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Abstract

In this study, we define the hyperbolic Jacobsthal-Lucas numbers and we obtain recurrence
relations, Binet’s formula, generating function and the summation formulas for these
numbers.

1. Introduction and preliminaries

In this study, we introduce hyperbolic Jacobsthal-Lucas numbers and give some properties of them. Firstly, we present
some background information about hyperbolic numbers and Jacobsthal-Lucas numbers. One can see [1]-[8] for details.
Jacobsthal-Lucas sequence Jn is defined by the second-order recurence relation

Jn+2 = Jn+1 +2Jn

with initial values J0 = 2,J1 = 1. The first few terms of this sequence are given as follows:

2,1,5,7,17,31,65,127,257,511,1025,2047, ...

Binet’s formula and generating function of Jacobsthal-Lucas sequence are given by

Jn = 2n +(−1)n

and

∞

∑
n=0

Jnxn =
2− x2

1− x−2x2

respectively.
The set of hyperbolic numbers H can be described as

H = {z = x+hy : h /∈ R,h2 = 1,x,y ∈ R}.

Addition, substruction and multiplication of any two hyperbolic numbers z1 and z2 are defined by

z1± z2 = (x1 +hy1)± (x2 +hy2) = (x1± x2)+h(y1± y2),

z1× z2 = (x1 +hy1)× (x2 +hy2) = x1x2 + y1y2 +h(x1y2 + y1x2),
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and the division of two hyperbolic numbers are given by

z1

z2
=

x1 +hy1

x2 +hy2
=

(x1 +hy1)(x2−hy2)

(x2 +hy2)(x2−hy2)
=

x1x2 + y1y2

x2
2− y2

2
+h

x1y2 + y1x2

x2
2− y2

2
.

The hyperbolic conjugation of z = x+hy is defined by

z = x−hy.

For more information and properties related hyperbolic numbers, see [9]-[18].

2. Hyperbolic Jacobsthal-Lucas sequence

In [14], author presented hyperbolic Fibonacci sequence and examined its properties. In this study, we define hyperbolic
Jacobsthal-Lucas sequence and examined some of its properties.
The hyperbolic Jacobsthal-Lucas numbers are defined by

HJn = Jn +hJn+1

with initial conditions HJ0 = 2+ h, HJ1 = 1+ 5h where h2 = 1. Then the first few terms of hyperbolic Jacobsthal-Lucas
numbers are

2+h,1+5h,5+7h,7+17h,17+31h,31+65h,65+127h, ...,

It can be easily shown that

HJn = HJn−1 +2HJn−2.

In fact, by using the definition of the hyperbolic Jacobsthal-Lucas numbers, we have

HJn = Jn +hJn+1 = Jn−1 +2Jn−2 +h(Jn +2Jn−1)

= 2Jn−2 +h2Jn−1 + Jn−1 +hJn

= HJn−1 +2HJn−2.

Theorem 2.1. Let HJn be n− th hyperbolic Jacobsthal-Lucas number, then we obtain

lim
x→∞

HJn+1

HJn
= 2.

Proof. We have

lim
x→∞

Jn+1

Jn
= 2.

for the Jacobsthal-Lucas sequence Jn. Then using this value for the hyperbolic Jacobsthal-Lucas HJn, we get

lim
x→∞

HJn+1
HJn

= lim
x→∞

Jn+1+hJn+2
Jn+hJn+1

= lim
x→∞

Jn+1+h(Jn+1+2HJn)
Jn+hJn+1

= lim
x→∞

(
Jn+1

Jn )+h((
Jn+1

Jn )+2)

1+(h
Jn+1

Jn )

= 2+4h
1+2h = 2.

Theorem 2.2. The Binet formula for the hyperbolic Jacobsthal-Lucas numbers is given by

HJn = (1+2h)2n +(1−h)(−1)n. (2.1)

Proof. By using the Binet formula of the Jacobsthal-Lucas numbers

Jn = 2n +(−1)n,

we get

HJn = Jn +hJn+1

= 2n +(−1)n +h(2n+1 +(−1)n+1)

= (1+2h)2n +(1−h)(−1)n.
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Theorem 2.3. The generating function for the hyperbolic Jacobsthal-Lucas sequence is given by

∞

∑
n=0

HJnxn =
2+h+(1−4h)x

1− x−2x2 .

Proof. Let

g(x) =
∞

∑
n=0

HJnxn

be generating function of hyperbolic Jacobsthal-Lucas numbers. Then we have the following equations:

g(x) = HJ0 +HJ1x+HJ2x2 +HJ3x3 +HJ4x4 + ...

−xg(x) =−HJ0x−HJ1x2−HJ2x3−HJ3x4−HJ4x5− ...

−2x2g(x) =−2HJ0x2−2HJ1x3−2HJ2x4−2HJ3x5−2HJ4x6− ...

(1− x−2x2)g(x) = HJ0 +(HJ1−HJ0)x.

