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HAZAL YÜKSEKKAYA AND ERHAN PIŞKIN
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Abstract. In this paper, we consider a Kirchhoff-type viscoelastic equation

with distributed delay and source terms. We obtain the nonexistence of global
solutions under suitable conditions.

1. Introduction

In this paper, we consider the following Kirchhoff-type viscoelastic equation with
distributed delay and source terms

(1.1)



utt −M
(
‖∇u‖2

)
∆u+

∫ t
0
g (t− s) ∆u (s) ds

+µ1ut +
∫ τ2
τ1
|µ2 (q)|ut (x, t− q) dq

= b |u|p−2
u, (x, t) ∈ Ω× (0,∞) ,

u (x, t) = 0, x ∈ ∂Ω,
ut (x,−t) = f0 (x, t) , (x, t) ∈ Ω× (0, τ2) ,
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,

where b, µ1 > 0, p > 2 and τ1, τ2 are the time delay with 0 ≤ τ1 < τ2, µ2 is an
L∞ function, and g is a differentiable function under the assumptions (A1), (A2),
and (A3). M (s) is a nonnegative function of C1 for s ≥ 0 satisfy, M (s) = m0+αsγ ,
m0 > 0, α ≥ 0 and γ ≥ 0, specially we take M (s) = 1 + sγ where m0 = 1, α = 1.

Problems about the mathematical behavior of solutions for PDEs with time de-
lay effects have become interesting for many authors mainly because time delays
often appear in many practical problems such as thermal, economic phenomena,
biological, chemical, physical, electrical engineering systems, mechanical applica-
tions and medicine. Moreover, it is well known that delay effects may destroy the
stabilizing properties of a well-behaved system. In the literature, there are sev-
eral examples that illustrate how time delays destabilize some internal or boundary
control system [5, 6]. Viscous materials are the opposite of elastic materials that
posses the ability to dissipate and store the mechanical energy. The mechanical
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properties of these viscous substances are of great importance when they seem in
many natural sciences applications [2]. The problem (1.1) is a general form of a
model introduced by Kirchhoff [7]. To be more precise, Kirchhoff recommended a
model denoted by the equation for f = g = 0,

(1.2) ρh
∂2u

∂t2
+ δ

∂u

∂t
+ g

(
∂u

∂t

)
=

{
ρ0 +

Eh

2L

∫ L

0

(
∂u

∂x

)2

dx

}
∂2u

∂x2
+ f (u) ,

for 0 < x < L, t ≥ 0, where u (x, t) is the lateral displacement, E is the Young
modulus, ρ is the mass density, h is the cross-section area, L is the lenght, ρ0 is the
initial axial tension, δ is the resistance modulus, and f and g are the external forces.
Furthermore, (1.2) is called a degenerate equation when ρ0 = 0 and nondegenerate
one when ρ0 > 0.

In 1986, Datko et al. [4] indicated that delay is a source of instability. In [9],
Nicaise and Pignotti considered the following wave equation with a linear damping
and delay term

(1.3) utt −∆u+ µ1ut (x, t) + µ2ut (x, t− τ) = 0.

They obtained some stability results in the case 0 < µ2 < µ1. In the absence of
delay, Zuazua [23] looked into exponentially stability for the equation (1.3).

Wu and Tsai [24], considered the following Kirchhoff-type equation

(1.4) utt −M
(
‖∇u‖22

)
∆u+ |ut|r−2

ut = |u|p−2
u,

with the positive upper bounded initial energy and they obtained the blow-up of
solutions for the equation (1.4). In 2013, Ye [22], considered the global existence
results by constructing a stable set in H1

0 (Ω) and showed the decay by using a
lemma of Komornik for the nonlinear Kirchhoff-type equation (1.4) with dissipative
term.

When M (s) = 1, the equation (1.1) becomes the following form

(1.5)

utt −∆u− ω∆ut +
∫ t

0
g (t− s) ∆u (s) ds

+µ1ut +
∫ τ2
τ1
|µ2 (ρ)|ut (x, t− ρ) dρ

= b |u|p−2
u.

