Fundamental Journal of Mathematics and Applications

On Hyperbolic Jacobsthal-Lucas Sequence

Sait Taş
Department of Mathematics, Faculty of Science, Atatürk University, Erzurum, Turkey

Article Info

Keywords: Hyperbolic numbers, Hyperbolic Jacobsthal-Lucas numbers, Jacobsthal numbers
2010 AMS: 11B37, 11B39, 11B83, 11B99
Received: 28 June 2021
Accepted: 23 December 2021
Available online: 11 February 2021

Abstract

In this study, we define the hyperbolic Jacobsthal-Lucas numbers and we obtain recurrence relations, Binet's formula, generating function and the summation formulas for these numbers.

1. Introduction and preliminaries

In this study, we introduce hyperbolic Jacobsthal-Lucas numbers and give some properties of them. Firstly, we present some background information about hyperbolic numbers and Jacobsthal-Lucas numbers. One can see [1]-[8] for details. Jacobsthal-Lucas sequence J_{n} is defined by the second-order recurence relation

$$
J_{n+2}=J_{n+1}+2 J_{n}
$$

with initial values $J_{0}=2, J_{1}=1$. The first few terms of this sequence are given as follows:

$$
2,1,5,7,17,31,65,127,257,511,1025,2047, \ldots
$$

Binet's formula and generating function of Jacobsthal-Lucas sequence are given by

$$
J_{n}=2^{n}+(-1)^{n}
$$

and

$$
\sum_{n=0}^{\infty} J_{n} x^{n}=\frac{2-x^{2}}{1-x-2 x^{2}}
$$

respectively.
The set of hyperbolic numbers H can be described as

$$
H=\left\{z=x+h y: h \notin R, h^{2}=1, x, y \in R\right\} .
$$

Addition, substruction and multiplication of any two hyperbolic numbers z_{1} and z_{2} are defined by

$$
\begin{aligned}
& z_{1} \pm z_{2}=\left(x_{1}+h y_{1}\right) \pm\left(x_{2}+h y_{2}\right)=\left(x_{1} \pm x_{2}\right)+h\left(y_{1} \pm y_{2}\right), \\
& z_{1} \times z_{2}=\left(x_{1}+h y_{1}\right) \times\left(x_{2}+h y_{2}\right)=x_{1} x_{2}+y_{1} y_{2}+h\left(x_{1} y_{2}+y_{1} x_{2}\right),
\end{aligned}
$$

and the division of two hyperbolic numbers are given by

$$
\frac{z_{1}}{z_{2}}=\frac{x_{1}+h y_{1}}{x_{2}+h y_{2}}=\frac{\left(x_{1}+h y_{1}\right)\left(x_{2}-h y_{2}\right)}{\left(x_{2}+h y_{2}\right)\left(x_{2}-h y_{2}\right)}=\frac{x_{1} x_{2}+y_{1} y_{2}}{x_{2}^{2}-y_{2}^{2}}+h \frac{x_{1} y_{2}+y_{1} x_{2}}{x_{2}^{2}-y_{2}^{2}}
$$

The hyperbolic conjugation of $z=x+h y$ is defined by

$$
\bar{z}=x-h y .
$$

For more information and properties related hyperbolic numbers, see [9]-[18].

2. Hyperbolic Jacobsthal-Lucas sequence

In [14], author presented hyperbolic Fibonacci sequence and examined its properties. In this study, we define hyperbolic Jacobsthal-Lucas sequence and examined some of its properties.
The hyperbolic Jacobsthal-Lucas numbers are defined by

$$
H J_{n}=J_{n}+h J_{n+1}
$$

with initial conditions $H J_{0}=2+h, H J_{1}=1+5 h$ where $h^{2}=1$. Then the first few terms of hyperbolic Jacobsthal-Lucas numbers are

$$
2+h, 1+5 h, 5+7 h, 7+17 h, 17+31 h, 31+65 h, 65+127 h, \ldots
$$

It can be easily shown that

$$
H J_{n}=H J_{n-1}+2 H J_{n-2} .
$$

In fact, by using the definition of the hyperbolic Jacobsthal-Lucas numbers, we have

$$
\begin{aligned}
H J_{n} & =J_{n}+h J_{n+1}=J_{n-1}+2 J_{n-2}+h\left(J_{n}+2 J_{n-1}\right) \\
& =2 J_{n-2}+h 2 J_{n-1}+J_{n-1}+h J_{n} \\
& =H J_{n-1}+2 H J_{n-2} .
\end{aligned}
$$

