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Abstract 

 

We define product matrix as  ( )   ( ) ( ) , where  ( ) is an adjacency matrix and   ( ) is a diagonal matrix of vertex 

degrees of a graph  . In this paper, some relations among the spectral radius of product matrix and the largest eigenvalues of graph 

matrices are obtained. We also give numerical results for them. 
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Graf Matrisleri ve Çarpım Matrisinin En Büyük Öz Değerleri  

Arasında Bazı Bağıntılar 
 

Öz 

 

 ( ) ve  ( ) sırasıyla bir   grafının komşuluk matrisi ve nokta derecelerinin bir köşegen matrisi olmak üzere  ( )   ( ) ( ) 

matrisini tanımlarız. Bu makalede bu çarpım matrisinin spektral yarıçapı ile graf matrislerinin en büyük öz değerleri arasında bazı 

bağıntılar elde edilmiştir. Ayrıca nümerik sonuçlar da verilmiştir.  
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1. Introduction 

Let        (   ) be a simple connected graph with n vertices and   edges. Let   be the 

degree of vertex  . A degree sequence is a monotonic non-increasing sequence of the vertex degrees of its 

graph vertices and it is denoted by [          ]. A graph which the degrees of all vertices are equal is 

called a regular graph. If       , graph is called as complete graph. Let    ( ) and    ( ) be 

the maximum degree and the minimum degree of the vertices of  , respectively. The eigenvalues of   are 

the eigenvalues of the adjacency matrix  ( ) of  , denoted as   ( )    ( )        ( )    ( ). 

The Laplacian matrix of   is  ( )   ( )   ( ), where  ( )      (          ) is the diagonal 

matrix of vertex degrees of  . It is well known that  ( ) is positive semidefinite matrix. That is, all its 

eigenvalues are nonnegative. Hence, the eigenvalues of  ( ) are denoted as   ( )    ( )    

    ( )    ( )   . Another graph matrix is called the signless Laplacian and shown that  ( )  

 ( )   ( ). The eigenvalues of the signless Laplacian of   are denoted as   ( )    ( )    

    ( )    ( ). Again, it is also known that  ( ) and  ( ) are irreducible nonnegative matrix. 

Therefore the largest eigenvalues of  ( ) and  ( ) are simple eigenvalue according to Perron-Frobenius 

Theorem. The least eigenvalue of the signless Laplacian of a connected graph is equal to   if and only if 

the graph is bipartite. 

There are too many results related to bounds (upper and lower) for the eigenvalues of graph 

matrices, see [             ]. Also, there are some results about the relations between them. 

Some of these results are given as below. 

In [ ], it is shown that 

                                                                                                                                             (1) 

the equality holds if and only if   is a bipartite graph. In [  ], it is shown that 

                       (2) 

the equality holds if and only if   is a bipartite graph. One of the conjectures which is given in [  ]  has 

been proved in [  ] as 

                                                                                                                                                   (3) 

 A similar study have been done in [ ]. The conjecture stating that 

  √                          (4) 

has been proved for    . In [  ], it is obtained that 

  
      

    
      

                  (5) 

for any        . 

In this context, we define product matrix of a graph   such that  ( )   ( ) ( ). Then, we get 

 ( )  (   ) where 
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    {
                     

                    
                                  (6) 

By induction, one can see that (   ( ))
   

  . Hence,  ( ) is irreducible matrix. Since  ( ) is also 

a nonnegative matrix (but it is not symmetric), the largest eigenvalue (spectral radius) of   is a simple 

eigenvalue and it is maximal in modulus among all the other eigenvalues. Let's denote the spectral radius 

of  ( ) as | |. 

In this paper, we present some relations between the | | and the largest eigenvalues of graph 

matrices (Adjacency, Laplacian, Signless Laplacian). Also, we give some examples to show the 

numerical results of these relations. For the graph samples, we use Maple11 and we compare our results 

on more than     graphs. 

 

2. Main Results 

Theorem 1.[  ] If G is  -regular , then   is an eigenvalue of  . Its eigenspace is spanned by a vector 

which all entries are one. Further,   ( ) equals to  . 

Theorem 2. [  ] Let   and   be average degree and maximum degree of the graph  , respectively. Then 

    ( )                       (7) 

Moreover     ( ) if and only if   is regular graph. For connected graph  ,     ( ) if and only if   

is a regular graph. 

Theorem 3. Let   be a simple, connected graph. Then, 

   √| |                    (8) 

where    , | | are the spectral radius of  ( ) and  ( ); respectively. Moreover the equality holds in (8) if 

  is a regular graph. 

 

Proof. First, assume that   be a non-regular graph. Maximum absolute column sum norm of  ( )  

(   ) is 

‖ ‖          {∑ {|   |           } }  

  

               
     

{  }                   (9) 

and maximum absolute column sum norm of  ( )  (   ) is 

‖ ‖          {∑ {|   |            } }  

                   {∑ {             } }                                                                                                    (10) 

                  {  
 }  

         {        {  }}
 
  

Let           {  }. On the other hand we have 
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   ‖ ‖                                  (11) 

and 

| |  ‖ ‖                    (12) 

Then   
  is also lower bound for    from (11),  But | |     {  }. Hence, we get 

  
  | |  

i.e. 

