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INTRODUCTION 
Artificial Intelligence (AI) and its breakthrough 
technologies have changed the entire world around 
us in the past few decades. In view of its powerful 
automation functions in many disciplines, AI is the 
greatest advancement in modern life and the fourth 
industrial revolution in the world (1). The community 
has great interest in the use of ML and DL algorithms 
intended for the medical arena, considering that 
radical technologies of patients’ detection and 
computing capabilities progressively increase (2).  
The advanced technology of AI represents unique 
professional solutions to medical physics problems, 
as a means to use ML and DL effectively and legally 
in radiology and RO applications. A key theme of the 
recent research demonstrates the impact of the 
successful advanced data analysis methods on 
medical physics, while discussing the drawbacks of 
the automation (3-5).  This work is a review of 
scientific and medical literature for publicly accessible 
official publishers based on recent online resources.  

 
The outcomes expected to influence the medical 
literature, by providing an overview perspective to ML 
and DL modeling.  
 
Key Points 
1.  Learning the basic concepts of ML and DL.    
2.  Platforms and datasets as tools for modeling data 
science work related to medical physics.  
3.  Application areas of radiology and RO (lesion's 
segmentation, detection, imaging characteristics, 
image processing and reconstruction, treatment 
planning, quality assessment and assurance).  
5.  Challenges and strategies. 
 
Fundamental Concepts and Principles 
AI is a computer system theory and production 
capable of simulating human's thought and behavior 
(6). ML is a sub-part of AI designed to interpret data 
and acquire decision-making skills. It includes 
computer training, which requires how to use sample 
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data or experience to optimize performance results 
(7). DL is a set of methods introduced in ML, which 
attempts to analyze the potential patterns embedded 
in the data under practical constraints. The subject 
has performed remarkably in a wide variety of fields 
(8). The association of ML and DL as AI 
subcategories is shown in Figure 1. 
 
ML and DL Models 
ML and DL most powerful algorithms have been 
addressed through several types of training 
strategies. Supervised learning (SL) is a method that 
enforces the model's enforcement, to align marked 
data with a goal relation to the input outputs. The key 
examples of SL learning are the Decision Tree, 
Random Forest, KNN, Linear Regression, and logistic 
models. Unsupervised learning is a set of approaches 
that eliminate the need to capture target information. 
K-means an exemplar of USL that can divide the 
dataset into groups for specified features. Semi-
supervised learning (semi-SL) avails using part of the 
datasets without labeling targets. Semi-SL models 
incorporate labeled and unlabeled data, which are 
further subdivided into semi-SL classification and 
semi-SL Clustering. Reinforcement Learning (RL) 
enables an agent to learn by interacting through a 
present system or environment to produce states 
based on the agent's actions (9). Markov Decision 
Process models are applied in ML for discrete, 
stochastic, and sequential environments decision 
making. RL incorporates the superior perception in 
DL to deal with a more complex task. 

Supervisory Neural Networks 
Algorithm-based supervised DL can decipher 
complex tasks in the real world and specific 
disciplinary problems. Supervised neural network is 
an artificially modeled neural network with a dense 
multi-layer structure that produces results like training 
network labels. The layers are connected by 
activating neurons, which are simulated in a way of 
structure and function of actual biological human 
brain neurons. An example of natural and artificial 
neural work on an object or disease detection process 
is shown in Figure 2. Supposing the system in which 
convolutional neural network attempts to interpret the 
brain image by training neurons to discover the core 
disease class in an analogous way as in a human 
brain (10). 
The Models designed by classical neural networks 
(ClassNet), convolutional neural networks (ConvNet), 
or recurrent neural networks (RNNs) are usually used 
as label-based networks in DL. These models mainly 
combine particular modules to perform tasks defined 
in the supervision process. First, linear function 
means that the input is multiplied by a constant 
weight. The second is a non-linear activation function, 
including a sigmoid, an S-shaped curve, which is 0 to 
1. The hyperbolic tangent function (tanh) is an S-
shaped curve with a range of -1 to 1. The most used 
activation function is the rectified linear unit (ReLU) 
(11), which returns zero when the input is negative, 
and returns the linear value of the input if it is positive. 
The third function is required in a probability-weighted 
prediction of the output as SoftMax. 

