
268

DOI: 10.17954/amj.2016.xx

Original Article / Özgün Araştırma Akdeniz Medical Journal / Akdeniz Tıp Dergisi

Akd Med J / Akd Tıp D / 2021; 7(2):268-276

DOI: 10.53394/akd.959358    

Hasan Fatih ÇAY, Mehmet Ziya FIRAT, Cahit KAÇAR

Comparison of  Methods Dealing with Missing Data in a 
Longitudinal Rheumatologic Study
Boylamsal Bir Romatoloji Çalışmasında Kayıp Verilerin 
Üstesinden Gelen Yöntemlerin Karşılaştırılması

1Antalya Education and Research Hospital, Physical Medicine Rehabilitation and Rheumatology Department, 
 Antalya, Turkey
2Akdeniz University, Faculty of  Agriculture, Department of  Animal Science, Biometry and Genetics Unit, 
 Antalya, Turkey
3Akdeniz University, Faculty of  Medicine, Physical Medicine Rehabilitation and Rheumatology Department, 
 Antalya, Turkey

Received \ Geliş tarihi : 21.05.2020
Accepted \ Kabul tarihi : 07.08.2020
Online published : 12.07.2021
Elektronik yayın tarihi

ABSTRACT
Missing data are unavoidable in longitudinal studies and can lead toserious problems, such as  loss 
of  power and biased estimates, which should be solved in the statistical analysis of  clinical studies. In 
this paper, three different techniques for handling missing data are shown using an example from a 
rheumatologic study. It is also shown how sensitive the conclusions of  the study can be in terms of  how 
the incomplete data are analyzed. The missing data process is studied in the framework of  longitudinal 
data. The common approaches to handling missing longitudinal clinical trial data because of  dropout 
are complete case (CC) and last observation carried forward (LOCF) analyses. These methods, while 
intuitively appealing, require tough assumptions to reach valid statistical conclusions. A relatively new 
and up to date statistical method for analyzing data with incomplete repeated measures is “likelihood-
based ignorable method” which has less constraints and fewer tough assumptions than those required 
for CC and LOCF. We apply these three methods to data set of  a rheumatologic trial comparing 
disease groups in terms of  the joint pain scores using a mixed model. No significant differences were 
found between the methods of  analysis. It can be concluded that attention to the mechanisms of  
missing data should be very important part of  the analysis of  rheumatologic data.
Keywords: Last observation carried forward, Complete case analysis, Longitudinal data, 
Rheumatology, Missing data process, Mixed models

ÖZ
Boylamsal çalışmalarda eksik veriler kaçınılmazdır ve klinik çalışmaların istatistiksel analizinde 
çözülmeleri gereken yanlı tahminler ve güç kaybı gibi ciddi sorunlara yol açabilirler. Bu makalede, 
romatolojik bir çalışmadan alınan örnek kullanılarak eksik verilerin üstesinden gelen üç farklı 
teknik gösterilmiştir. Ayrıca çalışmanın sonuçlarının, eksik verilerin analiz edilme şekli açısından 
ne kadar hassas olabileceği gösterilmiştir. Eksik veri süreci boylamsal veriler için incelenmiştir. 
Ayrılmalar nedeniyle eksik boylamsal klinik çalışma verilerinin üstesinden gelen yaygın yaklaşımlar, 
tam vaka (CC) ve son gözlemi ileri taşıma (LOCF) analizleridir. Sezgisel olarak çekici olmalarına 
rağmen bu yöntemler, geçerli istatistiksel sonuçlar üretmek için kısıtlayıcı varsayımlar gerektirirler. 
Eksik tekrarlanan ölçümleri içeren verileri analiz etmek için nispeten yeni ve modern bir istatistiksel 
yöntem, CC ve LOCF’ye göre daha az sınırlamaya ve kısıtlayıcı varsayımlara sahip olan “olabilirlik 
tabanlı” yöntemdir. Bu üç yöntemi, karışık bir model kullanarak eklem ağrı skorları açısından hastalık 
gruplarını karşılaştıran romatolojik bir çalışma setine uyguladık. Analiz yöntemleri arasında anlamlı 
bir fark bulunmamıştır. Eksik veri mekanizmalarına dikkatin romatolojik verilerin analizinde ayrılmaz 
bir parçası olması gerektiği sonucuna vardık.
Anahtar Sözcükler: Tam vaka analizi, Son gözlem ileriye taşıma, boylamsal veriler, Romatoloji, 
Eksik veri süreci, Karışık modeler
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INTRODUCTION
Rheumatic diseases are of  major concern for both indi-
vidual patients and for community. Although there are so 
many sophisticated laboratory and technical tools for eval-
uation of  the severity of  disease, the value of  patient’s com-
plaints –in other words the symptomatic evaluation- is still 
the cornerstone for clinical assessment. Intensity of  joint 
pain is an important parameter to determine the severity 
of  disease. Visual analogue scale (VAS) is considered one of  
the most frequently used methods to quantify the intensity 
of  pain. It is considered as a sensitive method to alterations 
but difficult to apply especially in elderly and illiterate 
patients (1). Most of  the clinical trials involve the follow 
up of  patients over a period of  times in order to describe 
the response and/or adverse effect of  treatment. Rheuma-
tologic assessments are performed regularly with periodic 
intervals which change from 3-4 weeks to several months. 
In such longitudinal rheumatologic studies, in actuality, it 
is not uncommon for some measurement sequences to end 
early due to circumstances outside the investigator’s control 
(i.e. vacation, moving, death etc.), and a dropout or missing 
value is a unit that has been affected in this way. As a result, 
it may be required to account for dropout in the modeling 
process by considering the mean and covariance structure.

