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Simulation of Wave Solutions of a Mathematical Model Representing Communication Signals 

Özlem KIRCI1*, Tolga AKTÜRK2, Hasan BULUT3 

ABSTRACT: In this study, the Lonngren-wave equation is considered to be analyzed for its wave 

solutions. To implement this purpose the modified exponential function method is used and ultimately 

new hyperbolic, trigonometric and rational forms of the exact solutions are obtained. Furthermore, it 

was tested whether these forms satisfy the Lonngren-wave equation or not and it was seen that they 

verify the equation. Besides this, the two and three dimensional graphics together with the contour and 

density plots are presented. 
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INTRODUCTION 

The nonlinear partial differential equations (NLPDEs) interest a wide range of applied scientists 

due to their potential of being extensively arisen in all the fields of engineering and science. Thus 

various powerful and effective methods are implemented for the exact solutions of the evolution 

equations owing to their importance in nonlinear science and their broad usage area. The solutions 

obtained as a result of applying these techniques allow commenting on the behavior of mathematical 

models. Some of them are the (𝐺′ 𝐺⁄ )-expansion technique and its modifications (Wang et al., 2008; 

Naher, 2012; Naher and Abdullah, 2013; Akbar et al., 2016; Duran, 2020; Duran, 2021), the (1/G')-

expansion method (Duran, 2021), sine-Gordon expansion method and (𝑚 + 𝐺′ 𝐺)⁄ -expansion method 

(Ismael et al., 2020), the improved Bernoulli sub-equation function method (Bulut et al., 2016; Duran 

et al., 2021), the Riccati-Bernoulli sub-ODE method (Yang et al., 2015), the exp(−ϕ(ξ))-expansion 

method and its improved forms (Misirli and Gurefe, 2011; Arshed et al., 2019; Chen et al., 2019; Yel 

et al., 2019; Baskonus, 2021; Duran, 2021), the generalized Kudryashov method (Demiray et al., 2015; 

Mahmud et al., 2017; Rahman et al., 2019),  the new function method (Aktürk et al., 2017), the 

Hirota’s bilinear transformation (Hietarinta, 2005), the Backlund transformation method (Hirota and 

Satsuma, 1977; Lu et al., 2006), rational sine-cosine method (Marwan et al. 2011; Qawasmeh and 

Alquran, 2014) the tanh method and its various extension (Fan, 2000; Elwakil et al., 2005; Yang and 

Hon, 2006), the tanh-coth expansion method (Wazwaz, 2007a, 2007b; Parkes, 2010), the homotopy 

perturbation method (He, 2006a, 2006b, 2008; Biazar et al., 2009), the simplified Hirota’s method 

(Wazwaz, 2016), the extended sinh-Gordon equation expansion method (Kumar et al., 2018; Gao et 

al., 2019), Lie transformation method and singular manifold method (Saleh et al., 2021), the power 

index method (Shrauner, 2019), 𝜙6 −model expansion method (Seadawy et al., 2021), the truncated 

Painleve expansion (Radha et al., 2007), the Jacobi elliptic-function method (Parkes et al., 2002), etc.  

In this study the Lonngren wave Equation (1), which is one of the NLPDEs, is considered and 

the new forms of the exact solutions are obtained by modified exponential function method (MEFM).  

(𝑢𝑥𝑥 − 𝛼𝑢 + 𝛽𝑢2)𝑡𝑡 + 𝑢𝑥𝑥 = 0.                                                                                                   (1) 

The Lonngren wave equation is used in the field of telecommunication and network engineering. 

For this equation, Akcagil and Aydemir have presented (G′/G)–expansion method, the modified 

extended tanh method and the unified method to reveal the new exact solutions (Akcagil and Aydemir, 

2016; Akcagil and Aydemir, 2018).  Kayum et al. have investigated the soliton solutions through the 

modified simple equation method (Kayum et al., 2020). Then it comes out that the Lonngren-wave 

equation is not taken into consideration by the modified exponential function method. In the light of 

those papers, the aim of this study is to present the new form of solutions to this equation. The flow of 

the manuscript is as follows: The materials and methods section includes the description of the MEFM 

and the application of the method for the Lonngren-wave equation, in results and discussion section 

the graphical results are given, finally it is ended with the conclusion part.   

