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Abstract 

 

Cartesian grids constitute a special branch in unstructured grid technology. They use specially designed algorithms to generate 

automatic grids for complex geometries and to simulate flows around such geometries regardless of the body shape and number of 

bodies. Cartesian grids are generated by constructing a quadtree based data structure for the purpose of connecting the Cartesian 

cells to each other. A “hands-off”, Cartesian grid generator based Euler solution called GeULER is implemented in object-oriented 

FORTRAN programming language. In this study, implementations of generated two-dimensional adaptive refinement/coarsening 

scheme codes are appended to the developed compressible flow solver by using special Cartesian-based algorithms, namely cut-cell 

adaptation and curvature adaptation around BOEING TR-1322 multi-element airfoil. A subsonic flow at free stream Mach number 

of 0.11 around the airfoil is tested to predict pressure distributions around it and Mach contours of the flow are depicted by using the 

developed GeULER code. 
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BOEING TR-1322 Çoklu-elemanlı Kanat Profili Çevresinde Sıkıştırılabilir Akış 

için Çözüm Uyarlamalı Kartezyen Ağ Temelli Euler Çözümü 

 
Öz 

 

Kartezyen ağlar yapısal olmayan ağ teknolojisi içinde özel bir dal oluşturmaktadır. Karmaşık geometriler için otomatik ağ 

oluşturmak ve bu gibi geometriler etrafında akışın gövde şeklinden ve sayısından bağımsız şekilde benzetim kurmak için özellikle 

tasarlanmış algoritmalar kullanırlar. Kartezyen ağlar, Kartezyen hücrelerinin birbirlerine bağlanmalarını sağlamak için oluşturulan 

dörtlü ağaç temelli veri yapısı kullanarak üretilmiştir. GeULER isimli, kullanıcı müdahalesine gerek olmayan, nesne tabanlı 

FORTRAN programlama dilinde Kartezyen ağ üreticisi temelli Euler çözümü uygulanmıştır. Bu çalışmada, geliştirilen 

sıkıştırılabilir akış çözücüsüne, BOEING TR-1322 çoklu-elemanlı kanat profili çevresinde kesik hücre uyarlaması ve eğri 

uyarlaması gibi özel Kartezyen temelli algoritmalar kullanılarak iki-boyutlu uyarlanabilir geliştirme/genişleme şema kodları ilave 

edilmiştir. Kanat profili üzerinde, 0.11 serbest akım Mach sayısında, ses altı akışta kanat çevresindeki basınç dağılımının tahmini 

için test edilmiş ve geliştirilen GeULER kodu kullanılarak akışın Mach konturları tasvir edilmiştir. 
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1. Introduction 

The multi-element BOEING Model TR-1332 airfoil test case is selected for this study, because 

aircraft industry mainly focuses its attention on the multi-element airfoils and their improvements [1]. The 

flow field contains more detailed and more complex flow phenomena such as wakes, mixing layers in 

comparison with single element airfoil. Unfortunately, only a few multi-element airfoils such as the 

current test case BOEING Model TR-1332, British L1T2 and 30P30N airfoils are available to public [2].  

The selected test case has very low Reynolds number that can be approved as Euler solution but has also 

very low Mach number, critically high viscous interaction. At the end of this study, it will be seen that 

current Euler solver is capable of being employed at the bound of incompressible flow. The main reason 

for selecting this study is that corresponding airfoil is a four element, highly challenging construction. 

Although the airfoil is suggested as a CFD validation study in the AGARD Advisory Report [3], it is not 

studied as a CFD validation test case in literature till current study so that verification cannot be run for 

BOEING Model TR-1332 multi-element airfoil. 

As shown in Figure 1.a, BOEING Model TR-1332 airfoil has four elements: a slat, a main foil 

and double-slotted flap. The surface coordinates and experimental data for the test case are obtained from 

Case A-13 in the AGARD Advisory Report as shown in Figure 1.b [3]. This case is actually a turbulent 

flow but the current treatment concentrates only on the solution of pressure distribution around the airfoil. 

 

 
Figure 1. (a) Geometry of BOEING model TR-1332, (b) pressure coefficient distribution on BOEING model TR-1332 [3]. 