There are a lot of  studies that are incomplete (2-3). In 
recent years, To deal with missing data sets, a number of  
strategies have been developed. However, the validity of  
the various approaches is dependent on the structure of  
the missing data and there are few studies dealing with 
missing data from rheumatologic studies. Complete case 
analysis (CC), in which only cases with complete data for 
all collected variables are analyzed, last observation carried 
forward analysis (LOCF), in which every missing value is 
replaced by the last observed value from the same subject, 
and likelihood-based ignorable analysis, developed under 
the missing at random assumption (MAR) which uses all 
available data without the need to delete or impute mea-
surements or complete subjects, are three of  these strategies 

Among the above mentioned methods, the most prevalent 
methods for analyzing incomplete longitudinal clinical 
observations are complete case analysis (CC) and last obser-
vation carried forward (LOCF). These approaches have the 
benefit of  being computationally simple and not requiring 
a full longitudinal model (4). Such methods, on the other 
hand, are based on strong assumptions, such as missing 
completely at random (MCAR) for CC and maintaining 
a constant profile after dropout for LOCF. The impact of  
these assumptions on the final results is sometimes over-
looked when analyzing incomplete longitudinal data. In 
recent years, there are now a variety of  full longitudinal data 
analysis approaches accessible, like as the likelihood-based 
ignorable analysis suggested by Molenberghs et al. (5) based 

on the mixed-effects linear model for Gaussian outcomes. 
This approach uses all data, obviating the requirement for 
both removing and filling in data, and it requires MAR 
rather than the much stronger assumptions that underpin 
CC and LOCF.

Nevertheless, analysis of  missing data has to be done care-
fully when subjects are discontinued for causes beyond the 
investigator’s control. This implies the need for sensitivity 
analysis that was discussed by Fitzmaurice (6). Molenberghs 
et al. (5) also demonstrate that the missing sequences con-
tribute to estimates of  interest. Moreover, they demonstrate 
that sensitivity analysis is probable, without any further 
data modification.

The purpose of  this study was to assess certain new sta-
tistical advancements in the context of  rheumatological 
investigations where patients are measured repeatedly and 
dropout is a concern and to investigate the impact of  three 
commonly used approaches, CC, LOCF and MAR, to 
dealing with missing data on the disease group and interac-
tion effects of  rheumatologic data analysis. Using empirical 
data, we compared these three mixed-model techniques 
without providing any mathematical specifics. To arrive at 
a trustworthy conclusion about disease group effects, the 
sensitivity analysis contrasts the final point estimates from 
the three statistical methodologies. Repeated measures 
analyses of  variance using a mixed model were used to 
explore the effect of  time on joint pain score among the 
patients participated in the study and to identify factors 
that were longitudinally associated with joint pain score. 
Furthermore, the sensitivity of  results to model specifica-
tion and alternative assumptions with different mean and 
covariance structures under three different methods were 
explored. This study will teach rheumatologist researchers 
how to handle missing data from clinical studies using sta-
tistical tools.