 
Figure 1. Demonstrates the interrelationship of ML and DL technology as a subcategory of a broad field of artificial 
intelligence innovation 
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The Classical Neural Network or Fully Connected 
Neural Network (FCN) are modeled in the basis of the 
statistical artificial neural network (ANN). 
Convolutional Neural Networks (ConvNet) are 
advanced version of the classic artificial neural 
network. It is possible to gain access to ConvNet as 
the most robust network that efficiently manages 
structured and unstructured complex data types. 
They involve coevolutionary calculations that 
combine with the layer of data to generate new 
characteristic images and feed them into the next 
layer (12). ConvNet can perform image recognition, 
segmentation, video analysis and natural language 
processing tasks effectively. The U-net (13), with its 
3D version V-net (14), is a common segmentation 
architecture. Recurrent neural networks are used for 
the prediction of sequence data such as writing, 
speech, time series. Long and short-term memory 
networks (LSTM) and gated recurrent units (GRU) 
are the most used forms of RNN (15,16).   
 
Unsupervised DL Models 
Unsupervised DL models commonly include 
automatic encoders and Boltzmann's machines. 
Autoencoder is a method that uses neural networks 
for feature learning purposes. There are several types 
of autoencoders, including convolutional 
autoencoders, punctured autoencoders, denoising 

autoencoders, sparse autoencoders, stacked 
autoencoders, and so forth (17). A Boltzmann 
machine network (BMN) is made up of symmetrically 
linked neurons that make stochastic predictions. It 
contains a basic learning method that enables to 
discover the characteristics of training data that 
reflect complex rules (18). Restricted Boltzmann 
Machine (RBM) and Stack, Deep Belief Network 
(DBN) are prominent examples of BMN (19). 
 
Semi-Supervised DL Models 
Semi-supervised learning models are proposed to 
create predictions similar to provided knowledge of 
data structures. One of the recent architectures is the 
Generative Adversarial Network (GAN). GAN is a 
combination of basic neural network generator and 
discriminator. The Networks application can extend 
from an image and text generation to new drug 
discovery processes, for example (20). Holistic 
approach, an area of research in a semi-supervised 
learning that attempts to unify the existing dominant 
techniques into a coherent system to achieve good 
quality results. 
 
Reinforcement DL Models 
Deep reinforcement learning (DRL) is a method by 
which intelligent agents act in the environment 
through scientific explorers. DRL algorithms can be 

 
Figure 2. Explains the heuristic relationship between biological and artificial neural networks when performing 
recognition and classification functions (a). Object recognition through biological neural networks (b). The artificial 
structure of the deep neural network to identify brain diseases. Source (Zaharchuk et al, 2020). 
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divided into model-based and model-free methods 
such as value-based and policy-based strategies. 
The fundamental value-based algorithm is known as 
the Q-learning algorithm. Model-based methods use 
predictive models to plan and update to study the 
world, and then build strategies based on that model. 
The policy-based model will unambiguously learn the 
function of the stochastic strategy, which maps 
behavior through sampling (21).  
 
Model Training and Optimization Algorithm 
Model training is a process in which optimization of 
model parameters takes place. In supervised or semi-
supervised learning algorithms, the goal of training is 
to minimize the cost function or naming (loss function) 
and update the parameters that affect the network in 
a good way. Several types of cost functions can be 
creatively described, such as cross entropy and dice 
coefficients or new methods that combine both 
methods (22). Optimizer’s methods such as 
stochastic gradient descent (SGD) or Adaptive 
Moment Estimation (ADAM) can help alleviate 
potential high memory usage issues (23).  
 
