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Abstract

In this paper, we introduce an inertial parallel CQ subgradient extragradient method for �nding a common
solutions of variational inequality problems. The novelty of this paper is using linesearch methods to �nd
unknown L constant of L-Lipschitz continuous mappings. Strong convergence theorem has been proved
under some suitable conditions in Hilbert spaces. Finally, we show applications to signal and image recovery,
and show the good e�ciency of our proposed algorithm when the number of subproblems is increasing.
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1. Introduction and Preliminaries

Let H be a real Hilbert space endowed with an inner product ⟨., .⟩ and the induced norm ∥.∥.
A mapping A: H → H is said to be

(i) monotone if ⟨Ax−Ay, x− y⟩ ≥ 0 for all x, y ∈ H;

(ii) maximal monotone if it is monotone and its graph

G(A) := {(x,Ax) : x ∈ H}

is not a proper subset of one of any other monotone mapping;

Email addresses: pronkamonkitisak@gmail.com (Ponkamon Kitisak), c-wchp007@hotmail.com (Watcharaporn
Cholamjiak), damrongsak.ya@up.ac.th (Damrongsak Yambangwai)

Received : May 15, 2021; Accepted: September 01, 2021; Online: September 05, 2021.



P. Kitisak, W. Cholamjiak, D. Yambangwai, Results in Nonlinear Anal. 4 (2021), 217�234 218

(iii) L-Lipchitz continuous if there exists a positive constant L such that

∥Ax−Ay∥ ≤ L∥Ax−Ay∥ for all x, y ∈ H.

It is well-known that a monotone mapping A : H → H is maximal if and only if for each (x, y) ∈ H ×H
such that ⟨x− u, y − v⟩ ≥ 0 for all (u, v) ∈ G(A), it follows that y = Ax. Let C be nonempty closed convex
subset of H and A : H → H is a nonlinear operator. The variational inequality problem (VIP) can be
formulated as the problem of �nding a point x∗ ∈ C such that

⟨Ax∗, x− x∗⟩ ≥ 0, ∀x ∈ C. (1)

The set of solutions of VIP (1) is denoted by V I(A,C). However, the convergence of this method
requires slightly strong assumptions that operators are strongly monotone or inverse strongly monotone.
Many algorithms have been proposed and studied for solving VIP(1) of these algorithms involve projection
methods [5, 6, 10, 11, 39, 40, 43, 46, 47, 51]. The VIP(1) serves as a powerful mathematical tool and
generalizes many mathematical methods, in the sense that, it includes many special problems [29] such
as convex feasibility problems, linear programming problem, minimizer problem, saddle - point problems,
Hierarchical variational inequality problems. It is well known that VI(C,A) is equivalent to the following
�xed point equation (see [2, 3, 4, 16, 17, 44, 19, 21, 23, 26, 29, 31, 32, 33]), x = PC(x − λAx), λ > 0 and
rλ(x) := x − PC(x − λAx) = 0. By using the idea of the projection method, Korelevich [24] proposed the
extragradient method for solving the VIP(1) under the assumptions of Lipschitz continuous and pseudo-
monotone of the operator. In this method, if a closed convex set has a simple structure, then the projections
onto it can be discovered easily, the extragradient method is computable and very useful. However, we have
to use the projection onto C into two times in the extragradient method to obtain the next approximation
xn+1 over each iteration.

Later on, Censor et al. [8] proposed the subgradient extragradient method for sloving VIP (1). The
second projection onto the closed convex set of the extragradient method was replaced by the projection
onto a half Space. Censor et al. [7] used the hybrid method with subgradient extragradient method for
obtaining the strong convergence result. This algorithm is de�ned as follows:

x0 ∈ H,
yn = PC(xn − λAxn),
zn = αnxn + (1− αn)PTnxn,
Cn = {z ∈ H : ∥zn − z∥ ≤ ∥xn − z∥},
Qn = {z ∈ H : ⟨xn − z, x0 − xn⟩ ≥ 0},
xn+1 = PCn∩Qnx0.

(2)

Recently, Gibali [15] suggested a self-adaptive subgradient extragradient method by adopting Armijo-like
searches [52] and obtained convergence result for VI(A,C) in Rn when the pseudo-monotonicity and conti-
nuity of the operator are required.