MATERIAL and METHODS
Patients
The template study, of  which the data set used, is concerned 
about the relationship of  rheumatologic symptoms and 
meteorological variables (7). It was used from December 
2005 to July 2006. Enrollment took place between the 1st 
of  December 2005 and the 28th of  February 2006. Patients 
with rheumatoid arthritis (RA), spondyloarthropathy 
(SPA), and osteoarthritis (OA) of  the knee were included 
in the study, as defined by the 1988 American College of  
Rheumatology (ACR) criteria for RA, European Spondy-
loarthropathy Study Group criteria, and ACR criteria for 
hand, knee, and hip OA, respectively (8–10). Patients were 
asked to complete questions in diaries that were handed to 
them. Each diary page –which were asked to be filled very 
day-has a question regarding rheumatic symptoms. The 
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evaluation used a 10-cm visual analogue scale (VAS). “How 
severe is your joint pain today?” is a question that needs to 
be answered. is known as the ‘‘joint pain score (JPS)” and is 
employed as a response variable in this research. The mea-
surement on the answers of  the question was employed by 
calculating the distance of  marking applied by patient from 
point of  zero. Although the measurements were taken from 
December 2005, the data used in this study included only 
the JPS taken between March 2006 and July 2006. This 
design was originally vulnerable to have plenty amount of  
missing data. Because we ask our patients to fill the VAS-
based questionnaire of  pain every day unless they are out 
of  city or forgot to fill. No back-up recording was allowed. 
So there are many dropout observations due to natural 
design of  investigation. 

Table I presents the descriptive statistics of  our rheuma-
tologic data and sums up the measurements that can be 
repeated at each time point by disease groups individual-
ly. We can see that the frquency of  missingness differs in 
different disease groups. It is clear from this table that the 
dropouts do not occur for SPA disease group. In general, 
all the fifty-four patients were observed at the first two time 
points, whereas only two, four and eleven patients were not 
seen at the third, fourth and fifth time points, respectively.

Statistical analyses were performed using SAS v8 software 
(11). The package allows users to model several covariance 
structures that can be modeled via MIXED procedure (12). 
The form of  these covariance structures and more details 
are given in SAS/STAT 8.2 User’s Guide. 

Method
To assess the association between age and each of  the JPS 
metrics, month and disease groups (RA, SPA and OA), 
mixed effect models for repeated measurements (RMMEM) 
(13-14) were fitted with month (linear, quadratic and cubic), 
disease groups and the interaction of  linear, quadratic and 
cubic month effect with disease groups as the fixed effects, 
and month only (marginal models) as the random effect. 
We fitted eight different models that belong to the family 

of   the general linear mixed models. Let Yi indicate the 
vector of  JPS measures for the i th patient. RMMEM can 
be written in a generalized manner as

Y X Zi i i i ia c f= + +    for i =1, . . . ,N  (1)

where N denotes the total number of  patients; a (ni×1) 
vector of  dependent variable for the i th patient is denoted 
by Yi; the number of  measurements for the i th patient 
is shown as ni; Xi denotes a (ni×p) design matrix for the 
fixed effects; a (p×1) vector of  fixed regression coefficients 
is denoted by a; Zi idenotes a (ni×q) matrix of  covariates 
related with the random effect; ic  (q×1) denotes a vector of  
random effects parameters and ic  is normally distributed 
as N(0, D); and  if  (ni×1) indicates a vector of  error terms 
and if  is normally distributed as N(0,S) and ic  and if  are 
independent of  each other. Both measurement error and 
serial correlation are included in the random error, if . In 
this research, the design will be based on age (as a covari-
ate), disease groups, month and/or interaction between 
disease groups and month. The marginal distribution of  
the dependent variable Yi  is used to make inferences. After 
integrating over random effects,  Yi can be re-written as 
follows

, .Y N X Z DZ 'i i i i i+ a +^ h/
Here  I Hn i

i

2 2
iv x= +/  is a variance-covariance matrix 

that groups the measurement error and serial components 
and V Z DZ 'i i i i= +/  is defined as the general variance-co-
variance matrix of  Yi

Variance-Covariance Structures
In this section, a parsimonious description of  eight models 
used in this study is given. The models are defined according 
to their mean structure and the variance-covariance struc-
ture. Model 1 implies that each disease group x month com-
binations has its own mean, together with an unstructured 
covariance, yielding additional parameters. It is assumed 
that the error term’s if  variance-covariance matrix / is a 
positive definite matrix and no random effects are included. 
Model 2 implies that each illness group has a linear trend, 

Table I: The descriptive statistics of  our rheumatologic data and summary of  the number of  available repeated 
measurements at each time point by disease groups separately.