Tools for Research 
Modeling Platforms 
ML and DL frameworks have played a key role in 
linking theory with program practice. There are many 
platforms that can be used for this type of modeling 
work, such as TensorFlow™, Caffe, Pytorch, 
MATLAB®, Theano, etc. TensorFlow, a platform of 
Google Brain team, which designed using Python, 
can become a one-stop framework for ML and DL 
modeling goals. It’s the core open-source library for 
developing and training models (24). TensorFlow 2 
integrates with Keras to provide an advanced DL 
application programming interface (API), which can 
be simple, flexible, and powerful modeling functions 
(25).    

PyTorch is the fastest growing community and 
support environment in automatic differentiation 
module for dynamic calculations in a Pythonic space 
(26). Caffe (27), developed by Berkeley AI Research 
(BAIR). Caffe is a framework, written in C++ with a 
Python interface. MATLAB® statistics and ML, deep 
learning, and RL toolboxes allow models to be built 
from their existing packages, including all outstanding 
architectural modeling (28). MATLAB® researchers 
often benefit from large community-based support 
models built into other frameworks (such as 
TensorFlow, Keras, PyTorch, Caffe, etc.). Through 
direct imports into their environment.  
 
Datasets 
Datasets obtained in radiology and RO have 
promoted the development of medical research in the 
era of artificial intelligence. Patient data acquisition is 
primarily carried out through advanced techniques, 
which can represent an effective source for acquiring 
the datasets for modeling. Imaging modalities for 
these techniques can go beyond computed 
tomography (CT), single photon emission computed 
tomography (SPECT), and positron emission 
tomography (PET) and magnetic resonance imaging 
(MRI). In addition to radiotherapy-planning 
techniques of sophisticated forward-planned 
intensity-modulated (fIMRT), inverse-planned 
intensity modulated (iIMRT), 3D conformal radiation 
therapy (3D-CRT) and Volumetric modulated arc 
therapy (VMAT). 
Some established medical institutions have made 
great efforts to release a considerable number of 
datasets. The National Cancer Institute (NCI) 
provides a comprehensive resource guide for 
scientists and an extensive list of databases. The 
dataset covers research areas, including cancer 
diagnosis, treatment, and other medical physics-
related issues. The Cancer Imaging Archive (TCIA) is 

 
Figure 3. Illustrates the gradient descent optimization graph (a) from the bias (Bs) to the global minimum (Gm) (b) 
realizing the optimization to find the weight vector (w) of the steepest decline in the cost gmin (w) 
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an ever-growing dataset that mainly includes 
DICOM's CT, MRI, and PET images of organ 
structures, radiation treatment plans, and dose data 
(29).  Another impressive archive is the Cancer 
Genome Atlas (TCGA), which contains a series of 
important cancer-inducing gene mutations to improve 
the standard of diagnosis and treatment (30). As well, 
the dataset released by challenges is a valuable 
resource for the medical research community to solve 

various problems, such as the Grand and Brain 
Tumor Segmentation (BraTS) challenge (31).  
 
Applications of AI in Radiology and RO 
Medical Diagnosis-Established Research Models 
Organ, Lesion Segmentation 
Segmentation is the process of dividing an image into 
non-overlapping regions. It is usually used to highlight 
a specific area of interest through the generated map. 

Table 1. Explains the recently reviewed applications of DL in diagnosis, treatment, and image processing research 
Proposed 
method. 
by 

Anomaly/case 
under study 

Year Imaging 
Modality 

Planned 
Task 

Training/Testing 
Dataset 

Validation 
Dataset 

Network 
Dimension 

DL 
Model 

Evaluation 
Metrics 

Jojoa 
Acosta et 
al (42)  

Melanoma 2021 Digital 
Dermatoscope 

Classification 1995/598 
İmages of the 
ISBI1 challenge 
2017 

149 
image 

2D MR_CNN1 
Resnet152 

Best of six 
modals’ overall 
accuracy: 
0.904 
Sensitivity: 
0.820 
Specificity: 
0.925 

Moreau 
et al (59) 

Tumor growth 2021 Simulation 
technique 

Dose 
fractionation 
Simulation 

Lattice-gas, 
cellular 
automaton for 
tumor growth and 
effect of 
radiotherapy 
simulation. 