Very recently, Shehu and Iyiola [34] proposed the modi�ed viscosity algorithm with adoption of Armijo-
line step size rule which is called viscosity type subgradient extragradient line method for a Lipschitz con-
tinuous monotone mapping that the Lipschitz constant is unknown in an in�nite dimensional Hilbert space.
This method is de�ned as follow:

x0 ∈ H,
yn = PC(xn − λnAxn), λn = ρln

(ln is the smallest nonnegative integer l
such that λn∥Axn −Ayn∥ ≤ µ∥rρl(xn)∥),
zn = PTn(xn − λnAyn),
xn+1 = αnf(xn) + (1− αn)zn, n ≥ 1,

(3)
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where Tn := {z ∈ H : ⟨xn − λnAxn − yn, z − yn⟩ ≤ 0}, ρ, µ ∈ (0, 1) and {αn} ⊆ (0, 1).
Our interest in this paper is to study the common variational inequality problems (CVIP). The CVIP is

to �nd x∗ ∈ C such that
⟨Aix

∗, x− x∗⟩ ≥ 0,∀x ∈ C, i = 1, ..., N, (4)

where Ai : H → H is a nonlinear operator for all i = 1, 2, ..., N.
In 2012, Censor et al. [9] presented the algorithm for solving the CVIP (4) here, �nite elements are

computed in parallel of each iterations. The closed convex subset C1
n, C

2
n, ..., C

N
n are constructed getting

xn+1 which is projected onto the intersection of these closed convex subset. This algorithm is generated by
x1 ∈ H and compute 

yin = PKi(xn − λi
nAixn),

zin = PKi(xn − λi
nAiy

i
n),

Ci
n = {z ∈ H : ⟨xn − zin, z − xn − γin(z

i
n − xn)⟩ ≤ 0},

Cn =
N⋂
i=1

Ci
n,

Wn = {z ∈ H : ⟨x1 − xn, z − xn⟩ ≤ 0},
xn+1 = PCn∩Wnx1.

(5)

This method has been extensively used due to its simplicity many authors improved it in various ways ( see
[14, 18, 20, 25, 31, 35, 36, 37, 48, 49, 50] ).

Inspired by the previous results, we introduce the new algorithm by modifying the hybrid subgradient
extragradient method combining inertial technique with adoption of Armijo-line step size rule and projection
onto the set of intersection sets of half-spaces to �nd common solution of variational inequality problems
(CVIP). We prove strong convergence theorem under some suitable conditions in Hilbert spaces. Moreover,
we apply our main results in image and signal recovery problems.

2. Main Result

In this section, we introduce an inertial parallel CQ subgradient extragradient method for variational
inequalities and prove the convergence theorem of the algorithms. Let Ai : H → H be a family of Li -
Lipschitz continuous for all i = 1, 2, ..., N with F = ∩N

i=1V I(Ai, Ci) ̸= ϕ. The algorithm is generated as
follow:

Algorithm 2.1. (Inertial parallel CQ subgradient extragradient method)

Initialization: Take ρ > 0, µ ∈ (0, 1), θ ∈ [0, 1) and {θn} ⊆ [0, θ]. Select arbitrary points x0, x1 ∈ H. For i

= 1, 2, ..., N set n := 1
Step 1. Compute sn,

sn = xn + θn(xn − xn−1).

Step 2. Compute yn,
yin = PC(sn − λi

nAisn),

where λi
n = ρl

i
and li is the smallest nonnegative integer such that

ρl
i∥Aisn −Aiy

i
n∥ ≤ µ∥sn − yin∥. (6)

Step 3. Compute zin,
zin = PT i

n
(sn − λi

nAiy
i
n), i = 1, ..., N,

where T i
n = {v ∈ H : ⟨sn − λi

nAisn − yin, v − yin⟩ ≤ 0}.
Step 4. Compute zn, i.e.,

z̄n = argmax{∥zin − sn∥ : i = 1, ..., N}.
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Step 5. Compute xn+1 = PCn∩Qnx1, where

Cn = {υ ∈ H : ∥z̄n − υ∥ ≤ ∥sn − υ∥},

and

Qn = {υ ∈ H : ⟨υ − xn, xn − x0⟩ ≥ 0}.

Step 6. Set n := n+ 1 and back to Step 1.

Lemma 2.2. For all i = 1, 2, ..., N , there exists a nonnegative integer li satisfying (6).

Proof. Suppose ∥sn−yin0
∥ = 0 for some n0 ≥ 1. Take li = n0, which satis�es (6). Suppose that ∥sn−yin1

∥ ≠ 0
for some n1 ≥ 1 and assume the contrary that ρn1∥Aisn − Aiy

i
n1
∥ > µ∥sn − yin1

∥. Then, by Lemma 6.3 of
[12] and the fact that ρ ∈ (0, 1), we obtain

∥Aisn −Aiy
i
n1
∥ >

µ

ρn1
∥sn − yin1

∥

≥ µ

ρn1
min{1, ρn1}∥sn − yi1∥

= µ∥sn − yi1∥. (7)

Using the fact that PC is continuous, we have that for all i = 1, 2, ..., N,

yin1
= PC(sn − ρn1Aisn) → PC(sn), n1 → ∞.

We consider two cases: sn ∈ C and sn /∈ C.

