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Abstract
Purpose: The aim of this study is to create a model that enables the detection of dentigerous cysts on panoramic radiographs inorder to enable dentistry students to meet and apply artificial intelligence applications.
Materials & Methods: E.O. and I.T. who are 5th-year students of the faculty of dentistry, detected 36 orthopantomographs whosehistopathological examinations were determined as Dentigerous Cyst, and the affected teeth and cystic cavities were segmentedusing CranioCatch’s artificial intelligence supported clinical decision support system software. Since the sizes of the images in thedata set are different from each other, all images were resized as 1024x514 and augmented as vertical flip, horizontal flip and bothflips were applied on the train-validation. Within the obtained data set, 200 epochs were trained with PyTorch U-Net with alearning rate of 0.001, train: 112 images (112 labels), val: 16 images (16 labels). With the model created after the segmentationswere completed, new dentigerous cyst orthopantomographs were tested and the success of the model was evaluated.
Results: With the model created for the detection of dentigerous cysts, the F1 score (2TP / (2TP+FP+FN)) precision (TP/ (TP+N))and sensitivity (TP/ (TP+FN)) were found to be 0.67, 0.5 and 1, respectively.
Conclusion: With a CNN approach for the analysis of dentigerous cyst images, the precision has been found to be 0.5 even in asmall database. These methods can be improved, and new graduate dentists can gain both experience and save time in thediagnosis of cystic lesions with radiographs.
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Introduction

Odontogenic cysts and benign odontogenic tumours of the jaws areusually painless and asymptomatic unless they grow large enoughto cover the entire jawbone, cause significant swelling, or weakenit to cause pathological fractures. Most of these lesions can be iden-tified at an earlier stage with a routine radiographic examinationcalled an orthopantomogram. Although cystic lesions are oftendefined as incidental findings on orthopantomograms without anyobvious symptoms, regardless of the patient’s main complaint, ra-diographic interpretation training and experience are required foran accurate diagnosis. 1–4 Convolutional Neural Networks (CNN)are gaining increasing attention in the field of medical imaging toassist clinicians in their diagnosis or to obtain opinions to confirmtheir diagnoses. U-Net, one of these deep learning tools that can

detect and classify images, has been developed for segmentation inmedical image processing studies. 5–7 The aim of this study is tocreate a model that enables the detection of dentigerous cysts onorthopantomographs in order to enable dentistry students to meetand apply artificial intelligence applications.

Materials and Methods

E.O. and I.T., two 5th class dentistry students, scanned the databaseof Near East University, Faculty of Dentistry, Department of Den-tomaxillofacial Radiology in order to detect OPGs with dentigerouscysts. G.U. supervised and confirmed the dentigerous cysts withtheir radiographic features. OPGs with motion artefact and caseswithout any histopathological examination were excluded from the
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Figure 1. A dentigerous cyst that is attached to the cementoenamel junction of a mandibular left third molar was successfully detected by the model

Figure 2. A dentigerous cyst that is attached to the cementoenamel junction of a horizontally impacted mandibular right third molar was successfully detected by the model

study. A total of 36 dentigerous cyst cases were found and OPGs ofthose cases were uploaded to the database of CranioCatch’s artificialintelligence supported clinical decision support system softwarefollowing the data anonymization. The cystic cavities and the af-fected teeth were segmented by E.O. and I.T. with the supervisionof G.U.I.S.B. and O.C. resized all images as 1024x514 since those imageshad different sizes and were obtained from different OPG units.They also applied vertical flip, horizontal flip and both flips on thetrain-validation for augmentation. Within the obtained dataset,200 epochs were trained with PyTorch U-Net with a learning rateof 0.001, train:112 images (112 labels), val:16 images (16 labels).After the creation of the model by I.S.B. and O.C. new dentigerouscyst OPGs were uploaded as test data and the success of the modelwas evaluated.The study was performed in accordance with the tenets of the1964 Helsinki Declaration and its later amendments. Due to theretrospective nature of this study and anonymization of the images,it was granted an exemption in writing by the Near East UniversityIRB

Results

With the model created for the detection of dentigerous cysts, theaccuracy (2TP / (2TP+FP+FN)) precision (TP/ (TP+N)) and sensi-tivity (TP/ (TP+FN)) were found to be 0.67, 0.5 and 1, respectively.3 successful detection examples were given in (Figure 1-3).

Discussion

Our main aim was to show the effects and possibilities of deep learn-ing algorithms to our 5th-year students. Since we planned a pilotstudy for our students, we had some limitations in our study. Moredentigerous cysts could have been scanned and segmented in orderto increase the sensitivity and dice score of our algorithm; however,such a study would require a bigger or public database which is notaccessible in the Turkish Republic of Northern Cyprus. Moreover,

we did not include any data without histopathological examinationto maintain the “ground truth”; thus, we excluded 21 cases thathad the characteristic radiographic findings of dentigerous cysts.
Most of the artificial intelligence studies in dentistry nowadaysare regarding dentomaxillofacial radiology and several companiesmade investments in order to apply AI in radiological diagnosis. 5–10