- 2D Tabular Q-
learning 
DQN1 
DDPG1 
RL 

Best algorithm 
 TCP: 100% 
D1

mean (32.1 ± 
0.2) Gy1 
Nfract (8.2 ± 0.1) 
T1

mean (195.8 ± 
1.4) h1 

Zhen et al 
(61) 

Liver tumor 2020 MRI1 Classification 1,210 patients 
(31,608 image) 
for training 

201 
patients 
(6,816 
images) 
External 
cohort 

2D CNN  
AUC1: 0.946 vs. 
0.951,  
95 % CI1, p = 
0.664 
Malignant vs. 
benign 
discriminative 
model 

Van Dijk 
et al (56) 

Head and 
Neck cancer 

2020 CT1-scan OAR 
Segmentation 

589/104 
Patient 

- 2D DLC1 
Neural 
network 

Quantative 
performance 
measurement 
DSC1: 0.74 
Dmean: 1.1 
Dmax: 0.8 Gy 

Shen et al 
(58) 

Prostate 
cancer 

2020 IMRT1 Radiation 
treatment 
planning 

 
10/64 
Patient 

- 3D Virtual 
treatment 
planner 
DRL1-
based 
neural 
network 

Quality score of 
8.44 (± 0.48) 
from 9 

Siar et al 
(40) 

Brain tumor 2019 MRI Detection 1666/226 
Image 

- 2D CNN Accuracy 
99.12% 

Fu et al 
(48) 

Prostate 
cancer 

2019 MRI 
CT-scan 

Cross-
modality 
synthesis 

20 
Patient 

K-fold 
cross 
validation 
(k=5) 

2D and 3D CNN DSC: (0.82 
±0.04) 
Recall: (0.84 ± 
0.04) 
Precision: (0.80 
± 0.08) 
Average values 
for the 3D CNN 
bone region 

aInternational Symposium on Biomedical Imaging, bMask and Region-based Convolutional Neural Network, cDeep Q network, dDeep 
deterministic policy gradient, eDose, fGray, gTime, hhour, iMagnetic Resonance Imaging, jArea under the receiver operating characteristic curve, 
kConfidence Interval, lComputed Tomography,mDL contouring, nDice similarity coefficient, oIntensity-modulated radiation therapy, pDeep 
Reinforcement Learning 
Adopted from: (Affane et al., 2020) (76). 
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These maps provide the possibility that the target 
area segmented by the machine is related to the 
specified area or ground truth. DL is applied to 
segment several organs or lesions, using an entire 
image or image patches. The segmentation of 
fibroglandular tissue and breasts, as well as cranio-
maxillofacial bone components, is accomplished by a 
derivative of the popular network architecture U-net 
(32,33). Holistic Nested Network is another DL 
architecture that has been successfully applied to 
segment prostate and brain tumors (34). 
 
Radiomics, Radiogenomics Analysis and 
Characterization 
In-depth reviews of ML and DL methods used in 
radiomics or quantitative image analysis, showing 
diverse clinical applications, research prospects and 
computing platforms (35). Applications of ML based 
radiomics in gliomas and prostate is utilized to predict 
the expression of multiple pathological biomarkers, 
with acceptable accuracy and stability (36,37). DL 
methods can also be used as feature extractors for 
tumor characterization. This concept is widely 
employed to study the relationship between genetic 
and radiological characteristics, and to extract 
patient-specific characteristics of glioma and non-
small cell lung cancer (38,39).   
 
