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ABSTRACT Offset boosting is an important issue for chaos control due to its broadband property and polarity
control. There are two main approaches to realize offset boosting. One is resort to parameter introducing
where an offset booster realizes attractor boosting. The other one is by the means of periodic function or
absolute value function where any self-reproduced or doubled attractors with diverse offset are extracted out
by a specific initial condition. The former also provides a unique window for observing multistability and the
latter gives the direction for constructing desired multistability.
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INTRODUCTION

Chaotic signal is wide used in chaos-based information engineer-
ing including chaotic secure communication, image encryption
and neural signal processing. Any chaotic signal has its inherent
features namely identified as scale (C. Sprott and Xiong 2015; C.
Sprott 2010; Gu et al. 2021; Lu et al. 2019; Liu et al. 2020; Wang et al.
2020; Zhao et al. 2020; Akgul et al. 2016, 2019; Falco et al. 2012) and
offset (Li et al. 2019, 2017a; Liu et al. 2020; Li and Sprott 2017; Li
et al. 2021, 2017b; Kingni et al. 2020; Ma et al. 2021; Zhang et al.
2018; Mezatio et al. 2019; Bao et al. 2020; Chen et al. 2020; Zhang
et al. 2020; Wu et al. 2019a; Ding et al. 2020). For rescaling a chaotic
signal, people usually design dynamical systems with amplitude
control from the very beginning. In fact, for an attractor in phase
space, amplitude control typically gets involved with offset boost-
ing. Offset boosting means that the attractor is moved in phase
space in any direction, which indicates that the average value of
corresponding variable is rescaled accordingly. In a differential
equation, a simple substation of xi → xi + c revises the average
value of xi without revising the left hand of its master system.
Therefore it looks very simple in the mathematic view. However,
offset boosting is such an important issue in chaotic system since
that it gives a direct way for an engineer to transform a bipolar
chaotic signal to a unipolar one. And besides this, it seems that
offset boosting shows more varieties than our imagination such as
attractor boosting, attractor self-reproducing (Li et al. 2017a), attrac-
tor doubling (Li et al. 2019), conditional symmetry (Li et al. 2020c),

Manuscript received: 1 July 2021,
Revised: 28 July 2021,
Accepted: 2 August 2021.

1 chunbiaolee@nuist.edu.cn, goontry@126.com (Corresponding Author)
2 ycjnuist@163.com
3 xumanuist@163.com

time-reversible symmetry (Li and Sprott 2017) or even repellor
construction (Li et al. 2021). For this reason, offset boosting has
attracted great interests recently both in continuous system and in
discrete maps. Researchers pays great effort to learn how to get
those attractors controlled by parameters (Li et al. 2017b; Kingni
et al. 2020; Ma et al. 2021; Zhang et al. 2018; Mezatio et al. 2019) or
by initial conditions (Bao et al. 2020; Chen et al. 2020; Zhang et al.
2020; Wu et al. 2019a; Ding et al. 2020). Even in those memristive
systems (Chen et al. 2019; Kengne et al. 2018; Lu et al. 2020; Wu
et al. 2019b; Yuan et al. 2019) offset boosting is still a hot spot for
discussion.

As shown in Fig. 1, offset booster can be attached in a chaotic
system for attractor boosting, which means that the newly derived
attractor stays at different positions controlled by the offset con-
stant. Typically, to realize offset boosting a unified constant is nec-
essary to insert into multiple terms if the corresponding variable
appears many times. Specific variable-boostable chaotic systems
(Li and Sprott 2016) give the simple possibility for offset boosting
since in the right hand there is a variable appearing only once.
However, for attractor self-reproducing, periodic functions includ-
ing multiple similar linear segments are needed where any specific
initial condition can visit its most closed attractor obeying the dis-
tribution of basin of attraction. In this work, parameter-oriented
offset boosting and initial-condition-oriented are systematically
discussed based on system VB14 (Li and Sprott 2016), as indicated
in Table.1. The case of absolute value function introducing is not
listed in the table for easy discussion in the following text where
more parameters are embedded and correspondingly the original
system is changed more dramatically. In section 2, we discuss how
to insert a constant to realize offset boosting in some dimensions
of a system. In section 3, periodic functions specifically trigono-
metric functions are addressed for initial condition-triggered offset
boosting. In section 4, absolute value functions are introduced for
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■ Table 1 Two regimes of offset boosting