(i) If sn ∈ C, then sn = PC(sn). Now, since ∥sn − yin1
∥ ̸= 0 and ρn1 ≤ 1, it follows from Lemma 6.3 of

[12] that

0 < ∥sn − yin1
∥

≤ max{1, ρn1}∥sn − yi1∥
= ∥sn − yi1∥.

Letting n1 → ∞ in (7), we have that

0 = ∥Aisn −Aisn∥ ≥ µ∥sn − yi1∥ > 0.

This is a contradiction and hence (6) is valid.

(ii) If sn /∈ C, then

ρin1
∥Aisn −Aiy

i
n1
∥ → 0, n1 → ∞.

while

lim
n1→∞

µ∥sn − PC(sn − ρn1Aisn)∥ = µ lim
n1→∞

∥sn − PC(sn − ρn1Aisn)∥

= µ∥sn − PC(sn)∥ > 0.

This is a contradiction. Therefore, Algorithm 2.1 is well de�ned and implementable.
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Lemma 2.3. Suppose that x∗ ∈ F and the sequences {yin}, {zin} generated by Step 1 and Step 2 of Algorithm

2.1. Then

∥zin − x∗∥2 ≤ ∥xn − x∗∥2 + (1 + c)2θn⟨xn − xn−1, y
i
n − x∗⟩

− c
(
∥xn − yin∥2 + ∥zin − yin∥2

)
, (8)

where c = 1− µ > 0.

Proof. Let x∗ ∈ F . For each i = 1,2,...N, let uin = sn − λi
nAiy

i
n,∀n ≥ 1, we have

∥zin − x∗∥2 = ∥PT i
n
(sn − λi

nAiy
i
n)− x∗∥2

= ∥PT i
n
(uin)− x∗∥2

= ∥(PT i
n
(uin)− uin) + (uin − x∗)∥2

= ∥uin − x∗∥2 + ∥uin − PT i
n
(uin)∥2 + 2⟨PT i

n
(uin)− uin, u

i
n − x∗⟩ (9)

since x∗ ∈ F ⊆ C ⊆ T i
n by the property of the metric projection PT i

n
, we derive

2∥uin − PT i
n
(uin)∥2 + 2⟨PT i

n
(uin)− uin, u

i
n − x∗⟩

= 2⟨uin − PT i
n
(uin), x

∗ − PT i
n
(uin)⟩ ≤ 0 (10)

and

∥uin − PT i
n
(uin)∥2 + 2⟨PT i

n
(uin)− uin, u

i
n − x∗⟩ ≤ −∥uin − PT i

n
(uin)∥2. (11)

We then obtain from Algorithm 2.1 and Lemma 2.3 (ii) of [42] that

∥zin − x∗∥2 ≤ ∥uin − x∗∥2 − ∥uin − PT i
n
(uin)∥2

= ∥(sn − λi
nAiy

i
n)− x∗∥2 − ∥(sn − λi

nAiy
i
n)− zin∥2

= ∥sn − x∗∥2 − ∥sn − zin∥2 + 2λi
n⟨x∗ − zin, Aiy

i
n⟩. (12)

Since Ai is the monotone operator for all i = 1,2,...,N, we have

0 ≤ ⟨Aiy
i
n −Aix

∗, yin − x∗⟩
= ⟨Aiy

i
n, y

i
n − x∗⟩ − ⟨Aix

∗, yin − x∗⟩
≤ ⟨Aiy

i
n, y

i
n − x∗⟩

= ⟨Aiy
i
n, y

i
n − zin + zin − x∗⟩

= ⟨Aiy
i
n, y

i
n − zin⟩+ ⟨Aiy

i
n, z

i
n − x∗⟩.

Thus,

⟨x∗ − zin, Aiy
i
n, ⟩ ≤ ⟨Aiy

i
n, y

i
n − zin⟩. (13)

Using (12) in (13), we obtain

∥zin − x∗∥2 ≤ ∥sn − x∗∥2 − ∥sn − zin∥2 + 2λi
n⟨Aiy

i
n, y

i
n − zin⟩

= ∥sn − x∗∥2 + 2λi
n⟨Aiy

i
n, y

i
n − zin⟩ − ∥sn − yin + yin − zin∥2

= ∥sn − x∗∥2 + 2λi
n⟨Aiy

i
n, y

i
n − zin⟩ − 2⟨sn − yin, y

i
n − zin⟩

− ∥sn − yin∥2 − ∥yin − zin∥2

= ∥sn − x∗∥2 + 2⟨sn − λi
nAiy

i
n − yin, z

i
n − yin⟩ − ∥sn − yin∥2

− ∥yin − zin∥2. (14)
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Observe that

⟨sn − λi
nAiy

i
n − yin, z

i
n − yin⟩ = ⟨sn − λi

nAisn − yin, zn − yin⟩
+ ⟨λi

nAisn − λi
nAiy

i
n, z

i
n − yin⟩

≤ ⟨λi
nAisn − λi

nAiy
i
n, z

i
n − yin⟩.