Theorem 2.1. Let $H J_{n}$ be $n-$ th hyperbolic Jacobsthal-Lucas number, then we obtain

$$
\lim _{x \rightarrow \infty} \frac{H J_{n+1}}{H J_{n}}=2
$$

Proof. We have

$$
\lim _{x \rightarrow \infty} \frac{J_{n+1}}{J_{n}}=2
$$

for the Jacobsthal-Lucas sequence J_{n}. Then using this value for the hyperbolic Jacobsthal-Lucas $H J_{n}$, we get

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{H J_{n+1}}{H J_{n}} & =\lim _{x \rightarrow \infty} \frac{J_{n+1}+h J_{n+2}}{J_{n}+h J_{n+1}} \\
& =\lim _{x \rightarrow \infty} \frac{J_{n+1}+h\left(J_{n+1}+2 H J_{n}\right)}{J_{n}+h J_{n+1}} \\
& =\lim _{x \rightarrow \infty} \frac{\left.\left(\frac{J_{n+1}}{J_{n}}\right)+h\left(\frac{J_{n+1}}{J_{n}}\right)+2\right)}{1+\left(h \frac{J_{n+2}}{J_{n}}\right)} \\
& =\frac{2+4 h}{1+2 h}=2 .
\end{aligned}
$$

Theorem 2.2. The Binet formula for the hyperbolic Jacobsthal-Lucas numbers is given by

$$
\begin{equation*}
H J_{n}=(1+2 h) 2^{n}+(1-h)(-1)^{n} . \tag{2.1}
\end{equation*}
$$

Proof. By using the Binet formula of the Jacobsthal-Lucas numbers

$$
J_{n}=2^{n}+(-1)^{n},
$$

we get

$$
\begin{aligned}
H J_{n} & =J_{n}+h J_{n+1} \\
& =2^{n}+(-1)^{n}+h\left(2^{n+1}+(-1)^{n+1}\right) \\
& =(1+2 h) 2^{n}+(1-h)(-1)^{n} .
\end{aligned}
$$

Theorem 2.3. The generating function for the hyperbolic Jacobsthal-Lucas sequence is given by

$$
\sum_{n=0}^{\infty} H J_{n} x^{n}=\frac{2+h+(1-4 h) x}{1-x-2 x^{2}} .
$$

Proof. Let

$$
g(x)=\sum_{n=0}^{\infty} H J_{n} x^{n}
$$

be generating function of hyperbolic Jacobsthal-Lucas numbers. Then we have the following equations:

$$
\begin{array}{r}
g(x)=H J_{0}+H J_{1} x+H J_{2} x^{2}+H J_{3} x^{3}+H J_{4} x^{4}+\ldots \\
-x g(x)=-H J_{0} x-H J_{1} x^{2}-H J_{2} x^{3}-H J_{3} x^{4}-H J_{4} x^{5}-\ldots \\
-2 x^{2} g(x)=-2 H J_{0} x^{2}-2 H J_{1} x^{3}-2 H J_{2} x^{4}-2 H J_{3} x^{5}-2 H J_{4} x^{6}-\ldots \\
\left(1-x-2 x^{2}\right) g(x)=H J_{0}+\left(H J_{1}-H J_{0}\right) x .
\end{array}
$$

By rewriting the last equation, we get

$$
g(x)=\frac{2+4 h+(1-4 h) x}{1-x-2 x^{2}}
$$

with $H J_{0}=2+h, H J_{1}=1+5 h$.
Theorem 2.4. (Catalan's identity) The following identitiy holds for all natural numbers n and m :

$$
H J_{n+m} H J_{n-m}-H J_{n}^{2}=(-1+h)\left[(-2)^{n+m}+(-2)^{n-m}+(-2)^{n+1}\right] .
$$

Proof. By using the formula (2.1), we obtain

$$
\begin{aligned}
H J_{n+m} H J_{n-m}-H J_{n}^{2}= & \left((1+2 h) 2^{n+m}+(1-h)(-1)^{n+m}\right)\left((1+2 h) 2^{n-m}+(1-h)(-1)^{n-m}\right) \\
& -\left((1+2 h) 2^{n}+(1-h)(-1)^{n}\right)^{2} \\
= & \left((5+4 h) 2^{2 n}+(2-2 h)(-1)^{2 n}+(-1+h) 2^{n}(-1)^{n}\left[2^{m}(-1)^{-m}+2^{-m}(-1)^{m}\right]\right) \\
& -\left((5+4 h) 2^{2 n}+(2-2 h)(-1)^{2 n}+2(-1+h) 2^{n}(-1)^{n}\right) \\
= & (-1+h)\left[(-2)^{n+m}+(-2)^{n-m}+(-2)^{n+1}\right] .
\end{aligned}
$$