 

A quadtree Cartesian grid generator is constructed using special Cartesian algorithms and object-

oriented programming of FORTRAN [4]. A Cartesian grid based, finite volume solver is developed to 

produce accurate solutions of inviscid flow around two-dimensional airfoil. The computational domain 

around the multi-element airfoil is first discretized into a set of elemental cells. Box adaptation around the 

four-element airfoil geometry with 2 cycles of cut-cell adaptation and 3 cycles of curvature adaptation is 

shown using the developed GeULER (cartesian-Grid-generator-with-eULER-solver) code in Figure 2. 

Details of these adaptation types can be found in author’s previous study [5]. 
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Figure 2. (a) Box adapted (b) Solution adapted grid around BOEING Model TR-1332 airfoil by GeULER code . 

 

2. Materials and Methods 

2.1 Governing equations 

In this section, the integral forms of two-dimensional Euler equations are presented. Considering 

an arbitrary control cell the conservative integral form of Euler equations is generated using Gauss 

divergence theorem as follows: 

∂
∂𝑡
�𝑸d𝐴
𝐴

+ �(𝐅 ∙ 𝐧)d𝑆 =
𝑆

0                                                                      (1) 

where 𝐴 is the cell area, F is the inviscid flux vector, n is the normal vector, S is perimeter of the contour 

surrounding 𝐴. Q represents the vector of any conserved variable such as density, ρ, x- and y-velocity 

components, u and v, respectively or total energy, E. A non-dimensionalisation procedure is employed (i) 

to simplify equations described above, (ii) to appreciate the dominant flow physics and more importantly, 

(iii) to prevent lack of equalities in scale of dependent variables, hence, the numerical errors resulting 

from them [6]. 

 

2.2 Spatial discretization 

Flow variables computed from Euler equations are stored at the centroids of each cell assuming 

that the variables of each cell do not vary throughout the cell. Semi-discrete form of Eq. (1) can be written 

as the sum of the fluxes through each cell as follows: 

𝐴
𝜕𝑸
𝜕𝑡

+ �(𝐅 ∙ 𝐧)∆𝑆
4

f=1

= 0                                                                         (2) 

It is assumed that convective fluxes are constant on surfaces and time stepping of the conserved 

variables on faces is inherited from the one calculated on centroid of the area. The residuals, Res, of each 

cell can be defined in the following equation: 
𝜕𝑸
𝜕𝑡

= −
1
𝐴
𝑅𝑅𝑅(𝑸)                                                                               (3) 

 

2.3 Temporal discretization 

(a) (b) 
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Following spatial discretization, the time derivatives of the conserved variables are now 

discretized to obtain almost-zero residuals by iteration. Left hand side of Eq. (3) is discretized in time (Δt) 

as the finite difference of conserved variable between step number m+1 and step number m: 

𝜕𝑸
𝜕𝑡

=
𝑸𝑚+1 − 𝑸𝑚

∆𝑡
                                                                             (4) 

In the solver, explicit time stepping scheme is used and Taylor series expansion for this second 

order 𝑂(𝑅𝑅𝑅2) scheme is given by neglecting higher order terms: 

𝑅𝑅𝑅(𝑸𝑚+1) = 𝑅𝑅𝑅(𝑸𝑚) +
𝜕𝑅𝑅𝑅(𝑸𝑚)

𝜕𝑸
(𝑸𝑚+1 − 𝑸𝑚) + 𝑂(𝑅𝑅𝑅2)                                 (5) 

In the integration of the flow solver, n-stage time stepping scheme using Runge Kutta (RK) 

method with the first order accuracy is used, which is given as [7]:  

𝑸(0) = 𝑸𝑚;  𝑸(1) = 𝑸(0) − 𝐶𝐶𝐶
𝛼1Δ𝑡
𝐴

𝑅𝑅𝑅�𝑸(0)�;  𝑸(2) = 𝑸(0) − 𝐶𝐶𝐶
𝛼2Δ𝑡
𝐴

𝑅𝑅𝑅�𝑸(1)� 

            ....       