Using the last inequality in (14), we have that

∥zin − x∗∥2 ≤ ∥sn − x∗∥2 + 2⟨λi
nAisn − λi

nAiy
i
n, z

i
n − yin⟩ − ∥sn − yin∥2

− ∥yin − zin∥2

= ∥sn − x∗∥2 + 2λi
n⟨Aisn −Aiy

i
n, z

i
n − yin⟩ − ∥sn − yin∥2

− ∥yin − zin∥2

≤ ∥sn − x∗∥2 + 2λi
n∥Aisn −Aiy

i
n∥∥zin − yin∥ − ∥sn − yin∥2

− ∥yin − zin∥2

≤ ∥sn − x∗∥2 + 2µ∥sn − yin∥∥zin − yin∥ − ∥sn − yin∥2

− ∥yin − zin∥2

≤ ∥sn − x∗∥2 + µ
(
∥sn − yin∥2 + ∥zin − yin∥2

)
− ∥sn − yin∥2

− ∥yin − zin∥2

≤ ∥sn − x∗∥2 +
(
µ∥sn − yin∥2 − ∥sn − yin∥2

)
+
(
µ∥zin − yin∥2 − ∥yin − zin∥2

)
= ∥sn − x∗∥2 − (1− µ)∥sn − yin∥2 − (1− µ)∥yin − zin∥2

≤ ∥sn − x∗∥2 − (1− µ)
(
∥sn − yin∥2 + ∥yin − zin∥2

)
≤ ∥sn − x∗∥2 − c

(
∥sn − yin∥2 + ∥yin − zin∥2

)
. (15)

From (15) and sn = xn + θn(xn − xn−1), we have

∥zin − x∗∥2 ≤ ∥(xn + θn(xn − xn−1))− x∗∥2

− c
(
∥(xn + θn(xn − xn−1))− yin∥2 + ∥yin − zin∥2

)
≤ ∥(xn − x∗) + θn(xn − xn−1)∥2

− c
(
∥(xn − yin) + θn(xn − xn−1)∥2 + ∥yin − zin∥2

)
≤ ∥xn − x∗∥2 + 2⟨θn(xn − xn−1), xn − x∗ + θn(xn − xn−1)⟩

− c
(
∥xn − yin∥2 + 2⟨θn(xn − xn−1), xn − yin + θn(xn − xn−1)⟩

+ ∥yin − zin∥2
)

≤ ∥xn − x∗∥2 + 2θn⟨xn − xn−1, sn − x∗⟩

− c
(
∥xn − yin∥2 + 2θn⟨xn − xn−1, sn − yin⟩+ ∥yin − zin∥2

)
≤ ∥xn − x∗∥2 − c

(
∥xn − yin∥2 + ∥yin − zin∥2

)
+ 2θn⟨xn − xn−1, sn − x∗⟩+ 2θnc⟨xn − xn−1, sn − yin⟩

≤ ∥xn − x∗∥2 − c
(
∥xn − yin∥2 + ∥yin − zin∥2

)
+ (1 + c)2θn⟨xn − xn−1, y

i
n − x∗⟩. (16)
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From (12) and (16), we obtain inequality (8).

Lemma 2.4. Suppose that {xn}, {yin}, {zin} generated by Algorithm 2.1. Then

(i) F ⊂ Cn ∩Qn and xn+1 is well-de�ned for all n ≥ 0.

(ii) If Σθn∥xn − xn−1∥ < ∞, then for each i = 1, ..., N, the following relations hold:

lim
n→∞

∥xn+1 − xn∥ = lim
n→∞

∥yin − xn∥ = lim
n→∞

∥zin − xn∥ = lim
n→∞

∥sn − yin∥ = 0.

Proof. (i) Since Ai is Lipschitz continuous, Ai is continuous. Thus, Lemma 2.1 of [38] ensures that V I(Ai, C)
is closed and convex for all i = 1, ..., N . Hence, F is closed and convex. From the de�nitions of Cn and Qn,
we see that Qn is closed and convex and Cn is closed. On the other hand, the relation ∥z̄n − υ∥ ≤ ∥sn − υ∥
is equivalent to

2⟨υ, sn − z̄n⟩ ≤ ∥sn∥2 − ∥z̄n∥2.

This implies that Cn is convex. Moreover, for each u ∈ F , from Lemma 2.3, we obtain ∥z̄n−u∥ ≤ ∥sn−u∥ .
Thus, F ⊂ Cn for all n ≥ 1. Next, we will show that F ⊂ Cn ∩Qn by the induction. Indeed, F ⊂ Qn and so
F ⊂ Cn ∩Qn. Assume that F ⊂ Cn ∩Qn for some n ≥ 1. From xn+1 = PCn∩Qnx1 and the characterization
of the metric projection by Lemma 2.3 (iii) of [42], we obtain

⟨υ − xn+1, xn+1 − x1⟩ ≥ 0, ∀υ ∈ Cn ∩Qn.