By rewriting the last equation, we get

g(x) =
2+4h+(1−4h)x

1− x−2x2

with HJ0 = 2+h, HJ1 = 1+5h.

Theorem 2.4. (Catalan’s identity) The following identitiy holds for all natural numbers n and m:

HJn+mHJn−m−HJ2
n = (−1+h)[(−2)n+m +(−2)n−m +(−2)n+1].

Proof. By using the formula (2.1), we obtain

HJn+mHJn−m−HJ2
n =

(
(1+2h)2n+m +(1−h)(−1)n+m)((1+2h)2n−m +(1−h)(−1)n−m)
−((1+2h)2n +(1−h)(−1)n)2

= ((5+4h)22n +(2−2h)(−1)2n +(−1+h)2n(−1)n[2m(−1)−m +2−m(−1)m])
−((5+4h)22n +(2−2h)(−1)2n +2(−1+h)2n(−1)n)

= (−1+h)[(−2)n+m +(−2)n−m +(−2)n+1].

Theorem 2.5. (d’Ocagne’s identity) The following identitiy holds for any integers n and m:

HJm+1HJn−HJmHJn+1 = 3(−1+h)[(−2)m(−1)n− (−2)n(−1)m].

Proof. By the Binet formula (2.1), we get

HJm+1HJn−HJmHJn+1 = ((1+2h)2m+1 +(1−h)(−1)m+1)((1+2h)2n +(1−h)(−1)n)

−((1+2h)2m +(1−h)(−1)m)((1+2h)2n+1 +(1−h)(−1)n+1)

= 3(−1+h)[(−2)m(−1)n− (−2)n(−1)m].

Theorem 2.6. (Gelin-Cesaro’s identity) The following identitiy holds for any integers n and m:

HJn+2HJn+1HJn−1HJn−2−HJ4
n =

9
8
(−1+h)(−2)n[(2)2n+1−13(1−h)(−2)n +4(1−h)].

Proof. Using

HJn = (1+2h)2n +(1−h)(−1)n,
HJn = (1+2h)[2n +(−1+h)(−1)n],

and by setting a = 2n,b = (−1+h)(−1)n we obtain following values:

1.HJn+2 = (1+2h)[4a+b]

2.HJn+1 = (1+2h)[2a−b]

3.HJn−1 = (1+2h)[ a
2 −b]
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4.HJn−2 = (1+2h)[ a
4 +b]

from the above values, we can easily calculate

HJn+2HJn+1HJn−−1HJn−2−HJ4
n = (1+2h)4[(8a2−2ab−b2)( a2

8 + ab
4 −b2)− (a4 +b4 +4a3b+6a2b2 +4ab3)]

= 9
8 (−1+h)(−2)n[(2)2n+1−13(1−h)(−2)n +4(1−h)].

Theorem 2.7. (Melham’s identity) The following identity holds for any integers n and m:

HJn+1HJn+2HJn+6−HJ3
n+3 = 9(1−h)(−2)n[2n+3 +10(1−h)(−1)n].

Proof. Using

HJn = (1+2h)2n +(1−h)(−1)n,
HJn = (1+2h)[2n +(−1+h)(−1)n],

and by setting a = 2n,b = (−1+h)(−1)n we obtain following values:

1.HJn+1 = (1+2h)[2a−b],

2.HJn+2 = (1+2h)[4a+b],

3.HJn+6 = (1+2h)[64a+b],

4.HJn+3 = (1+2h)[8a−b].

From the above values, we can easily calculate

HJn+1HJn+2HJn+6−HJ3
n+3 = (1+2h)3[(8a2−2ab−b2)(64a+b)− (8a−b)3]

= (1+2h)39ab[8a−10b]
= 9(1−h)(−2)n[2n+3 +10(1−h)(−1)n].

Theorem 2.8. For n≥ 0, we obtain

n

∑
k=0

HJk =
1
2
(HJn+2− (1+5h)).

Proof. We use the mathematical induction on n. For n = 0, we have

HJ0 =
1
2
[HJ2− (1+5h)] =

1
2
[5+7h−1−5h] = 2+h.

Now assume that it is true for n = k, namelyand by setting

k

∑
k=0

HJk =
1
2
(HJk+2− (1+5h)).

From the induction hypothesis, we obtain

k+1

∑
k=0

HJk =
1
2
(HJk+2− (1+5h))+HJk+1

=
1
2
(HJk+2− (1+5h)+2HJk+1)

=
1
2
(HJk+3− (1+5h)).
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3. Conclusion

The hyperbolic Jacobsthal-Lucas numbers with initial conditions HJ0 = 2+h,HJ1 =+5h are defined by

HJn = Jn +hJn+1

where h2 = 1.
In this paper, we give the hyperbolic Jacobsthal Lucas numbers and present some recurrence relations, Binet’s formula,
generating function and some special idetities for these numbers.
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