Disease Group
All

RA SPA OA N 
MissingN Mean Stdev N Mean Stdev N Mean Stdev N Mean Stdev

March 31 2.83 2.32 13 2.83 2.84 10 3.72 2.51 54 3.00 2.46 0
April 31 2.53 1.94 13 3.20 2.80 10 3.97 2.25 54 2.96 2.26 0
May 30 2.54 2.06 13 3.26 2.76 9 2.40 1.67 52 2.69 2.18 2
June 28 2.77 2.27 13 3.13 2.85 9 2.18 2.29 50 2.76 2.40 4
July 24 2.58 1.98 13 2.97 2.91 6 1.79 1.32 43 2.59 2.22 11
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LRT = −2(loglB − loglA)∼χ2(d.f.),

where loglB and loglA signify the log of  the model B’s 
restricted maximum likelihood and the mixed model A’s 
variance–covariance structures, respectively. The LRT sta-
tistic follows a χ2 distribution with the degrees of  freedom 
(d.f.) equal to the difference in the number of  parameters 
of  both models. Under the null hypothesis that the mixed 
model with selected variance–covariance structures is not 
different from the model B. The d.f. are in practice equal 
to the difference in the variance–covariance parameters of  
both models because their expectation structures are all the 
same. When compared to model B, the model fit of  the 
mixed model with the chosen variance–covariance struc-
ture is regarded superior if  LRT > χ2, with a significance 
level of  a.

Methods for Dealing With Missing Data
In the literature, there are a variety of  approaches for 
dealing with missing data that were developed to deal with 
missing data in longitudinal clinical trials. The goal of  this 
research is to exemine three of  the most commonly used 
approaches for dealing with missing data, which are out-
lined below.

Complete Case (CC) Analysis: After removing all cas-
es with missing data, this approach does statistical analyses 
on the smaller data set. There is no missing data problem 
to deal with now that all patients with missing data have 
been eliminated. The most important advantage of  this 
method that it is easy to use. However, the method may 
be preferable for the large sample sizes, and MCAR is the 
mechanism for missing data (19). On the other hand, the 
biggest disadvantage of  the method is that there could pos-
sibly the loss of  statistical power because of  the reduction 
of  the sample size (20).

Last Observation Carried Forward (LOCF): This 
approach has frequently been employed in dealing with 
missing data problems and every missing value is replaced 
with the most recent observed value. It is generally used 
in continuous longitudinal data under MCAR. There is 
no temporal effect since the last observed data because the 
LOCF approach believes that the outcome will not change 
after the last observed value. It has been demonstrated that 
LOCF can produce biased findings, resulting in overestima-
tion or underestimating of  parameter estimates (5), (21-24).

Missing at Random (MAR) : A value of  a clinical out-
come variable is known to be missing at random (MAR) 
if, conditional on the observed data, the missingness is 
independent of  the unobserved outcomes (25). Because it 
can be predicted from the observed data in the model, the 
missingness mechanism owing to prior lack of  efficacy can 
be MAR. Therefore, the analysis model is closely linked to 

while Model 3 assumes that the mean profiles are parallel 
straight lines. Toeplitz variance-covariance structure and 
first-order autoregressive (AR(1)) covariance matrix are 
assumed in Models 4 and 5. Model 6, which is a simplified 
version of  the unstructured covariance Model 2, allows for 
random intercept and slope parameters. Model 7 is a hier-
archical random intercepts model implying a compound 
symmetry model at the marginal level. Finally, Model 8 is 
an independence model in which measurement error is the 
only source of  variability.