Since most of the data which are used in testing are private andconfidential, the lack of public datasets may still remain a chal-lenge. 8,11,12 Another problem is only a few studies have around1000 samples in both test and control groups with less than 90% ofdiagnostic accuracy. Both the diagnostic accuracy and sample sizefalls short since any score lower than 90% is not desirable. Increas-ing the sample size is crucial in order to achieve this goal. 8,13–16
To the best of our knowledge, there are only 6 deep learningstudies regarding the odontogenic cysts in the literature. First wasconducted by Poedjiastoeti et al. 17. in 2018 in which they createda CNN model for ameloblastoma and odontogenic keratocyst de-tection. However, instead of using the 2017 WHO classification,the authors mentioned the odontogenic keratocysts as keratocys-tic odontogenic tumours. They also compared the CNN model’ssensitivity, specificity, accuracy and diagnostic time with the oraland maxillofacial specialists’ and their results were “0.818, 0.833,0.830, and 38 seconds” for the CNN model and “0.811, 0.832, 0.829,and 23.1 minutes” for the specialists, respectively. Lee et al. 18 con-ducted a study in order to evaluate the diagnosis and detection of 3three different types of odontogenic cysts (dentigerous cysts, odon-togenic keratocyst, periapical cyst) with OPG and CBCT. They usedGoogLeNet Inception-3 architecture and evaluated the area underthe ROC curve (AUC), sensitivity, specificity. Their pre-trainedmodel had a 0.914 AUC value, 0.961 sensitivity and 0.771 specificityin CBCT images. Ariji et al. 19 conducted a similar study to test ifdeep learning object detection can also detect and classify lytic le-sions on OPGs. They included lesions that are 10mm or greater andlocalized in the mandible. A learning model was created with De-tectNet for “ameloblastoma, odontogenic keratocyst, dentigerouscyst, radicular cyst and simple bone cavities”. They found that thebest combination of classification and detection has occurred withdentigerous cysts and the sensitivity of the study was 0.88. Yang
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Figure 3. A dentigerous cyst that is attached to the cementoenamel junction of an inverted impacted mandibular left third molar was successfully detected by the model
Table 1. Publications’ sensitivity, specificity, precision, accuracy, AUC and diagnostic time regarding the deep learning studies about the detectionand classification of odontogenic lesions

Authors Year Lesions Sensitivity (Recall) Specificity Precision Accuracy AUC Diagnostic Time

Poedjiastoeti et al 2018 OdontogenicKeratocyst andAmeloblastoma
0,818 0,833 x 0,83 x 38 seconds

Lee et al 2019 Dentigerous cyst,odontogenickeratocyst,periapical cyst

0,961 0,771 x x 0,914 x

Ariji et al 2019 Dentigerous cyst,odontogenickeratocyst,radicular cyst,ameloblastoma,simple bone cyst

0,88 x x x x x

Yang et al 2020 Dentigerous cysts,Odontogenickeratocyst,Ameloblastoma

0,68 x 0,707 x x x

Kwon et al 2020 Dentigerous Cyst,Periapical Cyst,OdontogenicKeratocyst,Ameloblastoma

0,889 0,972 x 0,956 0,94 x

Liu et al 2020 OdontogenicKeratocyst andAmeloblastoma
0,928 0,878 x 0,9036 0,946 x

et al. 20 conducted a study with real-time object detecting deepCNN YOLO v2 which can both detect and classify an object on OPGs.They labelled the lesions as odontogenic keratocyst, ameloblastoma,dentigerous cyst and no cyst. Their model has a 0.707 precisionvalue and 0.680 recall value. Kwon et al. 21 conducted a study alsowith the CNN YOLO’s newer version v3 for the dentigerous cyst, pe-riapical cyst, odontogenic keratocyst and ameloblastoma detectionand classification. Their augmented data set had 0.889 sensitivity,0.972 specificity, 0.956 accuracy and 0.94 AUC value. Liu et al. 22 fo-cused on the differential diagnosis between the ameloblastoma andodontogenic keratocyst since it affects the surgical approach. Theyprovided a CNN model which is based on transfer learning and theyachieved 0.9036 accuracy, 0.946 AUC, 0.9288 sensitivity and 0.878specificity values. They also used 3 other networks (VGG-19 andResNet-50, another network trained from scratch) and achieved0.8072, 0.7831 and 0.6988 accuracy values, respectively.Panoramic radiograph is the most used imaging in dentistry;however, to achieve acceptable diagnosis accuracy with AI, higherstandardization protocols must be applied in order to avoid any fail-ure due to image quality, patient positioning and magnification.Radiographs that were taken with different orthopantomographydevices should be evaluated together to ensure a reliable data setconstruction. A common mistake with the current studies is col-lecting data from a single radiography device which will cause a

problem since different models are created for each machine and itis likely that a model for a device will not apply to other machines.Manually cropped radiographs with the region of interest is also an-other challenge since the newly-developed software will be unableto interpret the whole image.

Conclusion

With a CNN approach for the analysis of dentigerous cyst images,the accuracy, precision and sensitivity were found 0.67, 0.5 and 1even in such a small dataset. These methods can be improved, andnew graduate dentists can gain both experience and save time inthe diagnosis of cystic lesions with radiographs.
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