𝑸(𝑚+1) = 𝑸(𝑛) = 𝑸(0) − 𝐶𝐶𝐶
𝛼𝑛Δ𝑡
𝐴

𝑅𝑅𝑅�𝑸(𝑛−1)�                                             (6) 

where n is the RK stage number, CFL is the Courant-Friedrichs-Levy number and α’s are the stage 

coefficients. 
 

2.4 CFL cut-back procedure 

 Coirier and Powell proposed a cut-back procedure for CFL number used in time stepping 

scheme to avoid getting unphysical classification of the initial state. CFL cut-back procedure is achieved 

by the following equations [8]: 

𝐶𝐶𝐶𝑐𝑐 = min�𝐶𝐶𝐶,𝐶𝐶𝐶� � ;  𝐶𝐶𝐶� =
𝜖𝑡

max (𝜖𝑝, 𝜖𝜌)
                                                 (7) 

where ϵt is a scalar threshold value that is suggested to have a value in the order of 10-2. 𝜖𝑝 and  𝜖𝜌 are 

change of the normalized pressure and density through a computational cell, respectively. CFLcb is the 

updated CFL number after the procedure. This step is not obligatory in three-dimensional computations 

but it is necessary in two-dimensional ones and needed for only 10-20 prior iterations. 

 

2.5 Solution adaptation 

During execution of the flow solver, Cartesian grid based structure makes it easier to locally 

refine or coarsen grids on the critical regions such as shock-based discontinuities, stagnation points, shear 

layers, etc. This phenomenon is called as solution adaptation which increases the accuracy of the results. 

Two characteristic lengths, ς, of the control cell are used to gain possession of changing conservative 

variables from one cell to its neighboring cells by: 

𝜍𝐷,𝑥 = |∇●𝑢| 𝐴0.5;  𝜍𝐷,𝑦 = |∇●𝑣| 𝐴0.5;  𝜍𝐶,𝑥 = |∇ × 𝑢| 𝐴0.5;  𝜍𝐶,𝑦 = |∇ × 𝑣| 𝐴0.5           (8) 

where subscripts D and C stand for divergence and curl of the velocity vectors, respectively. The standard 

deviation of these two characteristic lengths, are calculated for entire solution domain by: 

𝜎𝐷 =
1
𝑁
�𝜍𝐷,𝑥

2 + 𝜍𝐷,𝑦
2;    

𝑁

𝑖=1

𝜎𝐶 =
1
𝑁
�𝜍𝐶,𝑥

2 + 𝜍𝐶,𝑦
2                                        (9)

𝑁

𝑖=1
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where N is the total number of solution domain cells. Cells are flagged for refinement or coarsening using 

the threshold values 𝑡𝑟 and 𝑡𝑐 for refinement and coarsening respectively, following the criteria below: 

if (𝜍𝐷,𝑥 + 𝜍𝐷,𝑦 >  𝑡𝑟𝜎𝐷)  and (𝜍𝐶,𝑥 + 𝜍𝐶,𝑦 >  𝑡𝑟𝜎𝐶) refine                                 (10) 

if (𝜍𝐷,𝑥 + 𝜍𝐷,𝑦 <  𝑡𝑐𝜎𝐷)   and (𝜍𝐶,𝑥 + 𝜍𝐶,𝑦 <  𝑡𝑐𝜎𝐶) coarsen                              (11) 

𝑡𝑟 is taken as 1 and 𝑡𝑐 is taken as 0.1 [9]. 

 

3. Results 

Employing a saw-tooth cycle, the convergence has taken place in seven multi-grid cycle 

numbers (Figure 3). Validation of the numerical results is accomplished by comparison with the 

experimentally obtained data from the experimental study around BOEING Model TR-1332 airfoil [3]. 

 

 
Figure 3. Subsonic test case of BOEING Model TR-1332 airfoil: (a) Convergence history and (b) residuals versus CPU time. 

 

Employing the solution adaptation techniques, pressure coefficient distribution, cp, around the 

model obtained by using Liou’s Advection Upstream Splitting Method (AUSM) and Roe’s approximate 

Riemann solver and Mach contours of the flow are depicted in Figures 4, 5 and 6, respectively, by using 

the developed GeULER code [6]. It should be noted that the difference between the experimental pressure 

lines and the results of GeULER due to the negligence of viscous terms and Cartesian grid solutions are 

known to suffer from staircase phenomenon [10]. 