Variance–covariance structure selection 
and evaluation
There are various candidate variance–covariance structures 
to choose from, as previously indicated. A lot of  analytical 
criteria must be examined while making a proper selec-
tion. These are known as Information Criteria, and they 
are based on likelihood estimations (15-16). The Akaike 
information criterion (AIC) was used to determine the best 
covariance structure of  the models for the data (17) and the 
Schwarz Bayesian Information Criterion (BIC) (18). Let l be 
the maximum value of  the model’s log likelihood and d be 
the number of  the parameters of  the variance–covariance 
structure, then when comparing the variance–covariance 
structures of  two identical expectation structures, the AIC 
can be stated as

AIC= −2l + 2d   (2)

BIC is almost the same, instead of  doublingthe number of  
covariance parameters d, the penalty is obtained as log(N)

BIC= −2l + log(N)d   (3)

With the rule that smaller is better, the corresponding 
values of  these two criteria are compared across various 
covariance structures (i.e., the structure with the least crite-
ria value is the best covariance structure for the data, and 
the fixed-effect tests associated with this structure should 
be interpreted accordingly). Because the BIC has a higher 
penalty, which is a function of  the number of  unknown 
parameters and sample size, the two criteria may not 
always agree on the optimum structure. We will use the BIC 
criterion rather than the AIC criterion because our goal is 
to model the covariance structure as efficiently as possible.

The likelihood ratio chi-square test can be used to see if  
there is a statistical difference between alternative models. 
Because a model’s variance–covariance structure (model 
B, for example) is a reduced (nested) structure of  mixed 
models (model A or nested model, for example), the likeli-
hood-ratio test (LRT) can be used to determine whether the 
chosen variance–covariance structure is significantly more 
appropriate than model B. The LRT statistic is derived 
from the following equation:



272

Çay HF. et al

Akd Med J / Akd Tıp D / 2021; 7(2):268-276

features of  the results of  LOCF analysis. It is clear from 
Table III that Models 4, 6, 7 and 8 are strongly rejected. 
Models 2 and 3 are also rejected at the nominal %5 and 
%1 levels, respectively. Model 5 is highly rejected when 
compared to Model 2, but it is not rejected when compared 
to Model 4, as shown in the CC analysis. In summary, to 
summarize the results, Model 5 is recommended among 
the models offered.

A summary of  the model fit of  the eight models is pre-
sented for likelihood-based ignorable analysis in Table IV. 
The findings of  this investigation are quite similar with the 
results of  LOCF analysis. It is clear from Table IV that there 
is clear evidence of  lack of  fit in the unstructured models 
(Models 2 and 3), Toeplitz (banded), AR(1) in comparison 
to Model 2, compound symmetry and simple models. Once 
again, the first order autoregressive model when compared 
with Model 4 does exhibit the best fit among all the eight 
models considered.

The indices of  relative goodness-of-fit Akaike’s information 
criteria and Schwarz’s Bayesian criterion can be used to 
evaluate models with the same fixed effects but different 
covariance structures. Both of  these criteria are applicable 
to model selection and hypothesis testing in general. AIC 
and BIC values for the eight covariance structures are 
shown for the CC analysis in Table II. Since AR(1) has 
the smallest AIC and BIC values, we can conclude that 
the first order autoregressive model is the best choice of  
covariance structure for the CC analysis. Table III shows 
AIC and BIC values for the eight models from the LOCF 
analysis. ‘Unstructured’ (Model 1) has the smallest AIC, but 
AR(1), ‘first order autoregressive model’, has the smallest 
BIC. The penalty for the large number of  parameters in 
the UN covariance matrix is reflected in the difference 
between AIC and BIC for the UN structure. As our objec-

MAR. We will be operating under MAR if  we include all 
of  the factors that affect missingness in our model; other-
wise, the assumptions of  the MAR would not apply to our 
analysis.

RESULTS
Complete case analysis includes analyses of  the cases for 
which all ni measurements are complete. In the complete 
case analysis of  our data, the eleven patients that lack mea-
surements are removed, as a result, a functional data set 
of  43 patients was created. The model fit summary of  the 
eight models described previously is given in Table II. The 
deviance (minus twice the log-likelihood at maximum) of  
Model 1 equals 577.3, and there are 30 model parameters. 
This deviation will be used as a benchmark to determine 
the goodness-of-fit of  much simpler models. All the devi-
ances are listed in Table II. As can be noted from this table, 
Models 6, 7 and 8 are strongly rejected. The common slope 
Model 3 is also rejected at the %5 significance level. The 
banded correlation structure Model 4 and the first-order 
autoregressive Model 5 are not rejected when compared to 
Model 2. When the Model 5’s likelihood is compared to the 
likelihood of  the reference Model 4, it becomes clear that 
Model 5 is consistent with the data. From this analysis it can 
be concluded that Among the eight models investigated in 
this study, Model 5 provides the most concise description 
that is compatible with the data.

