objective function as follows: 

 

𝓙𝒐𝒖𝒓𝒔 = min 𝒉𝑻 (𝑰 − 𝛼𝑷 + 𝜎𝑰)𝒉 (8) 

 

where, 𝜎 = 0.5 is a hyper-parameter. Finally, we present 

a new high-order proximity measure in HOPE as follows: 

 

𝑺𝑜𝑢𝑟𝑠 = (1 − 𝛼)((1 + 𝜎)𝑰 − 𝛼𝑷)−1 (9) 
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 In this paper, with this simple change, we are able to 

create a better proximity measures which leads significantly 

better network embedding in link prediction task than that of 

HOPE algorithm offers. Since we are using HOPE algorithm 

as our baseline method, we named our method as HOPE++.  

 

 

  
(a)  (b)  

  
(c) (d) 

Figure. 1. Link prediction performance of our method, HOPE++,  and a state-of-the-art method, HOPE with RWR and Katz 

high-order proximity on Drug Bank DDI dataset (a) x-axes are varying embedding dimension and y-axes is AUC score 

(b) x-axes are varying embedding dimension and y-axes is AUCPR score (c) x-axes are varying embedding dimension 

and y-axes is Accuracy score (d) x-axes are varying embedding dimension and y-axes is Macro-F1 score 

 

  
(a)  (b)  

  
(c) (d) 

Figure. 2. Link prediction performance of our method, HOPE++,  and a state-of-the-art method, HOPE with RWR and Katz 

high-order proximity on Cora dataset (a) x-axes are varying embedding dimension and y-axes is AUC score (b) x-axes 

are varying embedding dimension and y-axes is AUCPR score (c) x-axes are varying embedding dimension and y-axes 

is Accuracy score (d) x-axes are varying embedding dimension and y-axes is Macro-F1 score 
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(a)  (b)  

  
(c) (d) 

Figure. 3. Link prediction performance of our method, HOPE++,  and a state-of-the-art method, HOPE with RWR and Katz 

high-order proximity on Flickr dataset (a) x-axes are varying embedding dimension and y-axes is AUC score (b) x-axes 

are varying embedding dimension and y-axes is AUCPR score (c) x-axes are varying embedding dimension and y-axes 

is Accuracy score (d) x-axes are varying embedding dimension and y-axes is Macro-F1 score 

 

4 Results and discussions 

In this section, we systematically evaluate the link 

prediction performance of our proposed method, HOPE++. 

Since HOPE++ uses HOPE algorithm [6] as a workhorse 

method, we compare our method against HOPE algorithm’s 

high order proximity measures, namely RWR and Katz.  

We start our discussion by describing the datasets and 

experimental setup used in this paper. We then give 

performance evaluation of embeddings attained by our 

methods and HOPE with RWR and Katz methods on link 

prediction task as a function embedding dimension. To this 

end, we use Area Under Curve (AUC), Area Under Precision 

Curve (AUPR), Accuracy and Macro-F1 scores evaluation 

metric.   

4.1 Datasets and experimental setup  

We use three publicly available real-world datasets 

whose static is summarized in Table 1. These datasets are 

obtained from [1], [4] and [6].   

 

Table 1.  Descriptive static of networks used in this paper 

Datasets # of Nodes # of Edges 

Drug_Bank_DDI 2.191 240.027 

Cora 2.708 10.556 

Flickr 7.575 239.738 

 

Drug Bank Drug-Drug Interaction: This dataset 

represents the association/similarity among various drugs, 

which are the node and associations are edges. 

Cora Dataset: This dataset represents the citation 

networks, where nodes are papers and links are citation 

relationship among the papers.  

Flickr Dataset: This dataset represents an online 

community, where people are represented as nodes and their 

common interests denote edges in the graph. 

In our experiments, we use Python code provided [1] and 

implement HOPE++ on top of this Python code. We evaluate 

performance of HOPE++ and HOPE algorithm that used 

RWR and Katz high-order proximity with default hyper-

parameters on link prediction task as a function of varying 

embedding dimension. 

4.2 Performance evaluation  

To assess the performance of the proposed method, 

HOPE++, and original HOPE algorithm, we use link 

prediction problem as a benchmark problem. To this end, we 

first divide the networks into training and testing by 80% and 

20% respectively. We use 80% of links for embedding 

purpose. We then tread 20% links as positive test links. 

Furthermore, we randomly sample 20% negative links by 

checking if two nodes are connected in both training and 

testing networks. Subsequently, we use embedding matrices 

attained by HOPE++, HOPE-RWR and HOPE-Katz on 

training networks, and positive and negative pairs’ 

corresponding embeddings are fused by the dot (Hadamard) 

product so that we obtain a single score for each pair. Finally, 

we use these single scores and associated labels (1 if we are 

evaluating positive pairs; 0 otherwise) and feed them to 

Logistic Regression Classifier with 80% training and 20% 

testing.  
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We repeat experimental process for ten times and report 

means of evaluation metrics for each algorithm. Result of 

these analyses are depicted in Figures 1, 2 and 3. More 

specifically, red lines in the figures are our proposed 

methods, HOPE++, that uses 𝑺𝑜𝑢𝑟𝑠 = (1 − 𝛼)((1 + 𝜎)𝑰 −
𝛼𝑷)−1 while blue and magenta lines represent HOPE 

algorithm that uses 𝑺𝑅𝑊𝑅 = (1 − 𝛼)(𝑰 − 𝛼𝑷)−1  and 

𝑺𝐾𝑎𝑡𝑧 = (𝑰 − 𝛽𝑨)−1𝛽𝑨, respectively. As seen in the figures, 

across all datasets and all evaluation metrics, HOPE++, 

drastically improve performance of baseline method, HOPE 

algorithm [6], suggesting that a simple shift-and-invert based 

approach can drastically boost the performance of exiting 

linear embedding methods.  

From Figures 1, 2 and 3, we can observe that our 

proposed method can deliver better results than HOPE with 

small dimension. This observation suggests that leading 

singular vectors in our method can capture the general 

connectivity structure better than that of HOPE method [6]. 

Furthermore, across all figures, we can observe performance 

oscillation for RWR-based embedding, suggesting wrong 

singular vector computation due to round-off error. On the 

other hand, our method delivers a smooth curve 

performance, hinting the importance of regularization 

approach we propose in this paper.  

5 Conclusions  

In this paper, we propose an alternative linear MF-based 

network embedding methods by capitalizing on the shift-

and-invert approach. The idea of using shift-and-invert 

regularization is based on the premise that low degree nodes 

in a graph can cause round-off error in the inversion of 

proximity matrices. To eliminate this adversely effects of 

small degree nodes, we regularize the Graph Laplacian by 

identity matrix so that we can increase the diagonally 

dominancy. In order to evaluate our proposed approach, we 

use link prediction task as a benchmark problem on three 

real-world datasets. Extensive experimental evaluations for 

the link predict task demonstrate that our approach highly 

renders to improve MF-based embedding approach that uses 

well-known high-order proximity measures, such as random 

walk with restarts and Katz. The future effort in this direction 

would include incorporation of other learning tasks, such as 

node classification and their bioinformatics applications.   
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