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Abstract 

The main purpose of this paper is to introduce the new sequence spaces   (F), c(F) and   (F) based on 
the newly defined regular matrix F of Fibonacci numbers. We study some basic topological and 
algebraic properties of these spaces. Also we investigate the relations related to these spaces. 
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1. Introduction 

Let w be the space of all real sequences. Any vector 

subspace of w is called a sequence space. We shall 

write c,    and    for the sequence spaces of all 

convergent, null and bounded sequences. 

Let X, Y be two sequence spaces and A = (   ) be 

an infinite matrix of real numbers    , where n, k 

N.Then, A defines a matrix mapping ( Debnath and 

Debnath, communicated; Malkowsky and 

Rakocevic, 2007) from X into Y and we denote it by 

A : X  Y, if for every sequence x= (  )  X, the 

sequence Ax = {   (x)+   
 , the A-transform of x, is 

in Y; where 

  (x) = ∑    
 
     , (n N) 

By (X,Y), we denote the class of all matrices A such 

that A : X  Y. Thus A  (X,Y) if and only if the 

series on the right hand side above converges for 

each n  N and every x  X and we have Ax  Y for 

all x  X. The matrix domain X(A) of an infinite 

matrix A in a sequence space X is defined by 

X(A) = {x = (  ) w : Ax  X}, 

which is a sequence space (Altay, Basar and 

Mursaleen, 2006; Kara and Basarir, 2012; 

Mursaleen and Noman, 2010; Tripathy and Sen, 

2002). 

A sequence space X is called FK space if it is a 

complete linear metric space with continuous 

coordinates    : X  R (n  N), where R denotes 

the real field and   (x) =    for all x = (  )  X and 

every n  N. A BK space is a normed FK space, i.e, a 

BK space is a Banach space with continuous 

coordinates. The spaces c,    and    are BK spaces 

with     =     |  |. 

The following lemma ( Known as The Toeplitz 

Theorem) contains necessary and sufficient 

condition for regularity of a matrix. 

Lemma 1.1(Wilansky, 1984): Matrix A = (   )     
  

is regular if and only if the following three 

conditions hold: 

(1) There exists M > 0 such that for every n = 1, 2, … 

the following inequality holds: 

∑ |   |
 
    ≤ M; 

(2)            = 0 for every k = 1, 2, … 

(3)       ∑    
 
   = 1. 

Let (  ) be a sequence of positive numbers and    

= ∑   
 
   . 

Then the matrix    = (   
 
) of the Riesz mean is 

given by  

   
 

 = {

  

  
             

            
 

It is known that the Riesz matrix is a Toeplitz matrix 

if and only if     as n   (Basar, 2011). 
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The Fibonacci numbers (Kara and Basarir, 2012; 

Koshy, 2001) are the sequence of numbers 

{fn}  
    defined by the linear recurrence equations 

  = 0 and    = 1,    =      +     ; n ≥ 2. 

Fibonacci numbers have many interesting 

properties and applications in arts, sciences and 

architecture. Also, some basic properties of 

Fibonacci numbers are given as follows (Kalman 

and Mena, 2003; Vajda, 1989): 

∑   
   n   =   fn+2 – 1; n≥1, 

∑    n
2   =   fnfn+1 ; n≥1, 

∑
 

  

 
      converges. 

In this paper, we define the Fibonacci matrix F = 

(   )     
   which differs from existing Fibonacci 

matrix by using Fibonacci numbers    (Kara and 

Basarir, 2012) and introduce some new sequence 

spaces related to matrix domain of F in the 

sequence spaces   , c and   . 

2. Main Result 

Now, we define the Fibonacci matrix 

F=(   )     
    by 

        fn,k={
  

      
 (      ) 

           
 

 

that is, 

[
 
 
 
 
 
 
 
      
 

 

 

 
    

 

 

 

 

 

 
   

 

 

 

 

 

 

 

 
  

      ]
 
 
 
 
 
 
 

 

It is obvious that the matrix F is triangular matrix 

i.e,    ≠ 0 for k  n and     = 0 for k > n 

(n=1,2,3,…). Also it follows from the lemma 1.1 that 

the method F is regular. 

Now, we introduce the following sequence spaces 

based on the infinite matrix F: 

c(F) = { x = (  ) w : Fx  c} 

  (F) = { x = (  ) w : Fx    } 

  (F) = { x = (  ) w : Fx    } 

where Fx = *  ( )+   
  and   ( ) = ∑    

 
      

=
 

      
∑    
 
     , (n  N). 

Theorem 2.1: The spaces c(F),   (F) and   (F) are 

BK spaces with the same norm given by  

    ( ) =       =     |  ( )| 

where X {c,   ,   }. 

Proof: By Theorem 4.3.12 of Wilanksy, 1984 [p.63] 

and as the matrix F is triangular, we have the 

result. 

Remark 2.2: It can be easily seen that the absolute 

property does not hold on the spaces 

c(F),   (F),   (F) i.e.,     ( )   | |  ( ) for at 

least one sequence x in each of these spaces, 

where | | = (|  |)  Thus the spaces c(F),   (F) and 

  (F) are BK spaces of non-absolute type. 

Theorem 2.3: The sequence spaces c(F),   (F) and 

  (F) are norm isomorphic to the spaces c,    and 

  , respectively i.e, c(F)   c,   (F)      and   (F) 

    . 

Proof: X denotes any of the spaces c,    or    and 

X(F) be the respective one of the spaces c(F),   (F) 

or   (F). Since the matrix F is triangular, it has a 

unique inverse, which is also triangular (Wilansky, 

1984, proposition 1.1). Therefore the linear 

operator    : X (F)  X, defined by   ( ) = F( ) 

for all x  X(F), is bijective and is norm preserving 

by above norm in theorem 2.1. Hence X(F)   X. 

Theorem 2.4: The inclusions   (F)  c(F)    (F) 

strictly hold. 

Proof: It is clear that the inclusion   (F)  c(F) 

   (F) hold. 
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Consider the sequence x = (  ) defined by     = 1, 

for all k  N. Then we have for every n  N, 

  ( ) = 
 

      
∑   
 
    = 1 

This shows that Fx  c but not in   . Thus the 

sequence x is in c(F) but not in   (F). Hence the 

inclusion   (F)  c(F) strictly holds. 

Again, consider the sequence x = (  ) defined by 

   = 
(  ) (           )

  
, for all k  N. 

Then we have for every n  N, 

  ( ) = 
 

      
∑   
 
     =(  )  

This shows that Fx     but not in c. Thus the 

sequence x is in   ( ) but not in c(F). Hence the 

inclusion c(F)    (F) strictly holds. 

Theorem 2.5: The inclusion       (F), c  c(F) and 

       (F) holds. 

Proof: As F is a regular matrix, so the 

inclusion       (F) and c  c(F) are obvious. 

Now, let x = (  )    . Then there is a constant M 

> 0 such that |  | ≤ M for all k  N. Thus for each n 

 N 

|  ( )| ≤ 
 

      
∑   
 
   |  | 

 ≤ 
 

      
∑   
 
    = M 

which shows that Fx     i.e., x    (F). Thus we 

conclude that        (F). 

Example: Consider the sequence x = (  ) = (1, 0, 1, 

0, 1, 0, …………..). Then we have for every  

n  N, 

  ( ) = 
 

      
∑   
 
      = 

 

      
(   +   +   

+   ) 

which is convergent.  

This shows that Fx  c but x is not in c. Thus the 

sequence x is in c(F). Hence the inclusion c  c(F) 

strictly holds. 

Similarly, we can show the other inclusions are 

strict. 
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