Since F ⊂ Cn∩Qn, ⟨υ−xn+1, xn+1−x1⟩ ≥ 0 for all υ ∈ F . This together with the de�nition of Qn+1 implies
that F ⊂ Qn+1. Thus, by the induction F ⊂ Cn∩Qn for all n ≥ 1. Since F ̸= ϕ, PFx1 and xn+1 = PCn∩Qnx1
are well de�ned.
(ii). We have xn = PQnx1 and F ⊂ Qn. For each u ∈ F , by the property of the projection PQn we have

∥xn − x1∥ ≤ ∥u− x1∥, ∀n ≥ 0. (17)

Thus, the sequence {∥xn − x1∥} is bouned and so {xn} is also bounded. From xn+1 ∈ Qn and xn = PQnx1,
we also obtain

∥xn − x1∥ ≤ ∥xn+1 − x1∥, ∀n ≥ 0. (18)

This implies that the sequence {∥xn−x1∥} is nondecreasing. lim
n→∞

∥xn−x1∥ exists. It follows from xn+1 ∈ Qn

and xn = PQnx1, that

∥xn − xn+1∥2 ≤ ∥xn+1 − x1∥2 − ∥xn − x1∥2.

From this inequality, taking n → ∞, we get

lim
n→∞

∥xn+1 − xn∥ = 0. (19)

By the de�nition of Cn and xn+1 ∈ Cn, we have

∥z̄n − xn+1∥ ≤ ∥xn+1 − sn∥
≤ ∥xn+1 − xn∥+ θn∥xn − xn−1∥. (20)

From the de�nition of {θn} in Step 1 and (19) we have

lim
n→∞

∥z̄n − xn+1∥ = 0.
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This together with the triangle inequality ∥z̄n − xn∥ ≤ ∥z̄n − xn+1∥+ ∥xn+1 − xn∥ implies that

lim
n→∞

∥z̄n − xn∥ = 0. (21)

From (21) and the de�nition of in, we get

lim
n→∞

∥zin − xn∥ = 0, ∀i = 1, ..., N. (22)

From Lemma 2.3 and the triangle inequality, for each u ∈ F , one has

c ∥xn − yin∥2 ≤ ∥xn − u∥2 − ∥zin − u∥2 + (2− µ)2θn⟨xn − xn−1, y
i
n − u⟩ (23)

From (22), (25) and the boundedness of {sn}, {xn}, {yin}, {zin} and the condition Σθn∥xn − xn−1∥ < ∞, we
get

lim
n→∞

∥yin − xn∥ = 0, i = 1, ..., N. (24)

From (15), we have

c ∥sn − yin∥2 ≤ ∥sn − x∗∥2 − ∥zin − x∗∥2

= ∥(xn − x∗) + θn(xn − xn−1)∥2 − ∥zin − x∗∥2

= ∥xn − x∗∥2 + 2θn⟨xn − xn−1, sn − x∗⟩ − ∥zin − x∗∥2. (25)

From the condition Σθn∥xn − xn−1∥ < ∞ and (22), we get

lim
n→∞

∥sn − yin∥ = 0 (26)

for all i = 1,...,N.

Theorem 2.5. Let C be a closed and convex subset of a real Hilbert space H. Suppose that {Ai}Ni=1 : H → H is

a �nite family of monotone mappings. In addition, the solution set F is nonempty and Σθn∥xn−xn−1∥ < ∞.

Then, the sequences {xn}, {yin}, {zin} generated by Algorithm 2.1 converge strongly to PFx1.

Proof. By Lemma 2.4, F,Cn, Qn are nonempty closed and convex subsets. Besides, F ⊂ Cn ∩ Qn for
all n ≥ 1. Therefore, PFx1, PCn∩Qnx1 are well-de�ned. From Lemma 2.4, {xn} is bounded. Assume
that p is a weak cluster point of {xn} and {xnk

} is subsequence of {xn} converging weakly to p. Since
∥yink

− xnk
∥ → 0, yink

⇀ p. Now we prove that p ∈ F . Indeed, Lemma 2.3 of [42] , ensures that the mapping

Qix =

{
Aix+NC(x) if x ∈ C,

∅ if x /∈ C,

is maximal monotone, where NC(x) is the normal cone to C at x ∈ C . For all (x, y) in the graph of Qi ,
i.e., (x, y) ∈ G(Qi), we have y −Aix ∈ NC(x). By the de�nition of NC(x), we �nd that

⟨x− z, y −Aix⟩ ≥ 0

for all z ∈ C . Since yink
∈ C ,

⟨x− yink
, y −Aix⟩ ≥ 0.