In the last observation carried forward analysis of  our data, 
a new data set is obtained by completing in the missing 
values, instead of  removing patients with missing obser-
vations. The principle of  imputation is that whenever a 
value is missing, the last observation on the same patient is 
substituted. A summary of  the model fit of  the eight models 
is presented in Table III. Again, there are several important 

Table II: Model fit summary for complete case analysis.

Model Mean Covariance Par. -2l Ref. G2 d.f. p-value AIC BIC
M1 unstr. unstructured 30 577.3 639.3 693.9
M2 ≠ slopes unstructured 28 582.6 1 5.3 2 0.0706 638.6 687.9
M3 = slopes unstructured 26 590.2 2 7.6 2 0.0223 642.2 688.0
M4 ≠ slopes Toeplitz 18 600.6 2 18.0 10 0.0549 636.6 668.3
M5 ≠ slopes AR(1) 15 603.8 2 21.2 13 0.0690 633.8 660.2

4 3.2 3 0.3618
M6 ≠ slopes random 17 618.3 2 35.7 11 0.0001 652.3 682.2
M7 ≠ slopes CS 15 671.0 2 88.4 13 0.0000 701.0 727.4

4 70.4 3 0.0000
6 52.7 2 0.0000

M8 ≠ slopes simple 14 949.8 7 278.8 1 0.0000 977.8 1002.5

Par: number of  model parameters; −2l : minus twice log-likelihood; Ref: reference model for likelihood ratio test; G2: likelihood ratio 
test statistic value; df: corresponding number of  degrees-of-freedom).
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considered for all three methods of  analysis, CC, LOCF 
and MAR. Let us now turn attention to the performance 
of  the three different methods of  analysis and compare the 
results with each other. We will first study the effects of  the 
selected variance-covariance structure, AR(1), on tests and 
fixed effects’s estimates for different methods of  analysis. In 
this type of  longitudinal analysis, only the disease groups 
that are of  main interest will be considered. This means we 
estimate the main effects of  disease groups as well as the 
interaction effect of  disease groups by month. We treated 
month as a continuous variable and modeled month effects 
in third degree polynomials. Then we used the polynomial 
model to obtain the parameter estimates, and standard 
errors for different methods of  analysis. The general linear 
mixed model was fitted using the selected variance-cova-
riance structure to model fixed effects of  disease groups 
and month, and the parameter estimates, standard errors 

tive is parsimonious modeling of  the covariance structure, 
we conclude that AR(1) provides the most parsimonious 
description among the eight models for the LOCF analysis. 
AIC and BIC values of  the eight models are illustrated for 
the likelihood-based ignorable analysis in Table IV. These 
results are similar with the results of  LOCF analysis and 
once again AR(1) model exhibit the best fit compared to 
other models.

We have so far fitted eight covariance structures to our 
data, and compared the covariance structures of  three 
different methods of  analysis using -2l, AIC and BIC val-
ues. Model comparisons performed in Tables I, II, and III 
quantitatively produce the same inferences. In all cases, 
we determined that the first order autoregressive model 
(AR(1), or Model 5) provided the best fit and was the most 
concise explanation of  the data among the eight models 

Table III: Model fit summary for last observation carried forward analysis.

Mean Covariance Par. -2l Ref. G2 d.f. p-value AIC BIC
M1 unstr. unstructured 30 757.4 819.4 881.0
M2 ≠ slopes unstructured 28 768.4 1 11.0 2 0.0040 824.4 880.1
M3 = slopes unstructured 26 775.9 2 7.5 2 0.0235 827.9 879.6
M4 ≠ slopes Toeplitz 18 815.6 2 47.2 10 0.0000 851.6 887.4
M5 ≠ slopes AR(1) 15 817.5 2 49.1 13 0.0000 847.5 877.4

4 1.9 3 0.5934
M6 ≠ slopes random 17 835.9 2 67.5 11 0.0000 869.9 903.7
M7 ≠ slopes CS 15 897.7 2 129.3 13 0.0000 927.7 957.6

4 82.1 3 0.0000
6 61.8 2 0.0000

M8 ≠ slopes simple 14 1207.5 7 309.8 1 0.0000 1235.5 1263.4
Par: number of  model parameters; −2l: minus twice log-likelihood; Ref: reference model for likelihood ratio test; G2: likelihood ratio 
test statistic value; df: corresponding number of  degrees-of-freedom.