Cases Constant or function introducing for offset
boosting

Research focus

A F(x)=x + d, G(y)=y Attractor Boosting

B F(x)=x, G(y)=y + h

C F(x)=3sin(x), G(y)=y Attractor Self-reproducing and Attractor Growing

D F(x)=1.8sin(1.3x), G(y)=y

E F(x)=x, G(y)=2cos(y)

F F(x)=3tan(0.5x), G(y)=sin(y)

G F(x)=x + d, G(y)=sin(y)

attractor doubling. In section 6, absolute value function is applied
for polarity reverse for the observation of conditional symmetry
and repellor construction. Conclusions are wrapped in the last
section.

Figure 1 Offset boosting in a dynamical system.

OFFSET BOOSTING BY INTRODUCING CONSTANT TERMS

As mentioned above, to realize offset boosting in a dynamical
system, a direct method of introducing a constant in any of the di-
mension can be applied for this target. For example, we introduce
a constant in the variable x in VB14, correspondingly system (1)
turns to be system (2) where only an extra single constant appear
in the right hand, 

ẋ = 1 − ayz

ẏ = z2 − z

ż = x − bz

(1)


ẋ = 1 − ayz

ẏ = z2 − z

ż = x + d − bz

(2)

Correspondingly, the original attractor, shown in Fig. 2, will
be shifted in the x dimension, shown in Fig. 3, without shaking
the Lyapunov exponents but spitting out the chaotic signal x in a
smoothly revised average, shown in Fig. 4.

Figure 2 Chaotic attractor of system (1) with a = 3.55, b = 0.5
under initial condition (1, 0, 1): (a) x-y, (b) x-z.

Figure 3 Shifted chaotic attractors in system (2) with a = 3.55,
b = 0.5 under initial condition (1 − d, 0, 1) (Case A in Table 1): (a)
d = 5, (b) d = −5.

Figure 4 Offset boosting of x in system (2) with a = 3.55, b = 0.5
under initial condition (1 − d, 0, 1): (a) Lyapunov exponents, (b)
average values.
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The operation for offset boosting can be repeated in other di-
mensions. But this does not mean that all this kind of operations
share the same complexity for a dynamical system and correspond-
ingly does not benefit circuit realization equally. For example, it
is shown that even an exactly similar operation of y�y + h needs
much more effort for circuit realization as indicated in system (3).
For system (2), a newly introduced direct current source revise
the average value of x, while for system (3) (Case B in Table. 1),
a new feedback of −ahz should be attached in the x dimension.
The offset of y is based on the adjustable resistance in the branch
of x-dimension, which is not getting worse. In fact, the constant
h still returns the average-value-revised y with unified Lyapunov
exponents, as shown in Fig. 5. In some circumstances, it will be
much more catastrophic even a single constant is needed for a
variable but multiple existence of this variable brings much more
complexity. 

ẋ = 1 − a(y + h)z

ẏ = z2 − z

ż = x − bz

(3)

Figure 5 Offset boosting of y in system (3) with a = 3.55,
b = 0.5under initial condition (1, −h, 1) (Case B in Table 1): (a)
Lyapunov exponents, (b) average values.