Lesion Detection 
Anomaly detection is a crucial process, it involves 
some difficulties, and in many clinical situations can 
lead to human error. Over the years, many studies 
have focused on automated detection algorithms as 
they can to reduce errors and time costs, while 
simplifying clinical workflow and providing a high-
quality diagnosis (40,41,42). Thorough work has 
been done through deep convolutional neural 
networks and its pre-trained architectures to use X-
rays, chest CT scans, and MRI imaging data to 
detect, multiple lung lesions, common lesions 
(pulmonary nodules), and microbleeds in the brain 
(43-45).   
 
Image Processing   
Image processing through DL models is applied 
extensively to enhance the quality of medical images 
in the past few years. Effective solutions for 
convolutional neural networks have been proposed to 
improve bone suppression and reconstruct high-
quality PET images (46,47).       

Multiple studies have confirmed the integration 
between modalities and the development of artificial 
CT, MRI, and PET images based on DL (48-52).   
  
Quality Assessment 
Quality assessment is a critical issue that can be 
managed by DL. The pre-trained VGG19 fine-tuned 
convolutional architectures can predict whether a CT 
scan meets the minimum diagnostic image quality 
requirements that a thoracic radiologist will accept 
(53). As an indicator of technical analysis and review, 
the Deep-ConvNet model with T2-weighted MRI liver 
dataset is used for a task-driven automatic image 
quality assessment (54). Radiologists, pathologists, 
or other histopathological or genomic examinations 
should be performed during the evaluation process to 
better identify cancer signs (55). 
  
RO Successful Trends 
The AI system has triggered the research of routine 
and common RO tasks with its powerful efficiency. 
These cover the basic processes of the workflow from 
patient assessment to quality assurance and patient 
follow-up. The process may go beyond simulation, 
target and risk organ contours, treatment planning, 
and beam delivery (56-59).     
 
Radiotherapy Treatment Planning 
The automated treatment planning is subdivided in 
stages of beam direction selection, dose and fluence 
map estimation, and delivery parameter generation 
(57). DRL is used in treatment planning to model 
various aspects of the human body planner, automate 
dose fraction routines, and develop radiation plan 
adaptation strategies (58,59). Certain AI methods of 
adaptive radiotherapy can facilitate dose modification 
through the technology by providing clinical decision 
support (60).   
In the route of developing methods for planning and 
predicting doses and toxicity to normal tissues, for 
certain tumor locations such as cervix and prostate, 
the ConvNet transfer-learning VGG-16 and AlexNet 
were established (61,62).     
 
Quality Assurance and Response to Treatment 
Quality assurance (QA) is an essential concept, 
serves in properly apply radiation or to cancer 
treatment. Applications of ML in QA tools are 
introduced to improve the optimization of 
radiotherapy by automating patient’s plan verification 
and dosimetry (63).   ML highlights the interesting 
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aspects of tumor response modeling, the likelihood 
that tissue becomes normal, and the normal tissue 
complication probability. Moreover, it also includes 
the trade-off between complexity and interpretability 
between structured and unstructured data for 
radiation effect modeling and prediction (64).  
DL as well can be used to evaluate treatment 
response over time. ConvNet, for example, with a 
dynamic contrast-enhanced MRI breast examination 
protocol is used to check the response to neoadjuvant 
chemotherapy (65). The feasibility of applying 
ConvNet in patients CT bladder datasets was studied 
to help determine cancer’s treatment response (66).   
 
Commercial Software Developed 
Apropos of commercial software and application 
developers targeting AI in radiology and radiation 
oncology, they have introduced an interactive 
software device based on the ML and DL models 
connected to the network. These devices help to 
automatically collect data and perform routine clinical 
tasks in an efficient manner. 
 