Table IV: Model fit summary for likelihood-based ignorable analysis. 

Mean Covariance Par. -2l Ref. G2 d.f. p-value AIC BIC
M1 unstr. unstructured 30 726.4 788.4 850.1
M2 ≠ slopes unstructured 28 739.5 1 13.1 2 0.0014 795.5 851.2
M3 = slopes unstructured 26 748.6 2 9.1 2 0.0105 800.6 852.3
M4 ≠ slopes Toeplitz 18 782.3 2 42.8 10 0.0000 818.3 854.1
M5 ≠ slopes AR(1) 15 785.4 2 45.9 13 0.0000 815.4 845.2

4 3.1 3 0.3764
M6 ≠ slopes random 17 793.5 2 54.0 11 0.0000 827.5 861.3
M7 ≠ slopes CS 15 845.4 2 105.9 13 0.0000 875.4 905.3

4 63.1 3 0.0000
6 51.9 2 0.0000

M8 ≠ slopes simple 14 1123.1 7 277.7 1 0.0000 1151.1 1178.9
Par: number of  model parameters; −2l: minus twice log-likelihood; Ref: reference model for likelihood ratio test; G2: likelihood ratio 
test statistic value; df: corresponding number of  degrees-of-freedom.
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and the interaction between disease group and month were 
found using all three methods. The largest F values and 
the smallest p values are seen with the MAR analysis. Note 
also that the F values are substantially smaller for CC from 
those of  LOCF and MAR.

The results of  fitting the selected Model 5 to our data 
using three different methods of  analysis, CC, LOCF, and 
MAR, are compared in Table VII. The effect of  age, dis-
ease groups, month, and the interaction between disease 
groups and month were all included in the model. It is 
worth noting that the results are identical to those in Table 
V, where the inference is based on the same model defini-
tion. Note also that the χ2 results demonstrate a different 
picture in terms of  evidence for methods of  analysis, with 
extremely strong evidence for CC when comparing LOCF 
with CC and MAR with CC and very strong evidence for 
MAR when comparing LOCF with MAR. However, when 

and p values from three different methods of  dealing with 
missing data are shown for age, disease group main effects, 
and disease group by month interaction in Table V. Disease 
group SPA is considered as the reference group in this table. 
In either the illness group main effects or the disease group 
by month interaction, there is not much difference between 
the estimates of  the three approaches when comparing 
CC, LOCF, and MAR. In terms of  other model character-
istics, however, there will be some significant discrepancies 
between the solutions for addressing missing data.

Table V contains the fitted correlations. Clearly, the cor-
relations produced by LOCF and MAR are nearly identi-
cal. On the other hand, the correlation estimated using CC 
is slightly stronger than the other two methods. 

Table VI contains values of  F tests for fixed effects for the 
selected covariance structure, AR(1), using the three differ-
ent methods of  analysis. A significant disease group effect 

Table V: Estimated parameters, standard errors and p-values for fixed effects of  the selected Model 5 and correlations 
using different methods of  analysis (CC, LOCF and MAR).

CC LOCF MAR
Effect DG* Estimate S.E. p Estimate S.E. p Estimate S.E. p
Intercept -6.757  7.750 0.388   -6.459   8.822   0.467  -6.534   9.162 0.479
Age 0.043 0.032 0.181   0.036  0.029   0.222  0.038  0.029 0.197
DG OA -17.610 13.591 0.203  -14.978 13.256   0.264 -18.165 14.259 0.209
DG RA 15.050  9.478 0.120   18.511 10.406   0.081  19.485 10.923 0.081
DG SPA
Month*DG OA 14.182  5.968 0.018   12.715   5.293   0.017  14.485   5.893 0.015
Month*DG RA -4.334  2.984 0.148   -5.790   3.006   0.056  -6.353   3.243 0.052
Month*DG SPA  3.670  4.054 0.367    3.670   4.643   0.430   3.670   4.826 0.448
Month2*DG OA -2.531  1.023 0.014   -2.248   0.908   0.014  -2.565   1.022 0.013
Month2*DG RA  0.792  0.512 0.124    0.970   0.515   0.061   1.074   0.559 0.056
Month2*DG SPA -0.533  0.695 0.444   -0.533   0.796   0.504  -0.533   0.828 0.520
Month3*DG OA  0.141 0.057 0.014    0.125  0.050   0.014   0.142  0.057 0.014
Month3*DG RA -0.047 0.028 0.101  -0.054  0.029   0.062 -0.059  0.031 0.057
Month3*DG SPA 0.025 0.038 0.523   0.025  0.044   0.576  0.025  0.046 0.591
r 0.931 0.015 0.000 0.917 0.016 0.000 0.909 0.017 0.000
*DG: Disease groups.