   √| |  

For equality in (8) let  be a  -regular graph. Then we have  ( )    ( ) from the definition of 

matrices. It is easy to see that    √| | from Theorem 1. 

Conversely, assume that equality in (8) holds. Then all inequalities must be equalities. From equalities in 

(11) and (12) we get 

   √| |     

Hence   must be regular graph from Theorem 2                                                 

 

Theorem 4. [ ] Let   be a graph with at least one edge and the maximum degree  . Then 

 
 
                    (13) 

With equality if and only if there exists a vertex being adjacent to all other vertices in  . 

 

Theorem 5. Let   be a graph on n vertices. Then 

     √| |                (14) 

with equality if and only if   is a complete graph. 

 

Proof. By inequality (12), we have 

| |                      (15) 

i.e. 

√| |         

                                             (By (  ))              (16) 

 

Assume that the equality in (14) holds. Then all the inequalities in the above must be equalities. 

From the equality in (16) and Theorem 4,   must contain at least one vertex which is adjacent all other 

vertices. On the other hand, we get that  must be a regular graph from the equality in (15) and Theorem 

2. Hence, from both arguments we get that   is a complete graph. 
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Conversely, assume that   is a complete graph. Since each vertex is adjacent to other vertices, 

the condition in Theorem 4 holds. Hence we get 

       √| |                                              

 

Lemma 1. [  ] Let     and     be given. There is a matrix norm ‖ ‖ such that  ( )  ‖ ‖  

 ( )   , where  ( ) is the spectral radius of matrix  . 

 

Theorem 6. Let   be a simple, connected graph and   , | | be the largest eigenvalues of  ( ) and  ( ), 

respectively. Then 

 

   √
| |

‖ ( )‖
                (17) 

Proof. From Lemma 1, we see easily that 

‖ ‖    
 ( )                 (18) 

Since  ( )   ( ) ( ), we have 

 

‖ ( )‖  ‖ ( ) ( )‖  

                 ( ) ( )  

and we get 

| |  ‖ ( )‖    
  ‖ ( )‖  

 

i.e. 

   √
| |

‖ ( )‖
  

from (18).                                                        

 

Remark 1. In Theorem 6, the matrix norm is any norm. The inequality in (17), if we take maximum 

absolute column or row sum norm, we have 

   √
| |

 
                (19) 

such that               . If we apply Euclide norm in (17), we have 

   
√| |

√∑   
  

İ

 
                (20) 
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APPENDIX 

 

Some examples of graphs are examined and their eigenvalues with two decimal are given in the 

following list. 

 

Tablo 1. 

      Degree Sequence             √   

     [     ] 1.41 2.00 3.00 3.00 1.41 

     [     ]                          

     [       ] 1.73 3.00 4.00 4.00 1.73 

     [       ]                          

     [       ]                          

     [       ]                          

     [         ]                          

     [         ]                          

     [         ]                          

                   [         ]                          

     [         ]                           

     [         ]                           

      [         ]                           

     [           ]                          

     [           ]                          

     [           ]                          

     [           ]                           

      [           ]                           

      [           ]                           

      [           ]                            

     [             ]                          

     [             ]                          

     [             ]                          

     [             ]                          

      [             ]                           

      [             ]                            

      [             ]                            

      [             ]                            

                                                                       [               ]                          

 

     Degree Sequence             √   

     [               ]                          

     [               ]                          

      [               ]                          

      [               ]                            

      [               ]                            

      [               ]                            

     [                 ]                          
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     [                 ]                          

      [                 ]                          

      [                 ]                          

      [                 ]                            

      [                 ]                            

      [                 ]                            

      [                 ]                            

      [                 ]                            

      [                 ]                            

      [                   ]                          

       [                   ]                          

       [                   ]                          

       [                   ]                           

       [                   ]                            

       [                   ]                            

       [                   ]                            

       [                   ]                            

       [                   ]                             

       [                   ]                             

       [                   ]                             

       [                   ]                             

       [                   ]                             

 

MAPLE CODE  

 

We describe below some Maple –Code which we use to verify some statements on some sample 

graphs. We use the mathematical software Maple 11 by Maplesoft. The (standard) commands for graphs 

are in a package called “networks” and the commands for linear algebra are in a package called “linalg”. 

Hence, one should include these two packages : 

with(linalg);with(networks); 

The command Adjacency Matrix(G) compute the adjacency matrix of a graph G. There is no 

command for the Laplacian or the signless Laplacian  in Maple. So, we have defined the Laplacian matrix 

and the signless Laplacian matrix by the following procedure : 

 

          ( )                

                  ( )   

                [            ](       (        ))   

         (     )   

                       

 [   ]     ( [   ]       )   
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          (   )  

           (   )                 (   )   

           

                  (   )  

           (   )                 (   )   

           

 

We have also defined product matrix of a graph G as below : 

 

              ( )  

               (               (  )     (  ))    

           

 

We have used two packages “with(RandomGraphs)” and “with(GraphTheory)” to examine 

random graphs.  

 

              (               )   

     (         (               (   )))   

     (         (        (  )))   

     (         (    (  )))   

     (         (             ( )))   
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