ML and DL, Radiology Established Models 
Given the current application of AI in radiology 
imaging, it has been clinically used by major 
technology companies, namely Butterfly Networks, 
Arterial, AI4MedImaging, Avicenna.AI, and IBM 
Watson. Butterfly Network, Inc., a healthcare 
technology company that provides portable entire-
body ultrasound, has released the Butterfly Blueprint, 
a system-wide framework designed to facilitate the 
measurement and deployment of ultrasound across 
all healthcare systems to provide bedside information 
for clinical decision-making (67). Visualizing and 
quantifying blood flow autonomously in the body 
using MRI datasets is now possible through Arterys 
products. In addition, the company has developed an 
AI technology to detect breast cancer, calcification, 
and density assessment. Likewise, it aids in the 
diagnosis of chest and lung abnormalities. It can also 
provide the advantage of identifying neurological 
disorders (68). One of the currently useful Conformitè 
Europëenne (CE) certified products is AI4Cardiac 
Magnetic Resonance Software, produced by 
AI4MedImaging for functional and anatomical 
diagnosis of heart disease at the ideal time (69). A 
high-performance AI tool developer Avicenna.AI, 
handing over AI expedients for neurovascular and 
thoracic-abdominal pathology (70). IBM product’s 
intended for a fast medical images processing and 

interpreting the data from a variety of the databases. 
These AI solutions control radiology workflows and 
simplify information deployment with cloud-based 
access. Besides, availing disease diagnosis by 
means of materializing patients' relevant information 
(71). 
 
ML and DL, Medical Device Brands in RO 
Several large, leading medical equipment 
manufacturers in the field of radiation therapy, such 
as Varian and Elekta, have used AI as an efficacious 
solution in their advanced technologies. Ethos™ 
Therapy is a radiation therapy system developed by 
Varian Medical Systems that uses artificial 
intelligence (AI) and machine learning to perform 
adaptive radiation therapy with an actual on-couch 
daily replanning. The automated system works by 
acquiring kV-cone beam computed tomography 
(CBCT) images, detecting selected normal organ 
structures, and propagating target structures from 
reference images to kV-CBCT images.  Therefore, a 
session patient model is used to generate a 
scheduled, and an optimized adaptation plan. As for 
the acceptability and confirmation of the system’s 
work in each process, it is governed by the users' 
decisions (72,73).  
IntelliMax® is the software part of Elekta Care™. The 
platform is capable of providing predictive monitoring, 
diagnosing, and correcting problems. Through this 
system, maintenance issues can be identified and 
resolved before they occur, and problem resolution is 
accelerated. It is offered by a securely controlled 
remote access function that is concerned with 
proactive support and planned maintenance of linac 
equipment.  Most recently, unplanned clinical 
downtime has been eliminated with the IntelliMax pro 
Linac Electron gun replacement (74). 
 
Research Challenges and Viable Remedies   
Medical physicists are in a unique position to face the 
challenges of ML and DL research and 
implementation. The main challenge of ML and DL, 
namely, to achieve meaningful research with 
scientific and practical value is the data size. The 
severity of the data size problem depends on how the 
data sample is combined with the dimension of the 
problem (4,5). This obstacle is described as the curse 
of dimensionality, which indicates that as the 
dimensionality of the problem increases, the size of 
the training data needs to be increased. Another 
challenge known as overfitting arises when the model 
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parameters are more to be covered by the available 
data. When it is assumed that the training set is 
sufficient to complete the distribution of the data, 
hyperparameters help adjust the performance of DL 
by using large models with more parameters than the 
data (75). The interpretability of the model represents 
a powerful challenge. It describes the directness of 
knowledge and the information that ML and DL 
obtains from the input data. As well, it helps to 
understand and verify the accuracy of the model, 
which is why it is essential for many applications in 
the real world. Often, a DL model is denoted as a 
"black box," because researchers know nothing about 
what the extremely nonlinear model includes (4). This 
has been a substantial barrier to further use of DL 
models in a variety of world-wide applications.  
Robustness signifies the responsiveness of the 
model output to the disturbance of the input variable. 
A high degree of sensitivity means weak strength.  
The robustness of the DL model in the field of 
healthcare is closely related to patient safety and the 
quality of healthcare. The enhancement of the 
training dataset is an effective way to increase the 
robustness of the model. If the model is unstable, it is 
recommended to use vulnerable samples for further 
model refinement in the training data (5).  
The key areas of current focus are RO, diagnostic 
radiology, nuclear medicine, dosimetry, and health 
physics. From the detailed discussion of ML and DL, 
the guide for successful research in the application of 
the comprehensive field of medical physics is 
excerpted. Before conducting new research, the data 
should be carefully reviewed to prevent problems 
such as errors, deviations, distortions, and confusing 
factors. Because it is difficult to obtain enough data in 
many applications of medical physics. Transfer 
learning is one of the efficient ways of reducing the 
data size requirement. As the name suggests, 
transfer learning refers to the way in which a model 
built for one task is used as a starting point for the 
second similar or modified work in another model. 
GPU programming is particularly useful for solving 
the challenges of large models and substantial 
amounts of computational data. Most DL 
programming frameworks such as TensorFlow and 
PyTorch support the GPU environment, so this 
solution is highly recommended. Various of methods 
have been developed to solve the problem of 
overfitting. Changing the number and values of 
network parameters and reducing model complexity 
is one way to reduce overfitting.  Another way is to 