Table VI: Type III test of  fixed effects for the selected model 5 using different methods of  analysis (CC, LOCF and 
MAR).

CC LOCF MAR
Effect F value p value F value p value F value p value
Age 1.86 0.1806 1.53 0.2224 1.71 0.1968
DG 3.82 0.0306 4.81 0.0123 5.02 0.0104
Month*DG 2.86 0.0387 3.37 0.0195 3.49 0.0169
Month2*DG 3.03 0.0309 3.38 0.0193 3.47 0.0173
Month3*DG 3.10 0.0284 3.33 0.0205 3.38 0.0195
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assessing evidence for or against CC, utmost caution should 
be exercised (26-27).

The polynomial curves resulting from the three different 
methods of  analysis, CC, LOCF and MAR, are plotted 
for disease groups, RA, SPA, and OA, in Figure I. In this 
figure, the observed (CC, LOCF and MAR) and fitted 
(CCp, LOCFp and MARp) mean structures of  the select-
ed Model 5 are overlaid on the same graph. The graph 
illustrates that means for the two disease groups, RA and 
SPA are basically the same in March. However, the mean 
for disease group OA is larger than the mean value for RA 
and SPA. Means for disease group OA decrease sharply 
between months April and June whereas the means for 
disease group RA and SPA seem to remain almost the same 
after the month of  April. However, the magnitudes of  the 
differences between disease groups decrease dramatically 
with time. As can be seen from Figure I, the observed and 
fitted means coincide for the disease groups RA and SPA, 
but they do not coincide for the disease group OA. While 
there is absolutely no difference between the three methods 
in SPA, there is a clear distinction between LOCF and CC, 
as well as MAR and CC in RA and OA. In RA, there is 
clearly no difference between LOCF and MAR over time, 
but the difference between these methods with CC is con-
sistent over time. In OA, the difference between LOCF and 
MAR is relatively mild and a strong separation is observed 
between these methods and CC.

DISCUSSION
In the current study considered here, we have shown that 
when evaluating incomplete longitudinal data from rheu-
matologic investigations, a range of  techniques such as CC, 
LOCF, and MAR can be used. The main mode of  analysis 
is the linear mixed model. These strategies are now within 
reach thanks to advances in statistical computer power, and 
we’ve used them in a real-world rheumatologic study.

We looked at the impact of  several techniques for dealing 
with missing data. The results of  the three methods showed 
some slight differences with respect to the parameter esti-
mates, standard errors, p values and F values of  the main 
effects and interaction terms. However the differences were 
not extreme between the various analyses conducted and 
caution should be used when deciding on the method of  
analysis. 

Table VII: Comparison of  fitted CC, LOCF and MAR models to our data.

Methods -2l Comparison χ2 p value
CC 603.8 LOCF - CC = 213.7 <0.0001
LOCF 817.5 LOCF – MAR = 32.1 <0.0001
MAR 785.4 MAR - CC = 181.6 <0.0001

Figure 1: Polynomial curves of  the three different methods of  
analysis for each disease group, RA, SPA, and OA. (The large dots 
are the observed means for different methods (CC, LOCF, MAR) 
and the dotted lines are the corresponding quantities for the fitted 
values (CCp, LOCFp, MARp)).
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missing data regarding the illness group in our empirical 
example from a rheumatologic study.
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Finally, there is no “gold” standard available in the context 
of  this empirical study. Simulation studies are needed to 
better understand the relationship between the amount and 
nature of  missing values, as well as to compare the results 
to a gold standard. In conclusion, only minor variations 
were discovered between the three strategies of  managing 
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