In [2], Choucha et al. obtained the blow-up of solutions under appropriate con-
ditions of the equation (1.5). In [3], the authors showed the exponential growth
of solution for the equation (1.5). In recent years, some other authors investigate
hyperbolic type equations (see [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]).

In this paper, we consider the Kirchhoff-type (M
(
‖∇u‖2

)
) viscoelastic equa-

tion (1.1) with distributed delay (
∫ τ2
τ1
|µ2 (q)|ut (x, t− q) dq) and source (b |u|p−2

u)

terms. Our aim is to obtain the nonexistence of global solutions for the equation
(1.1).

The paper is organized as follows: In section 2, we give some materials that will
be used later. In section 3, we state and prove our main result.
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2. Preliminaries

In this part, we give materials for the proof of our result. As usual, the notation
‖.‖p denotes Lp norm, and (., .) is the L2 inner product. In particular, we write ‖.‖
instead of ‖.‖2.

Now, we denote some assumptions used in this paper:
(A1) g : R+ → R+ is a decreasing and differentiable function, that

(2.1) g (t) ≥ 0, 1−
∫ ∞

0

g (s) ds = l > 0.

(A2) There exists a constant ξ > 0, that

(2.2) g′ (t) ≤ −ξg (t) , t ≥ 0.

(A3) µ2 : [τ1, τ2]→ R is an L∞ function, that

(2.3)

(
2δ − 1

2

)∫ τ2

τ1

|µ2 (ρ)| dρ ≤ µ1, δ >
1

2
.

Let Bp > 0 be the constant satisfies [1]

(2.4) ‖v‖p ≤ Bp ‖∇v‖p , for v ∈ H1
0 (Ω) .

It holds
(2.5)∫ t

0
g (t− s) (∇u (s) ,∇ut (t)) ds = − 1

2g(t) ‖∇u (t)‖2 + 1
2 (g′o∇u) (t)

− 1
2
d
dt

[
(go∇u) (t)−

(∫ t
0
g (s) ds

)
‖∇u (t)‖2

]
,

where

(2.6) (go∇u) (t) =

∫
Ω

∫ t

0

g (t− s) |∇u (t)−∇u (s)|2 ds.

Firstly, as in [8], we introduce the new variable

y (x, ρ, q, t) = ut (x, t− qρ) ,

thus, we get

(2.7)

{
qyt (x, ρ, q, t) + yρ (x, ρ, q, t) = 0,
y (x, 0, q, t) = ut (x, t) .

Hence, problem (1.1) is equivalent to:

(2.8)


utt −M

(
‖∇u‖2

)
∆u+

∫ t
0
g (t− s) ∆u (s) ds

+µ1ut +
∫ τ2
τ1
|µ2 (q)| |y (x, 1, q, t)| dq

= b |u|p−2
u, x ∈ Ω, t > 0,

qyt (x, ρ, q, t) + yρ (x, ρ, q, t) = 0,

with initial and boundary conditions

(2.9)

 u (x, t) = 0, x ∈ ∂Ω,
y (x, ρ, q, 0) = f0 (x, qρ) ,
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) ,

where

(x, ρ, q, t) ∈ Ω× (0, 1)× (τ1, τ2)× (0,∞) .
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Theorem 2.1. Suppose that (2.1), (2.2) and (2.3) hold. Let

(2.10)

{
p ≥ 2, n = 1, 2,
2 < p < 2n−2

n−2 , n ≥ 3.

Thus, for any initial data

(u0, u1, f0) ∈ H1
0 (Ω)×H1

0 (Ω)× L2 ( Ω× (0, 1)× (τ1, τ2)) ,

the problem (2.8)-(2.9) has a unique solution

u ∈ C
(
[0, T ] ;H1

0 (Ω)
)

,

for some T > 0.