MATERIALS AND METHODS 

Methodology 

In this section, the application of the modified exponential function method to a NLPDE will be 

described. According to the method, the general form of a nonlinear evolution equation is written as 

follows; 

𝑃(𝑈, 𝑈𝑥, 𝑈𝑡, 𝑈𝑥𝑥, 𝑈𝑥𝑡, 𝑈𝑡𝑡, 𝑈𝑥𝑥𝑡𝑡, … ) = 0,                                                                                     (2) 

where P is a function of 𝑈 = 𝑈(𝑥, 𝑡) and its partial derivatives in which the highest order derivatives 

and nonlinear terms are involved. 
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Step1: In order to obtain the solution functions of a NLPDE, the equation must be reduced into a 

nonlinear ordinary differential equation (NLODE) module. Therefore according to the method the 

wave transformation given below can be used for equation (1)  

𝑈(𝑥, 𝑡) = 𝑈(𝜉), 𝜉 = 𝑘(𝑥 − 𝑐𝑡),                                                                                                    (3) 

where k  represents the wave height and c  represents the wave frequency. The derivative terms 

required in equation (1) are obtained using the wave transformation (3) above. These terms are then 

substituted in equation (1) and as a result (1) reduced to a NLODE whose general form can be given as 

in the following, 

𝑁(𝑈, 𝑈2, 𝑈′, 𝑈′′, … ) = 0.                                                                                                              (4) 

Step2: According to the method the solution of Equation (1) is 

𝑈(𝜉) =
∑ 𝐴𝑖[𝑒𝑥𝑝(−𝛺(𝜉))]

𝑖𝑛
𝑖=0

∑ 𝐵𝑗[𝑒𝑥𝑝(−𝛺(𝜉))]
𝑗𝑚

𝑗=0

=
𝐴0+𝐴1𝑒𝑥𝑝(−𝛺(𝜉))+⋯+𝐴𝑛𝑒𝑥𝑝(−𝑛𝛺(𝜉))

𝐵0+𝐵1𝑒𝑥𝑝(−𝛺(𝜉))+⋯+𝐵𝑚𝑒𝑥𝑝(−𝑚𝛺(𝜉))
,                                                 (5) 

where ( ), , 0 ,0i jA B i n j m     are constants to be determined.  

In order to state equation (5) clearly, it is necessary to determine the upper limits of the 

summation symbols, the omega function and the coefficients, respectively. The balancing principle is 

used in the process of determining the upper limits, namely  m  and n . For this, a relation is obtained 

between m  and n  by balancing the term containing the highest order derivative and the highest order 

nonlinear term in equation (4). Then, the upper limits of the summation symbols are determined by 

giving values to the parameters so that they can provide the correlation. The expansion of the sums in 

(5) are provided up to the upper limit values after determination of m  and n . After explicitly 

expressing 𝑈(𝜉) in (5), the derivative terms required in Equation (4) are obtained from here. 

Substituting (5) together with the required derivatives into (4) creates the need of the omega function 

and its first order derivative. Therefore it is utilized from the following ordinary differential equation 

whose solution is 𝛺(𝜉). 

𝛺′(𝜉) = 𝑒𝑥𝑝(−𝛺(𝜉)) + 𝜇𝑒𝑥𝑝(𝛺(𝜉)) + 𝜆.                                                                                  (6) 

Step3: The substitution of (5) into (4), taking into consideration (6), results in a system of 

algebraic equation. From this system the coefficients are determined using the package program. By 

writing the obtained coefficients in equation (4), the solution functions are investigated according to 

the following family states (Bulut and Baskonus, 2016).