Therefore,

⟨x− yink
, y⟩ ≥ ⟨x− yink

, Aix⟩. (27)
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Taking into account yink
= PC(snk

− λi
nk
Aisnk

) and Lemma 6.6 of [1], we get

⟨x− yink
, yink

− snk
+ λi

nk
Aisnk

⟩ ≥ 0

⟨x− yink
,
yink

− sn

λi
nk

+Aisnk
⟩ ≥ 0

or

⟨x− yink
, Aisnk

⟩ ≥ ⟨x− yink
,
snk

− yink

λi
nk

⟩ (28)

Therefore, from (27), (28) and the monotonicity of Ai , we �nd that

⟨x− yink
, y⟩ ≥ ⟨x− yink

, Aix⟩
= ⟨x− yink

, Aix−Aiy
i
nk
⟩+ ⟨x− yink

, Aiy
i
nk

−Aisnk
⟩

+ ⟨x− yink
, Aisnk

⟩
= ⟨x− yink

, Aiy
i
nk

−Aisnk
⟩+ ⟨x− yink

, Aisnk
⟩

≥ ⟨x− yink
, Aiy

i
nk

−Aisnk
⟩+ ⟨x− yink

,
snk

− yink

λi
n

⟩. (29)

Since ∥yin − sn∥ → 0 and Ai is L-Lipschitz continuous,

lim
n→∞

∥Aiy
i
n −Aisn∥ = 0. (30)

Passing the limit in (29) as k → ∞ and using (30), yink
⇀ p, we obtain ⟨x− p, y⟩ ≥ 0 for all (x, y) ∈ G(Qi).

This together with the maximal monotonicity of Qi implies that p ∈ Q−1
i 0 = V I(Ai, F ) for all 1 ≤ i ≤ N .

Hence, p ∈ F .
Finally, we show that xn → p = x† := PFx1. From (18) and x ∈ F , we have

∥xn − x1∥ ≥ ∥x† − x1∥, ∀n ≥ 0.

This relation together with the lower weak semi-continuity of the norm implies that

∥x† − x1∥ ≤ ∥p− x1∥ ≤ lim inf
k→∞

∥snk
− x1∥ ≤ lim sup

k→∞
∥snk

− x1∥ ≤ ∥x† − x1∥.

By the de�nition of x†, p = x† and lim
n→∞

∥xnk
−x1∥ = ∥x†−x1∥. Thus, from xnk

−x1 ⇀ x†−x1 and Lemma

(Kadec-Klee) we obtain xnk
− x1 → x† − x1, and so xnk

→ x†. Lemma 2.3 ensures that the sequences
{yin}, {zin} also converge strongly to PFx1.

3. Application to Signal Recovery

Signal processing is analysis, modifying, and synthesizing signals. We can use signal processing
techniques for improving transmission, storage e�ciency and subjective quality and also emphasizing or
defecting components of interest in a measured signal. Signal processing problem can be modeled as the
following under determinate linear equation system b = Bx+ν where x is a original signal withN components
to be recovered (x ∈ RN ), ν, b are noise and the observed signal with noisy for M components respectively
(ν, b ∈ RM ) and B : RN → RM (M ≤ N) is a �ltering. Finding the solutions of b = Bx + ν can be seen as
solving least squares (LS) problem

min
x∈RN

1

2
∥b−Bx∥22 (31)
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where ∥ . ∥ is l2−norm de�ned by ∥ x ∥=
√∑n

i=1 |xi|2. The solution of (31) can be estimated by many
well known iteration methods [13, 45]. Many algorithms based on optimization have been proposed for
solving signal recovery problems 31, see in [22, 27, 28]

In the real, the observation of signal may be disturbed by some �lters and noises. The goal in this
paper is to �nd the original signal without knowing the type of �lter and noise. Thus, we can consider this
problem in the following problem system.

min
x∈RN

1

2
∥B1x− b1∥22, min

x∈RN

1

2
∥B2x− b2∥22, ..., min

x∈RN

1

2
∥BNx− bN∥22, (32)

where x is an original signal, Bi is a bounded linear operator and bi is an observed signal with noisy for all
i = 1, 2, ..., N. We can apply the Algorithm 2.1 to solve the problem (32) by setting Aix = BT

i (Bix− bi) for
all i = 1, 2, ..., N and C = RN .

Algorithm 3.1. Initialization: Take ρ > 0, µ ∈ (0, 1), θ ∈ [0, 1) and {θn} ⊆ [0, θ]. Select arbitrary points

x0, x1 ∈ H. For i = 1, 2, ..., N set n := 1
Step 1. Compute Sn,

sn = xn + θn(xn − xn−1).

Step 2. Compute yn,
yin = PC(sn − λi

nB
T
i (Bisn − bi)),

where λi
n = ρl

i
and li is the smallest nonegative integer such that

ρl
i∥BT

i (Bi(sn − yin)∥ ≤ µ∥sn − yin∥.