Now, we define the energy functional as follows:

Lemma 2.2. Suppose that (2.1), (2.2), (2.3) and (2.10) hold. Let u be a solution
of (2.8). Then, E (t) is nonincreasing, such that

(2.11)

E (t) = 1
2 ‖ut‖

2
+ 1

2

(
1−

∫ t
0
g (s) ds

)
‖∇u‖2

+ 1
2(γ+1) ‖∇u‖

2(γ+1)
+ 1

2 (go∇u) (t)

+ 1
2

∫
Ω

∫ 1

0

∫ τ2
τ1
q |µ2 (q)|

∣∣y2 (x, ρ, q, t)
∣∣ dqdρdx− b

p ‖u‖
p
p ,

which satisfies

(2.12) E′ (t) ≤ −c1
(
‖ut‖2 +

∫
Ω

∫ τ2

τ1

|µ2 (q)|
∣∣y2 (x, 1, q, t)

∣∣ dqdx) .

Proof. By multiplying the first equation of (2.8) by ut and integrating over Ω, we
obtain

(2.13)

d
dt

{
1
2 ‖ut‖

2
+ 1

2

(
1−

∫ t
0
g (s) ds

)
‖∇u‖2

+ 1
2(γ+1) ‖∇u‖

2(γ+1)
+ 1

2 (go∇u) (t)− b
p ‖u‖

p
p

}
= −µ1 ‖ut‖2 −

∫
Ω
ut
∫ τ2
τ1
|µ2 (q)| |y (x, 1, q, t)| dqdx

+ 1
2 (g′o∇u) (t)− 1

2g (t) ‖∇u‖2 ,

and

(2.14)

d
dt

1
2

∫
Ω

∫ 1

0

∫ τ2
τ1
q |µ2 (q)|

∣∣y2 (x, ρ, q, t)
∣∣ dqdρdx

= − 1
2

∫
Ω

∫ 1

0

∫ τ2
τ1

2 |µ2 (q)| yyρdqdρdx

= 1
2

∫
Ω

∫ τ2
τ1
|µ2 (q)|

∣∣y2 (x, 0, q, t)
∣∣ dqdx

− 1
2

∫
Ω

∫ τ2
τ1
|µ2 (q)|

∣∣y2 (x, 1, q, t)
∣∣ dqdx

= 1
2

(∫ τ2
τ1
|µ2 (q)| dq

)
‖ut‖2

− 1
2

∫
Ω

∫ τ2
τ1
|µ2 (q)|

∣∣y2 (x, 1, q, t)
∣∣ dqdx.
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Therefore,

d

dt
E (t) = −µ1 ‖ut‖2 −

∫
Ω

∫ τ2

τ1

|µ2 (q)| |uty (x, 1, q, t)| dqdx+
1

2
(g′o∇u) (t)

−1

2
g (t) ‖∇u‖2 +

1

2

(∫ τ2

τ1

|µ2 (q)| dq
)
‖ut‖2

−1

2

∫
Ω

∫ τ2

τ1

|µ2 (q)|
∣∣y2 (x, 1, q, t)

∣∣ dqdx.(2.15)

By using (2.13) and (2.14), we obtain (2.11). Utilizing Young’s inequality, (2.1),
(2.2), (2.3) and (2.15), we get (2.12). Hence, we complete the proof. �

Lemma 2.3. [2] There exists c > 0, depending on Ω only, such that

(2.16)

(∫
Ω

|u|p dx
)s/p

≤ c
[
‖∇u‖2 + ‖u‖pp

]
,

for all u ∈ Lp+1 (Ω) and 2 ≤ s ≤ p.

Using the fact that ‖u‖22 ≤ c ‖u‖
2
p ≤ c

(
‖u‖pp

)2/p

, we have the corollary as follows:

Corollary 2.3.1. There exists C > 0, depending on Ω only, that

(2.17) ‖u‖22 ≤ c
[
‖∇u‖4/p2 +

(
‖u‖pp

)2/p
]

.

Lemma 2.4. [2] There exists C > 0, depending on Ω only, such that

(2.18) ‖u‖sp ≤ C
[
‖∇u‖2 + ‖u‖pp

]
,

for all u ∈ Lp+1 (Ω) and 2 ≤ s ≤ p.