Family1: When 𝜇 ≠ 0, 𝜆2 − 4𝜇 > 0,  

𝛺(𝜉) = ln (
−√𝜆2−4𝜇

2𝜇
tanh (

√𝜆2−4𝜇

2
(𝜉 + 𝐸)) −

𝜆

2𝜇
).                                                                     (7) 

Family2: When 𝜇 ≠ 0, 𝜆2 − 4𝜇 < 0,   

𝛺(𝜉) = ln (
√−𝜆2+4𝜇

2𝜇
tan (

√−𝜆2+4𝜇

2
(𝜉 + 𝐸)) −

𝜆

2𝜇
).                                                                     (8) 

Family3: When 𝜇 = 0, 𝜆 ≠ 0 and  𝜆2 − 4𝜇 > 0,   

𝛺(𝜉) = −ln (
𝜆

𝑒𝑥𝑝(𝜆(𝜉+𝐸))−1
).                                                                                                         (9) 

Family4: When 𝜇 ≠ 0, 𝜆 ≠ 0 and  𝜆2 − 4𝜇 = 0,  

𝛺(𝜉) = ln (−
2𝜆(𝜉+𝐸)+4

𝜆2(𝜉+𝐸)
).                                                                                                            (10) 

Family5: When 𝜇 = 0, 𝜆 = 0 and  𝜆2 − 4𝜇 = 0,  

𝛺(𝜉) = ln(𝜉 + 𝐸),                                                                                                                      (11) 

where 𝐴0, 𝐴1, … , 𝐴𝑛, 𝐵0, 𝐵1, … , 𝐵𝑚, 𝐸, 𝜆, 𝜇 are constants. 
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Application of MEFM to Lonngren-wave equation 

If the wave transformation (3) is applied to the equation (1), the following NLODE model is 

obtained, 

𝑐2𝑘2𝑈′′ + (1 − 𝛼𝑐2)𝑈 + 𝛽𝑐2𝑈2 + 𝑅 = 0,                                                                                (12) 

where R  is the integral constant. Balancing the terms including the highest order derivative 𝑈′′ and 

the highest power nonlinear term 𝑈2 in (12) results in the following equation 

𝑛 = 𝑚 + 2.                                                                                                                                  (13) 

According to this equation for the values 1m = , 3n = , the solution function and the derivatives sought 

for equation (12) are as follows; 

𝑈(𝜉) =
𝜓

𝜑
=

𝐴0+𝐴1𝑒−𝛺(𝜉)+𝐴2𝑒−2𝛺(𝜉)+𝐴3𝑒−3𝛺(𝜉)

𝐵0+𝐵1𝑒−𝛺(𝜉) , 𝑈′(𝜉) =
𝜓′𝜑−𝜓𝜑′

𝜑2 ,                                      

𝑈′′(𝜉) =
𝜓′′𝜑3−𝜑2𝜓′𝜑′−(𝜓𝜑′′+𝜓′𝜑′)𝜑2+2(𝜓′)

2
𝜓𝜑

𝜑4 .                                                                        (14) 

If the derivative concepts obtained above are written into equation (4), the following coefficient states 

and the solution functions depending on them are obtained. 

Case1:  

𝐴0 =
(1+𝑐2(−𝛼+𝑘2(𝜆2+8𝜇)))𝐴2𝐵0

12𝑐2𝑘2(𝐵0+𝜆𝐵1)
, 𝐴1 =

𝐴2(𝐵1+𝑐2(12𝑘2𝜆𝐵0+(−𝛼+𝑘2(𝜆2+8𝜇))𝐵1))

12𝑐2𝑘2(𝐵0+𝜆𝐵1)
,  

𝐴3 =
𝐴2𝐵1

𝐵0+𝜆𝐵1
, 𝛽 = −

6𝑘2(𝐵0+𝜆𝐵1)

𝐴2
, 𝑅 =

(−1+2𝑐2𝛼+𝑐4(−𝛼2+𝑘4(𝜆2−4𝜇)
2

))𝐴2

24𝑐2𝑘2(𝐵0+𝜆𝐵1)
.                                     (15) 

The coefficients obtained by solving the algebraic equation system, are written in (5) and the 

solution function of equation (1) is analyzed according to the families as mentioned in step3. Graphical 

results that belong to the solution forms of (1) according to case1 are presented.  

Family1: 

𝑈1,1(𝜉) =

Sech[𝜗]2(2(1 − 𝑐2(𝛼 + 5𝑘2(𝜆2 − 4𝜇)))𝜇 + (1 − 𝑐2(𝛼 − 𝑘2(𝜆2 − 4𝜇)))((𝜆2 − 2𝜇)Cosh[2𝜗]

+𝜆√𝜆2 − 4𝜇Sinh[2ϑ]))𝐴2

12𝑐2𝑘2(𝐵0 + 𝜆𝐵1) (𝜆 + √𝜆2 − 4𝜇Tanh[ϑ])
2 , 

where 𝜗 =
1

2
√𝜆2 − 4𝜇(E + 𝜉), (Figure1). 