Theorem 2.5. (d'Ocagne's identity) The following identitiy holds for any integers n and m :

$$
H J_{m+1} H J_{n}-H J_{m} H J_{n+1}=3(-1+h)\left[(-2)^{m}(-1)^{n}-(-2)^{n}(-1)^{m}\right] .
$$

Proof. By the Binet formula (2.1), we get

$$
\begin{aligned}
H J_{m+1} H J_{n}-H J_{m} H J_{n+1}= & \left((1+2 h) 2^{m+1}+(1-h)(-1)^{m+1}\right)\left((1+2 h) 2^{n}+(1-h)(-1)^{n}\right) \\
& -\left((1+2 h) 2^{m}+(1-h)(-1)^{m}\right)\left((1+2 h) 2^{n+1}+(1-h)(-1)^{n+1}\right) \\
= & 3(-1+h)\left[(-2)^{m}(-1)^{n}-(-2)^{n}(-1)^{m}\right] .
\end{aligned}
$$

Theorem 2.6. (Gelin-Cesaro's identity) The following identitiy holds for any integers n and m :

$$
H J_{n+2} H J_{n+1} H J_{n-1} H J_{n-2}-H J_{n}^{4}=\frac{9}{8}(-1+h)(-2)^{n}\left[(2)^{2 n+1}-13(1-h)(-2)^{n}+4(1-h)\right] .
$$

Proof. Using

$$
\begin{gathered}
H J_{n}=(1+2 h) 2^{n}+(1-h)(-1)^{n}, \\
H J_{n}=(1+2 h)\left[2^{n}+(-1+h)(-1)^{n}\right],
\end{gathered}
$$

and by setting $a=2^{n}, b=(-1+h)(-1)^{n}$ we obtain following values:

1. $H J_{n+2}=(1+2 h)[4 a+b]$
2. $H J_{n+1}=(1+2 h)[2 a-b]$
3. $H J_{n-1}=(1+2 h)\left[\frac{a}{2}-b\right]$
$4 . H J_{n-2}=(1+2 h)\left[\frac{a}{4}+b\right]$
from the above values, we can easily calculate

$$
\begin{aligned}
H J_{n+2} H J_{n+1} H J_{n--1} H J_{n-2}-H J_{n}^{4} & =(1+2 h)^{4}\left[\left(8 a^{2}-2 a b-b^{2}\right)\left(\frac{a^{2}}{8}+\frac{a b}{4}-b^{2}\right)-\left(a^{4}+b^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}\right)\right] \\
& =\frac{9}{8}(-1+h)(-2)^{n}\left[(2)^{2 n+1}-13(1-h)(-2)^{n}+4(1-h)\right] .
\end{aligned}
$$

Theorem 2.7. (Melham's identity) The following identity holds for any integers n and m :

$$
H J_{n+1} H J_{n+2} H J_{n+6}-H J_{n+3}^{3}=9(1-h)(-2)^{n}\left[2^{n+3}+10(1-h)(-1)^{n}\right] .
$$

Proof. Using

$$
\begin{gathered}
H J_{n}=(1+2 h) 2^{n}+(1-h)(-1)^{n}, \\
H J_{n}=(1+2 h)\left[2^{n}+(-1+h)(-1)^{n}\right]
\end{gathered}
$$

and by setting $a=2^{n}, b=(-1+h)(-1)^{n}$ we obtain following values:
$1 . H J_{n+1}=(1+2 h)[2 a-b]$,
2. $H J_{n+2}=(1+2 h)[4 a+b]$,
$3 \cdot H J_{n+6}=(1+2 h)[64 a+b]$,
$4 \cdot H J_{n+3}=(1+2 h)[8 a-b]$.
From the above values, we can easily calculate

$$
\begin{aligned}
H J_{n+1} H J_{n+2} H J_{n+6}-H J_{n+3}^{3} & =(1+2 h)^{3}\left[\left(8 a^{2}-2 a b-b^{2}\right)(64 a+b)-(8 a-b)^{3}\right] \\
& =(1+2 h)^{3} 9 a b[8 a-10 b] \\
& =9(1-h)(-2)^{n}\left[2^{n+3}+10(1-h)(-1)^{n}\right] .
\end{aligned}
$$

