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ABSTRACT

In this paper, we are concerned with the oscillation of the solutions of a
certain more general higher order nonlinear neutral type functional
differential equation with an oscillating coefficient of the form

m O
0320 0)] S0 0 E0)=0
where n>2; P(t),0,(1),7, ()€ Clty,+00) for i=12,,m;
P (1) is an oscillatory function for i=1,2,-+-,m; O, () is positive
valued for  i=1,2,,m. o, ()eC'[t,+o), o/ (1)>0,
(T,.(t)St; O'l.(t)——>+00 as t——>'oo for i=1,2,---,m; Z'i(t)—>+oo
as t—»o0 for i=1,2,---,m; f,(u)EC(R,R) is a nondecreasing

function, uf, (u) >0 for u#0 and i=1,2,---,m. We obtained two

sufficient criteria for oscillatory behaviour of its solutions.
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NEUTRAL TIiPTEN BiR SALINIMLI KATSAYILI YUKSEK
MERTEBEDEN LINEER OLMAYAN BIR FONKSIYONEL
DIFERENSIYEL DENKLEMIN COZUMLERININ SALINIMLILIGI
UZERINE BiR CALISMA

OZET

Bu calismada; nx2, i=1,2,---,m icin
P(t),Q,.(Z),Z',.(l‘)EC[ZO,+OO); i=1,2,---,m igin Pl(l‘) ler

1

salimimlt fonksiyonlar; 7=1,2,---,m ig¢in O (t) ler pozitif degerli
fonksiyonlar; o, (t) S C'[to,—l-OO), O',., (l‘) >0, o, (l‘) <t ve t—>
iken i=1,2,---,m igin Ti(t)—)—FOO; i=12,---,m icin
/i (u) eC (R,R ) ler azalmayan fonksiyonlar ve u #0 iken

uf, (u) > 0 olmak tizere

),
[y(f)gﬁ(f)y(a(z))} +§Q,(t) £ (¥(a,(1)))=0

tipindeki yiiksek mertebeden lineer olmayan diferensiyel denklemin
¢oziimlerinin salinimlilig1 tizerine yeter sartl iki kriter elde edilmektedir.

1. INTRODUCTION.

We consider the higher order nonlinear differential equation of the form

m ()
SR 0)] +E0 (e w))=00

where n>2; B(Z),Qi(t),z'i(t)eC[to,—l-oo) fori=1,2,--,m; P(l‘) is

1

an oscillatory function for i=12,---,m; O, (t) is positive valued for
i=12,,m. 0,(t)eC'[ty,+0), o/ (1)>0, o,(1)<t; o,(t) = +0
as t—>o for i=1,2,---,m; 7,(t) >+ as t o0 for i=1,2,--,m;
f (u)eC(R,R) is a nondecreasing function, uf; (u)>0 for u#0 and
i=1,2,---,m.

As 1s customary, a solution of Eq. (1.1) is said to be oscillatory if it has
arbitrarily large zeros. Otherwise the solution is called nonoscillatory.
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For the sake of convenience, the function z (t) is defined by,

m

z(t)= y(t)+ZPi(Z)y(ri(t)>. (1.2)
2. SOME AUXILIARY LEMMAS

Lemma 2.1: Let y(l) be a positive and 7 -times differentiable function
on [to,+oo) JIf y(") (7) is of constant sign ond not identically zero in any
interval [b,+oo) , then there exista 7, > 7, and an integer [, 0 < [ <n such
that n+/ is even, if y(”)(t) is nonnegative, or n+/ odd, if y(")(t) is
nonpositive, and that, as r>¢, if [>0, y(k) (t) >0 for
k=0,1,2,0-1, and if I[<n-1, (=173 (£)>0 for
k=1,1+1,---,n—1 [1].

Lemma 2.2: Let y(r) defined Lemma 2.1. Let Y (t)y(")(t)SO

(t > ZO) and there exists a constant M >0 for every /1(0 <A< 1) , such

that y(Az)> Mr"™" .y(”‘l) (Z)l for sufficiently large # [1].