Family2: 

𝑈1,2(𝜉) =

Sec[𝜓]2(2(1 − 𝑐2(𝛼 + 5𝑘2(𝜆2 − 4𝜇)))𝜇 + (1 − 𝑐2(𝛼 − 𝑘2(𝜆2 − 4𝜇)))((𝜆2 − 2𝜇)Cosh[𝜓]

−𝜆√−𝜆2 + 4𝜇Sinh[2𝜓]))𝐴2

12𝑐2𝑘2(𝐵0 + 𝜆𝐵1) (𝜆 − √−𝜆2 + 4𝜇Tan[𝜓])
2 , 

where 𝜓 =
1

2
(𝐸 + 𝜉)√−𝜆2 + 4𝜇, (Figure2).  

Family3: 

𝑈1,3(𝜉) =
𝑒(E+𝜉)𝜆(−1 + 𝑐2(𝛼 + 5𝑘2𝜆2) + (1 + 𝑐2(−𝛼 + 𝑘2𝜆2))Cosh[(E + 𝜉)𝜆])𝐴2

6𝑐2(−1 + 𝑒(E+𝜉)𝜆)2𝑘2(𝐵0 + 𝜆𝐵1)
. 

(Figure3). 

Family 4: 

𝑈1,4(𝜉) =
−(((−𝜃2 + 𝑐2(𝛼𝜃2 + 2𝑘2(𝜆2(−2 + 𝜙(𝜃 + 2)) − 4𝜃2𝜇)))𝐴2)

12𝑐2𝑘2𝜃2(𝐵0 + 𝜆𝐵1)
, 
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where 𝜙 = E𝜆 + 𝜉𝜆, 𝜃 = 2 + 𝜙, (Figure4). 

Family5: 

𝑈1,5(𝜉) =

(
12

(E + 𝜉)2 +

1
𝑐2 − 𝛼

𝑘2 ) 𝐴2

12𝐵0
. 

(Figure5). 

 

Figure 1. The three dimensional graph, contour graph, density graph of solution 𝑈1,1(𝜉) for the values  𝑐 = −1, 𝑘 =

0.5, 𝐵1 = 2, 𝜆 = 3, 𝜇 = 2, 𝐴2 = 1.25, 𝐵0 = 0.35, 𝛼 = −1.6, 𝐴0 = 0.203248, 𝐴1 = 1.36811, 𝐴3 = 0.393701, 𝛽 =

−7.62, 𝑅 = −0.219734, 𝐸 = 0.75 and two-dimensional graph for 𝑡 = 1 

 

Figure 2. The three dimensional graph, contour graph, density graph of solution 𝑈1,2(𝜉) for the values 𝑐 = −1, 𝑘 =

0.5, 𝐵1 = 2, 𝜆 = 1, 𝜇 = 2, 𝐴2 = 1.25, 𝐵0 = 0.35, 𝛼 = −1.6, 𝐴0 = 0.42089, 𝐴1 = 2.61525, 𝐴3 = 1.06383, 𝛽 = −2.82, 𝑅 =

−0.327793, 𝐸 = 0.75 and two-dimensional graph for 𝑡 = 1 
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Figure 3. The three dimensional graph, contour graph, density graph of solution 𝑈1,3(𝜉) for the values𝑐 = −1, 𝑘 =

0.5, 𝐵1 = 2, 𝜆 = 1, 𝜇 = 0, 𝐴2 = 1.25, 𝐵0 = 0.35, 𝛼 = −1.6, 𝐴0 = 0.176862, 𝐴1 = 1.19681, 𝐴3 = 1.06383, 𝛽 =

−2.82, 𝑅 = −0.59375, 𝐸 = 0.75 and two-dimensional graph for 𝑡 = 1  

 

Figure 4. The three dimensional graph, contour graph, density graph of solution 𝑈1,4(𝜉) for the values𝑐 = −1, 𝑘 =