OFFSET BOOSTING BY INTRODUCING PERIODIC FUNC-
TIONS

Offset boosting can be realized in a hidden mode where a peri-
odic function is applied for attractor boosting. In this direction,
as pointed in (Li et al. 2017a), periodic trigonometric function is
introduced for hidden offset boosting by initial condition. In this
example, a sinusoidal is equipped as,

ẋ = 1 − aG(y)z

ẏ = z2 − z

ż = F(x)− bz

(4)

where G(y) = y, F(x) = 3sin(x). Thus, system (4) (Case C in Table
1) is a self-reproducing system giving infinitely many coexisting
attractors, which can be extracted by various initial conditions, as
shown in Fig. 6, eight coexisting attractors are given, each of which
is of the same shape with same Lyapunov exponents (0.23401, 0,
−0.73402) as shown in Fig. 7. The stout structure of attractor in
Fig.6 is flattened for the increasing scale in the x-axis. In fact, sys-
tem (4) reproduces infinitely many attractors standing on different
positions in the x-axis but with unified Lyapunov exponents, as
shown in Fig. 8. Note that the step-growing average value shows
the offset boosting triggered by initial conditions. Each step rep-
resents a corresponding attractor and the whole sinusoidal-like
evolution reveals the trigonometric nonlinearity.

Figure 6 Coexisting attractors in system (4) with G(y) = y, F(x)
= 3sin(x), a = 3.55, b = 0.5 (Case C in Table. 1): (a) x-y , (b) x-z.
Each attractor is under different initial conditions (IC). Here cyan
is for IC = (−5, 0, 1), pink is for IC = (−4, 0, 1), yellow is for IC =
(−3, 0, 1), red is for (−2, 0, 1), green for IC = (1, 0, 1), blue is for
IC = (5, 0, 1), white is for IC = (8, 0, 1), black is for (11, 0, 1).

Figure 7 Chaotic attractor of system (4) with G(y) = y, F(x) =
3sin(x), a = 3.55, b = 0.5 in principal interval when initial
condition IC= (−2, 0, 1): (a) x-y, (b) x-z.

Figure 8 Offset boosting of system (4) with G(y) = y, F(x) =
3sin(x), a = 3.55, b = 0.5, and IC = (x0, 0, 1), x0 varies in [−6,
7]: (a) Lyapunov exponents, (b) average values.

Figure 9 Attractor growing in system (4) with G(y) = y, F(x) =
1.2sin(1.8x), a = 3.6, b = 0.5 and time duration T = 1000. Here
green is for IC = (1, 0, 1), yellow is for IC = (5, 0, 1), blue is for IC
= (10, 0, 1): (a) x-y, (b) x-z.
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Meanwhile revising the feedback of sinusoidal function, at-
tractor growing appears as predicted. In this case the introduced
functions in system (4) are: G(y) = y, F(x) = 1.2sin(1.8x) (Case D in
Table. 1). Different initial values select the start point for attractor
growing indicated in green, yellow and blue in Fig. 9. This is
the typical phenomenon of homogenous multistability. Unified
Lyapunov exponents are proved along with randomly increasing
of the average value of x as shown in Fig.10.

Figure 10 Feature of the growing attractor in system (4) with
G(y) = y, F(x) = 1.2sin(1.8x), a = 3.6, b = 0.5 and time duration of
T = 1000 under the initial condition [x0, 0, 1], where x0 varies in
[−4π, 4π]: (a) Lyapunov exponents, (b) average variables.

The initial-condition-oriented offset boosting can extend to
other dimension with the same approach. Here a cosine function
is introduced in the y dimension in system (4) by G(y) = 2cos(y),
F(x) = x (Case E in Table. 1),

ẋ = 1 − 2a cos(y)z

ẏ = z2 − z

ż = x − bz

(5)

As shown in Fig. 11, when a = 2.2, b = 0.7 and initial condition
IC = (1, 0, 1), system (5) exhibits a chaotic attractor with Lyapunov
exponents (0.13415, 0, −0.83416). For the same reason of peri-
odicity, system (5) is a self-reproducing system giving infinitely
many coexisting attractors with different average values in the
y-dimension, as shown in Fig. 12. Almost unchanged Lyapunov
exponents can be seen in Fig. 13, where linearly modulated offset
in the y-dimension shows up. There is no conflict in Fig. 8 and
Fig. 13. In Fig. 8, the initial condition of x0 varies in a continuous
way in region of [−6, 7], the sinusoidal-like evolution reveals the
trigonometric nonlinearity combined with the fractal structure of
basin of attraction. Meanwhile in Fig. 13, the initial condition of
y0 varies in a discrete way in the period of cosine function 2nπ,
the linearly rescaled offset also betrays that the basins for each
attractor stand apart from each other in general.

