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Lim-3 Durumundaki 4. Mertebe Operatorlerin Dissipatif Genislemeleri
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Ozet

Bu ¢aligmada, Lim-3 durumundaki skaler 4. mertebeden difereasiyel operatorlerinin maksimal dissipatif, kendine es ve diger

genislemeleri verilmistir.
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Dissipative Extensions of Fourth Order Differential Operators in the Lim -3 Case?

Abstract

In this article, we give a description of all maximal dissipative, self adjoint and other extensions of scalar fourth order differential

operators in the lim 3 case.
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1. Introduction

The theory of extensions of symmetric operators developed orginally by J. Von Neumann [1].
The problem on the description of all self adjoint extensions of a symmetric operator in terms of abstract
boundary conditions was put forward for the first time in Calkin [2]. Later, Rofe- Beketov [3] described
self adjoint extensions of a symmetric operator in terms of abstract boundary conditions with aid of linear
relations. Bruk [4] and Kochubei [5] are introduced the notion of a space of boundary values. They
described all maximal dissipative, acretive, self adjoint extensions of symmetric operators. For a more
comprehensive discussion of extension theory of symmetric operators, the reader is referred to [6].

A description of self adjoint extensions of a second order operator on an infinite interval was
obtained by Fulton [7] and Krein [8]. For a scalar fourth order equation and two term differential
expressions of arbitrary even order, the same question was investigated by Khol'kin [9], Mirzoev [10].
Gorbachuk [11] obtained a description of self adjoint extensions of Sturm Liouville operators with an
operator potential in the absolutely indeterminate case. In the case when the deficiency indices take
indeterminate values, a description of self adjoint extensions of differential operators was given in the
works of Allahverdiev [12], Guseinov and Pashaev [13], Maksudov and Allahverdiev [14], Malamud and
Mogilevsky [15], Mogilevsky [16].

In this paper, a space of boundary value is constructed for scalar fourth order differential
operators in the Lim-3 case. We describe all maximal dissipative, acretive, self adjoint and other

extensions in terms of boundary conditions.

2. Extensions of Fourth Order Differential Operators in the Lim-3 Case

Let us consider the differential expression

I(y)=y®+q(x)y, 0<x<to0, (2.1)
where q(X) is a real continuous function in [0,00).
We denote by L, the closure of the minimal operator (see [17]) generated by (2.1) and by Dy its
domain. Further, we denote by the set of all functions y(x) from L,(0,00) whose first three derivatives are
locally absolutely continuous in [0,00) and I(y)€ L,(0,00); D is the domain of the maximal operator L, and
L=L; (see [17]).
Assume that g(x) be such that the operator L, has defect index (3,3). Let v4(X),v2(x),vs(X) denote
the solutions of 1(y)=0 satisfying the initial conditions
v1(0)=1,v1'(0)=0,v,"(0)=0,v,""(0)=0,
V2(0)=0,v,'(0)=1,v,"(0)=0,v,""(0)=0,
v3(0)=0,v5'(0)=0,v5"(0)=1,v5""(0)=0,

v1(X),V2(X),v3(x) are linearly independent and their Wronskian equals one. Since L, has defect index

(3,3), v1(X),V2(X),V3(X)€ L(0,0).

We denote by I'1,I'; the linear maps from D to C* defined by the formula

f(0) f'(0)
Lif=( £0) | Lf=( f'(0) ). (22)
[f, V3] [f, v2]e

where
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[y, ] =[y"' (x)z(x)-y(x)z"" (x)]-[y"(x)Z'(x)-y'(x)2"(x)] (0<x<0).
Lemma 1. For arbitrary y, z €D

(Ly, 2)2:— (¥, Lz)2 = (I'1y, I'22)¢s — (I'2y, T'12) ¢ -
Proof. For every y,zeD we have Green's formula

(Ly, 2)12— (¥, L2)12=[y, Z] o~ [y, Z]o.

Then
(I'1y, I'22)cs— T2y, I'12)=y(0)2"'(0)-z(0)y""(0) +y"(0)z'(0)-z"(0)y'(0) +[¥,V2]w [Z, V3] -[Z V2]w
[¥, V3] -
We know that every y, zeD

[¥, V2] [Z, V3] oo -[Z, V2] [Y) V3o =Y, Z]oo(sEE [9]).
Hence

Iy, I'22)c — T2y, T12) ¢ =[Y, Z] - [y, Z]o.

Then we have

(Ly, 2)1>— (¥, Lz)> = (I'1y, T'22)cs — (I'2y, T'12)¢s -
Lemma 2. For any complex numbers 0,,0.1,02,03,B0,B1, there is a function y €D satisfying

¥(0)=ao, y'(0)=as, y"(0)=az, y"'(0)=as, (2.3)
[y, V2] =Po, [V, V3]0 =P1-
Proof. Let f be an arbitrary element of L(0,00) satisfying
(f, v2)r2 =Botoz, (f, v3)12=P1-0a. (2.4)
There is such an f, even among the linear combinations of v4,v,, and vs. If we set f=c;v;+C,Vv,+C3V3 then
conditions (2.4) are a system of equations in the constants c4,C,,c; whose determinant is the Gram
determinant of the linearly independent functions v,,v,,v3 and is therefore nonzero. Let y(x) denote the
soulution of 1(y)=f satisfying the initial conditions y(0)=a,, y'(0)=a1, y"(0)=a,, y""(0)=03. We claim that
y(X) is the desired element. Applying Green' formula to y(x) and v; we obtain
f, Uj)Lzz(l(}’),Vj)Lzz[}’» vj]oo'[y' v]’]O'i =23

But I(v;)=0 (j=2.3). Since y(0)=ao, y'(0)=a4, y"(0)=02, y"'(0)=as3, we have

_(—ayj=2ise
Ly, U,-]o—{ oy, j =3 ise

Therefore,
(f,v2)e=[y, v2] s,
(f,v3) =[y, Va]w -0a.
Hence and from the conditions (2.4), we have
[y, v2]o= Bo, [¥, V3]0o= B
We recall that a triple (H, I'y, I';) is called a space of boundary values of a closed symmetric operator A

on a Hilbert space H if I'; and I', are linear maps from D (4*) to H with equal deficiency numbers and

such that:
i) forevery f, g € D(4"),
A, -, A ) y="1f, T29)n-I2f, T19)n;
i) any F,,F,€H there is a vector feD(A) such that I'yf=F,, I',f=F, ( [5], [18] ).
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Theorem 1. The triple (C3,I';,I';) defined by (2.2) is a boundary spaces of the operator L.
Proof. First condition of the definition of a space of boundary value follows from Lemma 1 and

second condition follows from Lemma 2.

Corollary 1. For any contraction K in C? the restriction of the operator L to the set of functions yeD
satisfying either

(K-DIyy+H(K+DI,y=0 (2.5)
or

(K-DI'yy-i(K+DI',y=0 (2.6)
is respectively the maximal dissipative and accretive extension of the operator L,. Conversely, every
maximal dissipative (accretive) extension of the operator L, is the restriction of L to the set of
functions yeD satisfying (2.5) ( (2.6) ), and the contraction K is uniquely determined by the extension.
The maximal symmetric extensions of L, in L,(0,00) are described by conditions (2.5) ( (2.6) ), in

which K is an isometry. These conditions define selfadjoint extensions if K is unitary.
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