0.5, 𝐵1 = 2, 𝜆 = 2, 𝜇 = 1, 𝐴2 = 1.25, 𝐵0 = 0.35, 𝛼 = −1.6, 𝐴0 = 0.187739, 𝐴1 = 1.27395, 𝐴3 = 0.574713, 𝛽 =

−5.22, 𝑅 = −0.323755, 𝐸 = 0.75 and two-dimensional graph for 𝑡 = 1  
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Figure 5. The three dimensional graph, contour graph, density graph of solution 𝑈1,5(𝜉) for the values 𝑐 = −1, 𝑘 =

0.5, 𝐵1 = 2, 𝜆 = 0, 𝜇 = 0, 𝐴2 = 1.25, 𝐵0 = 0.35, 𝛼 = −1.6, 𝐴0 = 1.08333, 𝐴1 = 6.19048, 𝐴3 = 7.14286, 𝛽 = −0.42, 𝑅 =

−4.02381, 𝐸 = 0.75 and two-dimensional graph for 𝑡 = 1  

Another group of coefficient called as case2 is presented below. 

Case2: 

𝐴0 =
(√4𝑅𝛽 + 𝑐2𝑘4(𝜆2 − 4𝜇)2 − 𝑐𝑘2(𝜆2 + 8𝜇))𝐵0

2𝑐𝛽
, 𝐴1 =

(−√4𝑅𝛽 + 𝑐2𝑘4(𝜆2 − 4𝜇)2 + 𝑐𝑘2(𝜆2 + 8𝜇))𝐴3

12𝑐𝑘2
−

6𝑘2𝜆𝐵0

𝛽
 

 

𝐴2 = 𝜆𝐴3 −
6𝑘2𝐵0

𝛽
, 𝐵1 = −

𝛽𝐴3

6𝑘2
, 𝛼 =

1 + 𝑐√4𝑅𝛽 + 𝑐2𝑘4(𝜆2 − 4𝜇)2

𝑐2
. 

Now the wave solutions of equation (1) are investigated according to case2 which is a result of the 

algebraic equation system emerged from MEFM. 

Family1: 

𝑈2,1(𝜉)

=
Sech[𝜗]2(2(𝜂 + 5𝑐𝑘2(𝜆2 − 4𝜇))𝜇 + (η − 𝑐𝑘2(𝜆2 − 4𝜇))((𝜆2 − 2𝜇)Cosh[2𝜗] + 𝜆√𝜆2 − 4𝜇Sinh[2𝜗]))

2𝑐𝛽(𝜆 + √𝜆2 − 4𝜇Tanh[𝜗])2
, 

where  𝜗 =
1

2
√𝜆2 − 4𝜇(E + 𝜉), 𝜂 = √4𝑅𝛽 + 𝑐2𝑘4(𝜆2 − 4𝜇)2, (Figure6). 

Family2: 

𝑈2,2(𝜉) =
Sec[𝜓]2(2(𝜂 − 5𝑐𝑘2𝜎2)𝜇 + (η + 𝑐𝑘2𝜎2)((𝜆2 − 2𝜇)Cos[2𝜗] − 𝜆σSin[2𝜓]))

2𝑐𝛽(𝜆 − σTan[𝜓])2
, 

where  𝜓 =
1

2
√−𝜆2 + 4𝜇(E + 𝜉), 𝜂 = √4𝑅𝛽 + 𝑐2𝑘4(𝜆2 − 4𝜇)2, 𝜎 = √−𝜆2 + 4𝜇, (Figure7). 

Family3: 

𝑈2,3(𝜉) =

√4𝑅𝛽 + 𝑐2𝑘4𝜆4

𝑐 − 𝑘2𝜆2(1 + 3Csch[𝜔]2)

2𝛽
, 

where 𝜔 =
1

2
𝜆(EE + 𝜉), (Figure8). 
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Family4: 

𝑈2,4(𝜉) =

η
𝑐 + 2𝑘2(𝜆2(1 −

6
𝜙2) − 4𝜇)

2𝛽
, 

where 𝜂 = √4𝑅𝛽 + 𝑐2𝑘4(𝜆2 − 4𝜇)2, 𝜙 = E𝜆 + 𝜉𝜆, 𝜃 = 2 + 𝜙, (Figure9).  

Family 5: 

𝑈2,5(𝜉) =
−

6𝑘2

(E + 𝜉)2 +
√𝑅𝛽

𝑐

𝛽
. 