All the operations can be mixed together for flexible offset
boosting in any dimension. And furthermore, the attractor self-
reproducing can be achieved by other periodic functions. For
example, periodic functions are introduced into system (4) in both
x and y dimension. Here G(y) and F(x) are selected from other
trigonometric functions. When a = 3.57, b = 0.7, F(x) = 3 tan (0.5x),
G(y) = sin (y) (Case F in Table. 1), infinitely many attractors scatter
in the x-dimension and y-dimension with corresponding attractor
space under unified Lyapunov exponents (0.22152, 0, −0.93029).
In x-dimension, the attractor distance is defined by the period of
tangent function while in y-dimension the attractor distance is
defined by the period of sinusoidal function. The attractor dis-
tances in x-dimension and y-dimension are equal this time, which

Figure 11 Chaotic attractor of system (5) (case E in Table. 1) with
a = 2.2, b = 0.7 under initial condition (1, 0, 1): (a) y-x, (b) y-z.

Figure 12 Coexisting attractors in system (5) with a = 2.2, b =
0.7, and IC = (1, y0, 1): (a) y-x, (b) y-z. Here cyan is for y0=−6π,
pink is for y0=−4π, yellow is for y0=−2π, red is for y0=0, green
is for y0=2π, blue is for y0=4π, black is for y0=6π.

Figure 13 Offset boosting of system (5) with a = 2.2, b = 0.7,
and IC = (1, y0, 1), y0=2nπ: (a) Lyapunov exponents, (b) average
values.

Figure 14 Lattice of strange attractors in system (4) with a = 3.57,
b = 0.7, F(x) = 3 tan (0.5x), G(y) = sin (y) (Case F in Table. 1): (a)
Coexisting strange attractors when initial conditions are (1 + 2kπ,
0 + 2lπ, 1 (−1 ≤ k, l ∈ Z ≤ 1)), (b) regulated offset when initial
conditions are (1 - 2kπ, 0 + 2kπ, 1 (−50 ≤ k ∈ Z ≤ 50)).
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is because both functions of tan (0.5x) and sin (y) have same period
of 2π, as shown in Fig. 14.

Combined regime of offset boosting can be realized in the fol-
lowing system, 

ẋ = 1 − aG(y)z

ẏ = z2 − z

ż = x + d − bz

(6)

where the offset boosting in the x dimension is controlled by the
constant d, while the offset boosting in the y dimension is oriented
by the initial condition of y (Case G in Table. 1). When a = 4.5,
b = 0.7, F(x) = x + d, G(y) = sin (y), infinitely many attractors
scatter in the y-dimension. Meanwhile the location in x-axis is
set by the constant d, as shown in Fig. 15. All these coexisting
attractors and constant-controlled attractors share a unified set of
Lyapunov exponents (0.12917, 0, −0.82917).

Figure 15 Infinitely many attractors shifted by d in system (6)
with a = 4.5, b = 0.7, G(y) = sin (y) (Case G in Table. 1): (a) x-y,
(b) x-z.