Now, we define the functional as follows:

H (t) = −E (t)

=
b

p
‖u‖pp −

1

2
‖ut‖2

−1

2

(
1−

∫ t

0

g (s) ds

)
‖∇u‖2

− 1

2 (γ + 1)
‖∇u‖2(γ+1) − 1

2
(go∇u) (t)

−1

2

∫
Ω

∫ 1

0

∫ τ2

τ1

q |µ2 (q)|
∣∣y2 (x, ρ, q, t)

∣∣ dqdρdx.(2.19)

3. Nonexistence of solutions

In this part, we obtain the nonexistence of global solutions for the problem
(2.8)-(2.9).

Theorem 3.1. Suppose that (2.1)-(2.3) and (2.10) hold. Suppose further that
E (0) < 0 holds. Then, the solution of the problem (2.8)-(2.9) blows up in finite
time.
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Proof. By (2.11), we get

(3.1) E (t) ≤ E (0) ≤ 0.

Hence

H ′ (t) = −E′ (t)

≥ c1

(
‖ut‖2 +

∫
Ω

∫ τ2

τ1

|µ2 (q)|
∣∣y2 (x, 1, q, t)

∣∣ dqdx)
≥ c1

∫
Ω

∫ τ2

τ1

|µ2 (q)|
∣∣y2 (x, 1, q, t)

∣∣ dqdx ≥ 0,(3.2)

and

(3.3) 0 ≤ H (0) ≤ H (t) ≤ b

p
‖u‖pp .

Set

(3.4) K (t) = H1−α (t) + ε

∫
Ω

uutdx+
εµ1

2

∫
Ω

u2dx,

here ε > 0 to be specified later and

(3.5)
2 (p− 2)

p2
< α <

p− 2

2p
< 1.

We multiply the first equation of (2.8) by u and with a derivative of (3.4), to
obtain

K′ (t) = (1− α)H−α (t)H ′ (t)

+ε ‖ut‖2 + ε

∫
Ω

∇u
∫ t

0

g (t− s)∇u (s) dsdx

−ε ‖∇u‖2 − ε ‖∇u‖2(γ+1)
+ εb

∫
Ω

|u|p dx

−ε
∫

Ω

∫ τ2

τ1

|µ2 (q)| |uy (x, 1, q, t)| dqdx.(3.6)

By using

ε

∫
Ω

∫ τ2

τ1

|µ2 (q)| |uy (x, 1, q, t)| dqdx

≤ ε

{
δ1

(∫ τ2

τ1

|µ2 (q)| dq
)
‖u‖2

+
1

4δ1

∫
Ω

∫ τ2

τ1

|µ2 (q)|
∣∣y2 (x, 1, q, t)

∣∣ dqdx} ,(3.7)
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and

ε

∫ t

0

g (t− s) ds
∫

Ω

∇u∇u (s) dxds

= ε

∫ t

0

g (t− s) ds
∫

Ω

∇u (∇u (s)−∇u (t)) dxds

+ε

∫ t

0

g (s) ds ‖∇u‖2

≥ ε

2

∫ t

0

g (s) ds ‖∇u‖2 − ε

2
(go∇u) (t) .(3.8)

By (3.6), we get

K′ (t) ≥ (1− α)H−α (t)H ′ (t) + ε ‖ut‖2 − ε
(

1− 1

2

∫ t

0

g (s) ds

)
‖∇u‖2

−ε ‖∇u‖2(γ+1)
+ εb ‖u‖pp − εδ1

(∫ τ2

τ1

|µ2 (q)| dq
)
‖u‖2

− ε

4δ1

∫
Ω

∫ τ2

τ1

|µ2 (q)|
∣∣y2 (x, 1, q, t)

∣∣ dqdx+
ε

2
(go∇u) (t) .(3.9)

By using (3.2) and setting δ1 such that, 1
4δ1c1

= κH−α (t), we obtain

K′ (t) ≥ [(1− α)− εκ]H−α (t)H ′ (t) + ε ‖ut‖2

−ε
[(

1− 1

2

∫ t

0

g (s) ds

)]
‖∇u‖2 − ε ‖∇u‖2(γ+1)

+εb ‖u‖pp − ε
Hα (t)