(Figure10). 
 

  

Figure 6. The three dimensional graph, contour graph, density graphs of solution 𝑈2,1(𝜉) for the values 𝑐 = −1, 𝑘 =

0.5, 𝐵1 − 1.33333, 𝜆 = 3, 𝜇 = 2, 𝐴2 = 3.42188, 𝐵0 = 0.35, 𝛼 = 0.161847, 𝐴0 = −0.775267, 𝐴1 = 1.96902, 𝐴3 =

1.25, 𝛽 = 1.6, 𝑅 = 0.1, 𝐸 = 0.75 and two-dimensional graph for 𝑡 = 1  

 

2   

Figure 7. The three dimensional graph, contour graph, density graph of solution 𝑈2,2(𝜉) for the values 𝑐 = −1, 𝑘 =

0.5, 𝐵1 − 1.33333, 𝜆 = 1, 𝜇 = 2, 𝐴2 = 0.921875, 𝐵0 = 0.35, 𝛼 = −0.924188, 𝐴0 = −0.675302, 𝐴1 = 2.24445, 𝐴3 =

1.25, 𝛽 = 1.6, 𝑅 = 0.1, 𝐸 = 0.75 and two-dimensional graph for 𝑡 = 1  
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 Figure 8. The three dimensional graph, contour graph, density graph of solution 𝑈2,3(𝜉) for the values 𝑐 = −1, 𝑘 =

0.5, 𝐵1 − 1.33333, 𝜆 = 1, 𝜇 = 0, 𝐴2 = 0.921875, 𝐵0 = 0.35, 𝛼 = 0.161847, 𝐴0 = −0.119017, 𝐴1 = 0.125272, 𝐴3 =

1.25, 𝛽 = 1.6, 𝑅 = 0.1, 𝐸 = 0.75 and two-dimensional graph for 𝑡 = 1  

 

 Figure 9. The three dimensional graph, contour graph, density graph of solution 𝑈2,4(𝜉) for the values 𝑐 = −1, 𝑘 =

0.5, 𝐵1 − 1.33333, 𝜆 = 2, 𝜇 = 1, 𝐴2 = 2.17188, 𝐵0 = 0.35, 𝛼 = 0.2, 𝐴0 = −0.415625, 𝐴1 = 0.927083, 𝐴3 = 1.25, 𝛽 =

1.6, 𝑅 = 0.1, 𝐸 = 0.75 and two-dimensional graph for 𝑡 = 1  
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Figure 10. The three dimensional graph, contour graph, density graph of solution 𝑈2,5(𝜉) for the values 𝑐 = −1, 𝑘 =

0.5, 𝐵1 − 1.33333, 𝜆 = 0, 𝜇 = 0, 𝐴2 = −0.328125, 𝐵0 = 0.35, 𝛼 = 0.2, 𝐴0 = −0.0875, 𝐴1 = 0.33333, 𝐴3 = 1.25, 𝛽 =

1.6, 𝑅 = 0.1, 𝐸 = 0.75 and two-dimensional graph for 𝑡 = 1  

RESULTS AND DISCUSSION 

The graphs representing the behavior of the mathematical model are obtained by determining the 

appropriate parameters, for the solution forms. The 3D, 2D graphs together with the contour and the 

density plots of 𝑈1,1, 𝑈1,2, 𝑈1,3, 𝑈1,4𝑈1,5, 𝑈2,1, 𝑈2,2, 𝑈2,3, 𝑈2,4, 𝑈2,5 are illustrated in Figures 1-10. 

Additionally, these forms are tested whether they are the exact solution of (1) or not with the help of a 

package program and verification is acquired. 

CONCLUSION 

We have determined the new exact solution forms of the Lonngren-wave equation as hyperbolic, 

trigonometric and rational functions via the modified exponential function method which is an 

effective and functioning method. It is observed that the MEFM is not applied for this equation before. 

The process of plotting the graphs and the computations are overcome with the aid of a package 

program. The Lonngren wave equation is used in the field of telecommunication and network 

engineering. Therefore the newly obtained wave solutions may be useful for analyzing and 

understanding the information as signals for transmission. This shows that the method is a very 

effective technique for the NLPDEs. 
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