ATTRACTOR DOUBLING BY INTRODUCING ABSOLUTE
VALUE FUNCTIONS

Offset boosting from a substitution of absolute value function can
bring doubled coexisting attractors (Li et al. 2019). For example,
take y�|y| − c like, 

ẋ = 1 − a(|y| − c)z

ẏ = sgn(y)(z2 − z)

ż = x + d − bz

(7)

The original attractor obtained its reproducing in the dimension
of y, pseudo-double-scroll attractor with Lyapunov exponents
(0.1477, 0, −0.64335) is as shown in Fig. 16. Combined regime
of offset boosting can be realized when the offset booster d is not
zero. As shown in Fig. 17, the pseudo-double-scroll attractor
is controlled locating at various positions in the dimension of
x according to the offset booster d. Furthermore, the distance
between any two doubled coexisting attractors can be controlled
by selecting a propitiate value of c in the absolute value function.
As plotted in Fig. 18, when c = 1, doubled coexisting attractors
stand separately at both sides in the dimension of y. If we hide the
obvious independent constant d as the period in the x-dimension
trigonometric function as,

ẋ = 1 − a(|y| − c)z

ẏ = sgn(y)(z2 − z)

ż = 3 sin(x)− bz

(8)

Infinitely many attractors in the dimension of x will also get
doubled according to the dimension of y, as shown in Fig. 19. As
proved, any of those reproduced coexisting attractors share the
unified set of Lyapunov exponents [0.2328, 0, −0.7328]. As col-
lected in Table. 2, in fact, all those reproduced coexisting attractors
have almost the same sets of Lyapunov exponents.

Figure 16 Pseudo-double-scroll attractor in system (7) with a =
3.55, b = 0.5, c = d = 0 under initial condition (1, 2, 1): (a) y-x, (b)
y-z.

Figure 17 Chaotic attractors in system (7) with a = 3.55, b = 0.5,
c = 0: (a) y-x, (b) y-z. Here in the left plot, red is for d = 5 and
IC = (−4, 2, 1), green is for d = 0 and IC = (1, 2, 1) and blue is for
d = −5 and IC = (6, 2, 1); because of the same plot in y-z plane,
here a third color is applied for representing each coexisting
attractor.

POLARITY CONTROL BASED ON OFFSET BOOSTING

Moreover, the offset boosting can introduce polarity reversal lead-
ing to other regimes of systems with coexisting attractors if the
polarity balance is maintained typically conditional symmetry is
expectable (Li et al. 2020c). Revising the original system to be,

ẋ = 1 − ayz

ẏ = z2 − |z|

ż = x − bz

(9)

The offset in the dimension of x and y win the polarity return
in the right hand of the equation breeding conditional symmetry,

ẋ = 1 − a(|y| − e)z

ẏ = z2 − |z|

ż = (|x| − f )− bz

(10)

It is clear that the offset boosting in the dimension x and y
does not change the polarity of the left hand of Eq. (10) but gives
birth to polarity reversal by the absolute value function, which is
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■ Table 2 Chaotic systems with flexible offset boosting and their basic properties

System Parameters LES DKY

(1) a = 3.55, b = 0.5 0.1510, 0, −0.6510 2.2319

(2)(Case A) a = 3.55, b = 0.5 0.1510, 0, −0.6510 2.2319

(3)(Case B) a = 3.55, b = 0.5 0.1510, 0, −0.6510 2.2319

(4)(Case C) a = 3.55, b = 0.5 0.23401, 0, −0.73402 2.3188

(4)(Case D) a = 3.55, b = 0.5 0.14275, 0, −0.64275 2.2221

(5)(Case E) a = 2.2, b = 0.7 0.13415, 0, −0.83416 2.1608

(4)(Case F) a = 3.57, b = 0.7 0.22152, 0, −0.93029 2.2381

(6)(Case F) a = 4.5, b = 0.7 0.12917, 0, −0.82917 2.1558

(7) a = 3.55, b = 0.5 0.1477, 0, −0.64335 2.2228

Figure 18 Chaotic attractors in system (7) with a = 3.55, b = 0.5,
c = 1: (a) y-x, (b) y-z. Here in the left plot, red is for d = −5 and
IC = (6, 1, 1), blue is for d = −5 and IC = (6, −1, 1), green is for
d = 0 and IC = (1, −1, 1), magenta is for d = 0 and IC = (1, 1,
1), yellow is for d = 5 and IC = (−4, 1, 1) and cyan is for d = 5
and IC = (−4, −1, 1); because of the same plot in y-z plane, here
a third color is applied for representing each coexisting attractor.