4c1κ

(∫ τ2

τ1

|µ2 (q)| dq
)
‖u‖2 +

ε

2
(go∇u) (t) .(3.10)

For 0 < a < 1, by (2.19)

εb ‖u‖pp = εp (1− a)H (t) +
εp (1− a)

2
‖ut‖2 + εba ‖u‖pp

+
εp (1− a)

2

(
1−

∫ t

0

g (s) ds

)
‖∇u‖2

+
εp (1− a)

2 (γ + 1)
‖∇u‖2(γ+1)

+
ε

2
p (1− a) (go∇u) (t)

+
εp (1− a)

2

∫
Ω

∫ 1

0

∫ τ2

τ1

q |µ2 (q)|
∣∣y2 (x, ρ, q, t)

∣∣ dqdρdx,(3.11)
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with (3.10), it gives

K′ (t) ≥ [(1− α)− εκ]H−α (t)H ′ (t) + ε

[
p (1− a)

2
+ 1

]
‖ut‖2

+ε

[(
p (1− a)

2

)(
1−

∫ t

0

g (s) ds

)
−
(

1− 1

2

∫ t

0

g (s) ds

)]
‖∇u‖2

+ε

(
p (1− a)

2 (γ + 1)
− 1

)
‖∇u‖2(γ+1) − εH

α (t)

4c1κ

(∫ τ2

τ1

|µ2 (q)| dq
)
‖u‖2

+
εp (1− a)

2

∫
Ω

∫ 1

0

∫ τ2

τ1

q |µ2 (q)|
∣∣y2 (x, ρ, q, t)

∣∣ dqdρdx
+εp (1− a)H (t) + εba ‖u‖pp +

ε

2
(p (1− a) + 1) (go∇u) (t) .(3.12)

By using (2.17), (3.3) and Young’s inequality, we obtain

Hα (t) ‖u‖22 ≤
(
b

∫
Ω

|u|p dx
)α
‖u‖22

≤ c

{(∫
Ω

|u|p dx
)α+2/p

+

(∫
Ω

|u|p dx
)α
‖∇u‖4/p2

}

≤ c

{(∫
Ω

|u|p dx
)(pα+2)/p

+ ‖∇u‖22 +

(∫
Ω

|u|p dx
)pα/(p−2)

}
.(3.13)

By exploiting (3.5), we obtain

2 < αp+ 2 ≤ p and 2 <
αp2

p− 2
≤ p.

As a result, by Lemma 2.2, such that

(3.14) Hα (t) ‖u‖22 ≤ c
(
‖u‖pp + ‖∇u‖22

)
.

By combining (3.12) and (3.14), we have

K′ (t) ≥ [(1− α)− εκ]H−α (t)H ′ (t)

+ε

[
p (1− a)

2
+ 1

]
‖ut‖2 +

ε

2
(p (1− a) + 1) (go∇u) (t)

+ε

{(
p (1− a)

2
− 1

)
−
∫ t

0

g (s) ds

(
p (1− a)− 1

2

)
− c

4c1κ

(∫ τ2

τ1

|µ2 (q)| dq
)}
‖∇u‖2

+ε

[
ab− c

4c1κ

(∫ τ2

τ1

|µ2 (q)| dq
)]
‖u‖pp

+ε

(
p (1− a)

2 (γ + 1)
− 1

)
‖∇u‖2(γ+1)

+ εp (1− a)H (t)

+
εp (1− a)

2

∫
Ω

∫ 1

0

∫ τ2

τ1

q |µ2 (q)|
∣∣y2 (x, ρ, q, t)

∣∣ dqdρdx.(3.15)
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Taking a > 0 small enough, that

α1 =
p (1− a)

2
− 1 > 0

and suppose

(3.16)

∫ ∞
0

g (s) ds <
p(1−a)

2 − 1(
p(1−a)

2 − 1
2

) =
2α1

2α1 + 1
.