Step 3. Compute zin,
zin = PT i

n
(sn − λi

nB
T
i (Biy

i
n − bi)), i = 1, ..., N,

where T i
n = {v ∈ H : ⟨sn − λi

nB
T
i (Bisn − bi))− yin, v − yin⟩ ≤ 0}.

Step 4. Compute zn, i.e.,
z̄n = argmax{∥zin − sn∥ : i = 1, ..., N}.

Step 5. Compute xn+1 = PCn∩Qnx1,where

Cn = {υ ∈ H : ∥z̄n − υ∥ ≤ ∥sn − υ∥},

and

Qn = {υ ∈ H : ⟨υ − xn, xn − x0⟩ ≥ 0}.
Step 6. Set n := n+ 1 and back to Step 1.

In this experiment, the parameters ρn, θn, and µ on an implemented algorithm in solving the image
deblurring is set as equation (7). The Cauchy error and the signal error are measured by using second
norm ∥xn − xn−1∥2 and ∥xn − x∥2 respectively. The performance of the proposed method at nth iteration is
measured quantitatively by the means of the signal-to-ratio (SNR), which is de�ned by

SNR(xn) = 20log10

( ∥x∥2
∥xn − x∥2

)
,

where xn is the recovered signal at nth iteration by using the proposed method.

The original signal x with N = 256, M = 128 is generated by the uniform distribution in the
interval [−2, 2] with m = 40 nonzero element. The matrix B1, B2 and B3 are generated by the Gaussian
matrix generated by the MATLAB routine randn(M,N). The observation b1, b2 and b3 with M = 128 are
generated by white Gaussian noise with signal-to-noise ratio SNR = 20(ForB1), SNR = 40(ForB2) and
SNR = 30(ForB3), respectively. The process is started with signal initial data x1 with N = 256 are picked
randomly.
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Figures 1-4 : The original signal, observation data using SNR = 20(ForB1), SNR = 40(ForB2) and
SNR = 30(ForB3), respectively.

Next, we aim to �nd the solutions of signal recovery problem (32) with N = 1 by using the our
Algorithm 3.1. We show the performance of B1, B2 and B3 with N = 256, M = 128.

Figures 5-7 : Recovering Signal based on SNR = 14 quality by B1, B2 and B3.

Next, we aim to �nd the solutions of signal recovery problem (31) with N = 2 by using Algorithm
3.1. We show the performance of B1, B2 and B1, B3 and B2, B3 with N = 256, M = 128.
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Figures 8-10 : Recovering Signal based on SNR = 14 quality by B1, B2 and B1, B3 and B2, B3.

Next, we aim to �nd the solutions of signal recovery problem (31) with N = 3 by using Algorithm
3.1. We show the performance of B1, B2, B3 with N = 256, M = 128.

Figure 11 : Recovering Signal based on SNR = 14 quality by B1, B2, B3.

The Cauchy error, signal error and SNR quality of the proposed method for recovering the degraded
signal are shown in Figures 12-14. The Cauchy error shows that the proposed method can be applied to
signal recovering problem. And, the signal error con�rms the convergence of the implemented algorithm.

Figures 12-14 Cauchy Error, Signal Error and SNR Quality of the proposed methods in recovering the
observed signal.

It is clearly seen that the solution of the signal recovering problem solved by the proposed algorithm
get the quality improvements of the observed signal.

4. Application to Image Recovery Problem

Image restoration is the process of recovering an unknown image by denoising and deblurring of
image. The image restoration problem can be considered in the following linear equation system:
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b = Bx+ v, (33)

where x ∈ Rn×1 is an original image, b ∈ Rm×1 is the unknown image which is by blurred by matrix
B ∈ Rm×n and added by noise v. One technique in order to solve problem (33) is the inverse �ltering when
the image is blurred by a know blurring matrix B some case the inverse of blurring matrix B is di�cult to
�ned, the convex, minimization is use, which is known as the following least squares (LS) problem (31).

In the real, we do not know the blurring matrix of any unknown image in general. So, the goal of
solving image restoration is deblurring the image without knowing which is in the blurring operator. This
problem can be considered in the problem system 32 where x is the original true image, Bi is the blurred
matrix, bi is the blurred image by the blurred matrix Bi for all i = 1, 2, ..., N. We know that BT

i (Bix− bi) is
Lipschitz continuous for each i = 1, 2, ..., N, thus we can apply our Algorithm 3.1 to solve the problem (32)
in the area of image restoration problem.

For showing the advantage of our Algorithm (3.1), we will use the following di�erent three types of
blurred matrices:
(1) Gaussian blur of �lter size 9× 9 with standard deviation s = 4 (B1).
(2) Out of focus blur (Disk) with radius r = 6 (B2).
(3) Motion blur specifying with motion length of 21 pixels (len = 21) and motion orientation 11◦(θ = 11)(B3).

We will test these di�erent three blur matrices with the following original Grey and RGB images.