Theorem 2.8. For $n \geq 0$, we obtain

$$
\sum_{k=0}^{n} H J_{k}=\frac{1}{2}\left(H J_{n+2}-(1+5 h)\right) .
$$

Proof. We use the mathematical induction on n. For $n=0$, we have

$$
H J_{0}=\frac{1}{2}\left[H J_{2}-(1+5 h)\right]=\frac{1}{2}[5+7 h-1-5 h]=2+h .
$$

Now assume that it is true for $n=k$, namelyand by setting

$$
\sum_{k=0}^{k} H J_{k}=\frac{1}{2}\left(H J_{k+2}-(1+5 h)\right)
$$

From the induction hypothesis, we obtain

$$
\begin{aligned}
\sum_{k=0}^{k+1} H J_{k} & =\frac{1}{2}\left(H J_{k+2}-(1+5 h)\right)+H J_{k+1} \\
& =\frac{1}{2}\left(H J_{k+2}-(1+5 h)+2 H J_{k+1}\right) \\
& =\frac{1}{2}\left(H J_{k+3}-(1+5 h)\right) .
\end{aligned}
$$

3. Conclusion

The hyperbolic Jacobsthal-Lucas numbers with initial conditions $H J_{0}=2+h, H J_{1}=+5 h$ are defined by

$$
H J_{n}=J_{n}+h J_{n+1}
$$

where $h^{2}=1$.
In this paper, we give the hyperbolic Jacobsthal Lucas numbers and present some recurrence relations, Binet's formula, generating function and some special idetities for these numbers.

Acknowledgements

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

[1] A. F. Horadam, Jacobsthal represantation numbers, Fibonacci Quart., 34 (1996), 40-54.
[2] A. F. Horadam, Jacobsthal and Pell curves, Fibonacci Quart., 26 (1988), 79-83.
[3] A. F. Horadam, Jacobsthal representation polynomials, Fibonacci Quart., 35 (1997), 137-148.
[4] A. F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Quart., 3(3) (1965), 161-176.
[5] K. Atanassov, Remark on Jacobsthal numbers, Part 2. Notes Number Theory Discrete Math., 17(2) (2011), 37-39.
[6] K. Atanassov, Short remarks on Jacobsthal numbers, Notes Number Theory Discrete Math., 18(2) (2012), 63-64.
[7] M. C. Dikmen, Hyperbolic Jacobsthal numbers, Asian Res. J. Math., 4 (2019), 1-9.
[8] S. Tas, The Hyperbolic Quadrapell sequences, Eastern Anatolian J. Sci. VII(I) (2021), 25-29.
[9] M. A. Güngör, A. Cihan, On dual-hyperbolic numbers with generalized Fibonacci and Lucas numbers components, Fundamental J. Math. App., 2(2) (2019), 162-172
[10] A. P. Stakhov, Gazale formulas, a new class of the hyperbolic Fibonacci and Lucas functions, and the improved method of the 'Golden' Cryptograph, Academy of Trinitarism, 77(6567) (2006), 1-32.
[11] A. P. Stakhov, I. S. Rozin, Hyperbolic Fibonacci trigonometry, Rep. Ukr. Acad. Sci., 208 (1993), 9-14, [In Russian].
[12] A. P. Stakhov, B. Tkachenko, On a new class of hyperbolic functions, Chaos Solitons Fractals, 23 (2005), 379-389.
[13] F. Falcon, A. Plaza, The k-Fibonacci hyperbolic functions, Chaos Solitons Fractals, 38(2) (2008), 409-420.
[14] F. T. Aydın, Hyperbolic Fibonacci sequence, Univers. J. Math. Appl., 2(2) (2019), 59-64.
[15] S. Halıcı, On bicomplex Jacobsthal-Lucas numbers, J. Math. Sci. Model., 3(3) (2020), 139-143.
[16] H. Gargoubi, S. Kossentini, f-algebra structure on hyperbolic numbers, Adv. Appl. Clifford Algebras, 26(4) (2016), 1211-1233.
[17] A. E. Motter, A. F. Rosa, Hyperbolic calculus, Adv. App. Clifford Algebras, 8(1) (1998), 109-128.
[18] L. Barreira, L. H. Popescu, C. Valls, Hyperbolic sequences of linear operators and evolution maps, Milan J. Math., 84 (2016), 203-216.