Choosing κ such that,

α2 =

(
p (1− a)

2
− 1

)
−
∫ t

0

g (s) ds

(
p (1− a)− 1

2

)
− c

4c1κ

(∫ τ2

τ1

|µ2 (q)| dq
)

> 0

and

α3 = ab− c

4c1κ

(∫ τ2

τ1

|µ2 (q)| dq
)
> 0 and

p (1− a)

2 (γ + 1)
− 1 > 0.

Fixing κ and a, we have ε small enough,

α4 = (1− α)− εκ > 0.

Hence, for some β > 0, (3.15) becomes

K′ (t) ≥ β
{
H (t) + ‖ut‖2 + ‖∇u‖2 + ‖∇u‖2(γ+1)

+ (go∇u) (t)

+ ‖u‖pp +

∫
Ω

∫ 1

0

∫ τ2

τ1

q |µ2 (q)|
∣∣y2 (x, ρ, q, t)

∣∣ dqdρdx} .(3.17)

Therefore,

(3.18) K (t) ≥ K (0) > 0, t > 0.

Now, utilizing Holder’s and Young’s inequalities, we obtain

‖u‖2 =

(∫
Ω

u2dx

) 1
2

≤

[(∫
Ω

(
|u|2
)p/2

dx

) 2
p
(∫

Ω

1dx

)1− 2
p

] 1
2

≤ C ‖u‖p(3.19)

and ∣∣∣∣∫
Ω

uutdx

∣∣∣∣ ≤ ‖ut‖2 ‖u‖2 ≤ c ‖ut‖2 ‖u‖p .

Hence, ∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
1−α

≤ c ‖ut‖
1

1−α
2 ‖u‖

1
1−α
p

≤ c

[
‖ut‖

θ
1−α
2 + ‖u‖

µ
1−α
p

]
,(3.20)
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here 1
µ + 1

θ = 1. Taking θ = 2 (1− α), we have

µ

1− α
=

2

1− 2α
≤ p.

For s = 2
(1−2α) , we get

∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
1−α

≤ c
(
‖ut‖22 + ‖u‖sp

)
.

Hence, Lemma 2.3 gives∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
1−α

≤ c
[
‖ut‖22 + ‖u‖pp + ‖∇u‖22

]
≤ c

[
‖ut‖22 + ‖u‖pp + ‖∇u‖22 + ‖∇u‖2(γ+1)

+ (go∇u) (t)
]

.(3.21)

Therefore,

K
1

1−α (t) =

(
H (t)

1−α
+ ε

∫
Ω

uutdx+
εµ1

2

∫
Ω

u2dx

) 1
1−α

≤ c

[
H (t) +

∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
1−α

+ ‖u‖
2

1−α
2 + ‖∇u‖

2
1−α
2

]
≤ c

[
H (t) + ‖ut‖2 + ‖u‖pp + ‖∇u‖2 + ‖∇u‖2(γ+1)

+ (go∇u) (t)
]

.(3.22)

By (3.17) and (3.22), we obtain

(3.23) K′ (t) ≥ λK
1

1−α (t) ,

here λ > 0, which depends on β and c. An integration of (3.23), we get

K
α

1−α (t) ≥ 1

K
−α
1−α (0)− λ α

(1−α) t
.

Therefore, K (t) blows up in time

T ≤ T ∗ =
1− α

λαKα/(1−α) (0)
.

Then, the proof is completed. �

4. Conclusion

In recent years, there has been published much work concerning the wave equa-
tions (Kirchhoff, Petrovsky, Bessel,... etc.) with different state of delay time (con-
stant delay, time-varying delay,... etc.). However, to the best of our knowledge,
there were no nonexistence of global results for the Kirchhoff-type viscoleastic
equation with distributed delay and source terms. We have been obtained the
nonexistence of global solutions under suitable conditions.
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[16] H. Yüksekkaya, E. Pişkin, Blow up of Solutions for Petrovsky Equation with Delay Term,

Journal of Nepal Mathematical Society.4 (1), pp. 76-84 (2021).

[17] E. Pişkin, H. Yüksekkaya, Mathematical behavior of the solutions of a class of hyperbolic-type
equation, J. BAUN Inst. Sci. Technol. 20(3), pp. 117-128 (2018).
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