 

(a) 

(b) 
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Figure 4. GeULER results of pressure coefficient (cp) distributions along the surface of four element BOEING Model TR-1332 

airfoil by using AUSM with (a) one solution refinement (SR) (b) two SR, (c) three SR; M∞= 0.11, 𝜃 = 15.0º. 
 

In both GeULER solutions of AUSM and Roe’s approximate Riemann solutions, as seen, in 

respective order, in Figures 4 and 5 while the solution refinement level increases,  cp distributions are seen 

to approach near to the experimental data. GeULER simulations of Roe’s approximate Riemann solver 

solution have better agreement with the experimental data than AUSM solutions, except for the slat of the 

multi-element airfoil. 

 

(a) 

(b) 

(c) 
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Figure 5. GeULER results of pressure coefficient (cp) distributions along the surface of four element BOEING Model TR-1332 

airfoil by using Roe's Riemann solver with (a) one solution refinement (SR) (b) two SR, (c) three SR; M∞= 0.11, 𝜃 = 15.0º. 

(a) 

(b) 

(c) 
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Figure 6. GeULER results of Mach number contours around BOEING Model TR-1332 by AUSM with one SR. 

 

 
Figure 7. GeULER results of Mach number contours around BOEING Model TR-1332 by AUSM with two SR. 
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Figure 8. GeULER results of Mach number contours around BOEING Model TR-1332 by AUSM with three SR. 

 

 
Figure 9. GeULER results of Mach number contours around BOEING Model TR-1332 by Roe’s Riemann solver with one SR. 
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Figure 10. GeULER results of Mach number contours around BOEING Model TR-1332 by Roe’s Riemann solver with two SR. 

 

 
Figure 11. GeULER results of Mach number contours around BOEING Model TR-1332 by Roe’s Riemann solver with three SR. 
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The difference between the pressure distribution of the experimental data and both solutions 

obtained over the slat is resulting because of the weak capture of confluent boundary layer between the 

slat and the main element of the airfoil [11]. Figures 6, 7 and 8 show the Mach contour distributions 

obtained from the AUSM solution scheme with one, two and three solution refinement levels around the 

BOEING Model TR-1332 airfoil, respectively. Figures 9, 10 and 11 show the Mach contour distributions 

obtained from the Roe’s Riemann solution scheme with one, two and three solution refinement levels 

around the BOEING Model TR-1332 airfoil, respectively. It is seen that three solution refinement of 

Roe’s Riemann solver gives the smoothest depiction among all. 

 

4. Discussion and Conclusion 
A subsonic flow at free stream Mach number of 0.11 around multi-element BOEING Model TR-

1332 airfoil is tested to predict pressure distributions around it and Mach contours of the flow are 

depicted by using the developed GeULER code with one, two and three solution refinement levels. Three 

solution refinements give the best pressure distribution results and smoothest depiction with respect to 

experimental data. The difference between the pressure distribution of the experimental data and solutions 

obtained over the airfoil is resulting partly because of the fact that the solver employs only inviscid terms 

of the governing flow equations (i.e. Euler Solver). Another reason for this difference is the singularity of 

the compressible flow based AUSM and Roe’s Riemann solvers for the current nearly-incompressible 

flow test case. Although the Mach number is at the bound of incompressible flow, necessary observations 

are demonstrated. Firstly, the positive effect of the solution refinement increment on the accuracy of the 

solution schemes with respect to experimental data is clearly seen in Figure 4 and 5. Secondly, as Mach 

contours show through Figures 6 to 11, the flow decreases speed from M=0.19 to 0.11 over the upper 

surface while the flow increases speed from M=0.02 to 0.10 over the lower surface. In other words, the 

speed of the flow on the upper surface is about ten times higher than the flow on the lower surface near 

the leading edge of the main airfoil. This high-lift behavior of the four-element airfoil is captured well 

with GeULER code. As a result, in current study an original GeULER mesh generator and flow solver 

program using object-oriented FORTRAN programming language is designed, coded and executed. 

Performance of the program is justified via a multi-element airfoil test case in two-dimensions and results 

are compared with experimental data. All results reveal the effectiveness of the program and suffice in 

accuracy and convergence. 
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