expand the dataset. GAN has demonstrated its ability 
to synthesize more realistic samples, thus by using 
GAN we can participate in solving the problem of 
dataset scarcity and overfitting. 
 
DISCUSSION 
Recent medical physics research in radiology and RO 
tends to explore numerous of innovative local 
methods of DL, starting from algorithm development, 
combining multidisciplinary functions, or simulating 
existent technical working environment conditions to 
achieve process goals. Table 1 lists the retrospective 
case methods used in contemporary instances and 
their evaluation performance. The modeling 
technique of Jojoa Acosta et al. (42) is a 
comprehensive training, tested on six models, and 
successfully classified melanoma from dermoscopic 
images based on the deep residual learning 
framework. Modeling a classifier’s first stage, 
convolutional neural network automatic masking 
region of interest and using a validation set can rate 
a significant elevation in their models’ performance. 
Using relatively more epochs in the training step and 
reducing the learning rate can provide the best 
processing results. Moreau et al. (59) use tumor 
growth models to develop radiation dose treatment 
plans. Their DRL agents are effectively skilled to 
optimize dose fractionation, reacting with the tumor's 
tissue effects in the simulated irradiation environment 
while sparing the healthy cells. Thereby, can 
autonomously obtain dose adaptation action guided 
by rewards, in each tumor situation. The results 
specified in the evaluation index section of Table 1 
represent Gray's average dose and its associated 
fractions and average time estimates (in hours) as the 
lower value obtained from the deep Q network 
algorithm. The virtual treatment planner proposed by 
Shen et al. (58) based on a network of reinforcement 
learning. It is trained to simulate the intensity-
modulated radiotherapy environment to optimize 
prostate cancer and can be generalized to other 
issues using different planning techniques. Zhen et al 
(61), make use of massive hepatocellular lesions’ 
datasets, driving the diagnosis by means of a multi-
classifier based convolutional neural network. The 
research has achieved remarkable results. 
Compared to earlier efforts, it emphasizes linking 
clinical data with imaging sets in the framework to 
improve classification operations. Another key point 
of using an independent external validation set, 
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meanwhile it is valuable for adjusting model 
parameters or verifying its performance. 
 
CONCLUSION 
The review taken a snapshot through AI to study the 
latest diagnostic and treatment automation 
technologies in the scope of medical physics. It can 
be inferred that DL is a rapidly developing research 
field with broad prospects in medical physics 
applications. As well, DL has proven to be one of the 
most proficient ML innovations in unstructured data 
modeling. ML and DL can effectively solve most 
medical imaging, radiology, and RO tasks. AI 
developments along with medical physicists’ work 
should be across the board to develop entirely 
automated practices.   
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