Figure 19 Chaotic attractors in system (8) with a = 3.55, b = 0.5,
c = 1: (a) y-x, (b) y-z. Here because of the same plot in y-z plane,
a third color is applied for representing each coexisting attractor.

counteracted by the polarity reversal of z leading to conditional
reflectional symmetry. As depicted in Fig. 20, coexisting chaotic at-
tractors are produced by 2-D offset boosting in x and y dimensions
where the polarity balance is retained by the inverse of z.

Figure 20 Coexisting attractors in conditional symmetrical sys-
tem (10) with a = 2, b = 0.8, e = f = 4 induced by 2-D offset
boosting in x and y dimensions: (a) x-z, (b) y-z.

As pointed in (Li and Sprott 2017; Li et al. 2021), offset boosting
may create flexibly-selected repellor if it exists in a function for
equilibria controlling. With the transformation like,

ẋ = (1 − a(|y| − e)z)p

ẏ = (z2 − |z|)p

ż = ((|x| − f )− bz)p

(11)

one of the coexisting attractors turns to be a repellor when the
function p is introduced as p = y or p = y − 1, as shown in Fig.
21. Since the coexisting attractors scatter in the y dimension with
relatively larger distance, here the offset in the equilibria plane
y = 1 creates desired repellor. Moreover, system (9) can be revised
to be a time-reversable chaotic system (Li et al. 2021),

ẋ = 1 − ay(|z| − g)

ẏ = (|z| − g)2 − ||z| − g|

ż = x − b(|z| − g)

(12)

52 | Li et al. CHAOS Theory and Applications



The time reversable property can be proved by the
invariance of system (12) under the transformation of
t�−t,x�−x,y�−y,z�z + d. Polarity balance is maintained by
the offset boosting in the dimension of z giving coexisting attractor
and repellor as shown in Fig. 22.

Figure 21 Coexisting chaotic attractor (red) and repellor (green)
of system (11) with a = 2, b = 0.8, e = f = 3: (a) p = y, (b)
p = y − 1.

Figure 22 Coexisting chaotic attractor (red) and repellor (green)
of system (12) with a = 2, b = 0.8, g = 3: (a) x-z, (b) y-z.

RESULTS AND DISCUSSION

Offset boosting of a chaotic signal or attractor represents corre-
sponding attractor boosting. Extra introduced constant and initial
condition can both trigger this process giving attractor boosting
with any desired offset and producing chaotic signals with de-
signed averaged values in a continuous or a discrete way. From
the above demonstration, we can select proper approach to realize
offset boosting according to our restriction. For obtaining a chaotic
waveform with desired average, the offset booster is reliable since
any DC power supply is easily available and selectable. For po-
larity control from the bipolar signal to monopolar signal or vice
versa, direct constant control with a DC source can also accomplish
this task effectively and output any desired stable signals.

For free access to the attractor with various offset, periodic func-
tion or absolute value function can also be introduced for attractor
reproducing or doubling, where initial condition is applied to visit
any included attractor. For this purpose, periodic functions may
be introduced for free attractor reproducing. Attractor growing
may happen in this case. Absolute value function can be pulled
in a dynamical system for attractor doubling. For some specif-
ical systems, the insert of absolute value function may bring a
polarity reversal giving conditional symmetry or time-reversable
conditional symmetry.

Parameter-oriented and initial-condition-oriented offset boost-
ing can be combined together for engineering application accord-
ing to the engineering restriction. Furthermore, some other piece-
wise linear functions (Li et al. 2020a,b) can be designed for attractor

selecting and reproducing, where all the selected attractors can be
arranged in any dimension or in any order if the offset is controlled
harmoniously for all the attractors. Dynamic editing is heading to
this direction for further exploration.
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