Figures 15-16 : The original Grey and RGB image of sizes 320× 480 and 323× 475× 3, respectively.

Three di�erent types of blurred Grey and RGB images degraded by the blurring matrixes B1, B2 and B3

are shown in Figures 17-22.

Figures 17-22 : Three degraded Grey and RGB images by blurred matrices B1, B2 and B3, respectively.
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To show the �rst e�ciency of our Algorithm 3.1 we put one by one of the blurring matrices B1, B2

and B3 when 10000th iterations is the stoping of the Algorithm:
Case I: Inputting B1 on the Algorithm 3.1;
Case II: Inputting B2 on the Algorithm 3.1;
Case III: Inputting B3 on the Algorithm 3.1;
are shown in Figures 23 -28 that becomposed of the restored image and its PSNR.

Figures 23 -28 : The reconstructed Grey and RGB images with their PSNR for di�erent three cases being
used the proposed algorithm presented in 10000th iterations, respectively.

Next, we put two di�erent blurred matrixes into our Algorithm 3.1, so we can split testing into following
there cases when 10000th iterations is the stoping of the Algorithm:
Case IV: Inputting B1 and B2 on the Algorithm 3.1;
Case V: Inputting B1 and B3 on the Algorithm 3.1;
Case VI: Inputting B2 and B3 on the Algorithm 3.1.

Figures 29-34 : The reconstructed Grey and RGB images with their PSNR for di�erent three cases being
used the proposed algorithm presented in 10000th iterations, respectively.

It can be seen from Figures 29-34 that the quality of restoration by using the Algorithm 3.1 when two dif-
ferent blurring matrixes are used (N = 2) has improved compare with the previous result for every case, see
on Figures 23-28.

The last case is inputting three di�erent blurring matrixes B1, B2 and B3 in Algorithm (3.1). The stop-
ping of the algorithm is 10000th iterations. The result are shown in the following �gures.
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Figures 35-36 : The reconstructed Grey and RGB images from the blurring operators B1, B2 and B3

being used the proposed algorithm presented in 10000th iterations, respectively.

Figures 35-36 show the reconstructed Grey and RGB images with thousand iteration. It has been found that
the quality of the recovered Grey and RGB images obtained by this algorithm is highest compared to the
previous two algorithms.

The Cauchy error de�ne as ∥xn − xn−1∥ < 10−5 . The Figure error is de�ned as ∥xn − x∥ where x is the
original image. The performance of the proposed at xn on image restoring process is measured quantitatively
by the means of the peak signal-to-noise ratio (PSNR), which is de�ned by

PSNR(xn) = 20 log10(
2552

MSE
),

where MSE = ∥xn − x∥2, ∥xn − x∥ is the second norm of vec(xn − x).
The Cauchy error plot is shown for Algorithm 3.1 the validity while the Figures error plot is shown to

con�rms the convergence of the proposed method and the PSNR quality plot is shown for the measured
quantitatively of the image.

Figures 37-39 : Cauchy error, Figure error and PSNR quality plots of the proposed iteration in all cases
of Grey images.

Figures 40-42 : Cauchy error, Figure error and PSNR quality plots of the proposed iteration in all cases
of RGB images.

From Figures 37-42, it is clearly seen that the common solution of deblurring problem with (N ≥ 2)
get the quality improvements of the reconstructed Grey and RGB images. Another advantage of the pro-
posed method when the common solution of two or more image deblurring problem has been used to restored
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image is that the received image is more consistent than usual (See on Figures 43-56). Figures 43-56 show
the reconstructed Grey and RGB images by using the proposed algorithm in getting the common solution
of the following problem with the same PSNR.
(1) Deblurring by inputting B1, B2 and B3 on the Algorithm 3.1, respectively.
(2) Deblurring by inputting B1 and B2, B1 and B3, B2 and B3 on the Algorithm 3.1, respectively.
(3) Deblurring by inputting B1, B2 and B3 on the Algorithm 3.1.

Figures 43-49 : The reconstructed Grey images of all cases being used proposed Algorithm 3.1 with
PSNR = 31.

Figures 50-56 : The reconstructed RGB images of all cases being used proposed Algorithm 3.1 with
PSNR = 29.



P. Kitisak, W. Cholamjiak, D. Yambangwai, Results in Nonlinear Anal. 4 (2021), 217�234 233

5. Conclusions

In this paper, we solve common variational inequality problems by building the algorithm using the
inertial technique with a parallel CQ subgradient extragradient method. We show the strong convergence
of the algorithm under some suitable assumptions on the monotone and L− Lipschitz continuous operator
with constant L is unknown. We also apply our proposed algorithm to solve signal and image recovery. We
obtain that our algorithm gets increased e�ciency when the subproblems are increasing in both signal and
image recovery, see in Figures 5 -14 (signal recovery) and Figures 23 - 56 (image recovery).
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