3. THE MAIN RESULTS

Teorem 3.1: Assume that z is odd and

Cp) ymiﬁ(z):o,
A=

n

C2) js"”]ZQi(S)ds =40
f i=l
Then every bounded solution of Eq. (1.1) is either oscillatory or tends to
zero as [ —» +00..
Proof: Assume that Eq. (1.1) has a bounded nonoscillatory solution y(t) .
Without loss of generality, assume that y(r) is eventually positive (the

proof is similar when y(t) is eventually negative). That is, y(t)> 0,
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y(r,(t)) >0 and y(al. (Z)) >0 for r>t,2t, and =12, m.
Furthermore suppose that y(t) does not tend to zero as # — +o0 . By (1.1)

and (1.2), we have for 1 > ¢,

() =20 (v(e(1))<0 @D
i=1
That is, Z(”)(l)<0. It follows that, z(‘/)(t) (j:O,1,2,-~-,n—1) is

strictly monotone and of constant sign eventually. Since y( l) is a bounded

m

function and limZP1 (#)=0 for i=1,2,---,m, there exists a t, 21, such

[—0o0 &
i=]

that as 7 >, z(l) >0 eventually and there is a #, > ¢, such that z(l‘) is
also bounded for ¢ > t,. Because of n is odd and Z(t) is bounded, by

Lemma 2.1, when /=0 (otherwise Z(t) is not bounded) there exists a
t, 2t, such that (—l)k z® (t) >0 (k = 0,1,2,"-,77—1) as t21¢,. In
particular, since Z'(z‘)< 0 for t>1,, z(l‘) is decreasing. Since z(t) is

bounded, we may write limz (t) =L (—oo <L< +oo) . Assume that

[—>m
0<L<+400. Let be L>0. Then there exists a constant ¢ >0 and a
t;>1, such that z(f)>c>0 for ¢>¢,. Since y(t) is bounded,

limZPi(t)y(q(t)):O by (C)). Therefore, there exist a constant

6>0 and a 1,21, such that y(r)=z(1)= 3 R(1) p(z,(¢)) > ¢ > 0
i=1

for £21;. So, we may take a £, with the property of z, >, such that
y(al. (t)) >¢ >0 for t > ¢,. From (3.1), we have

mn

2N )=->0(1)f(¢)<0, 121, (32

If we multiply (3.2) by ¢ and integrate from f, to ¢ then we obtain
tom
F(t)=F()<=f(a) [2.0/(s)s""ds  (3.3)
i 0=l
where
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P (1) (n=1) 122 (1) (m=1) (n=2) 22207 (0)
—---—(n—l)(n—2)(n—~3)---3.2tz (t)
+(n-1)(n—2)(n—3)---3.2.lz(t)

Since (——l)k Z0 (Z)>O for k=0,1,2,---,n—1 and 7 21,, F(t)>0 for
t>1t,. From (3.3), we have

~F(t;)<-f(¢) tj.i O, (s)s""ds

ty 1=
From (C,), we obtain

m

- JZQ 'Hds = —00

]

at —> oo. This is a contradiction. So, L >0 is impossible. Therefore,
L =0 is the only possible case. That is, 1imz(t)=0. Since y(t) is
1—>0

bounded, we obtain

m

limy(¢)= limz(z)- }1—{2;])’ (t)y(ri (t)) =0

>0 [—>0

by (C,) and (1.2). Now let us consider the case of y(t) <0 for 121, . By
(1.1) an (1 2),

ZQ £ (»(e (1)) <0, 124,

That is, Z(')( )>0. It follows that, z(’[)(l) (j=0,1,2,~~,n~1) is

strictly monotone and of constant sign eventually. Since y(t) is a bounded

n

function and lim ZP =0 fori=1,2,--,m, there exists a #, = ¢, such

P

that as 721, z( ) >0 eventually and there is a 7, 2 #, such that Z(t) is
also bounded for ¢2>¢,. Assume that x(z‘) = —Z(t) . Then
(1) = —2") (7). Therefore, x(¢)>0 and A (£)<0 for 128
Hence, we observe that x(t) is bounded. Since 7 is odd. By Lemma 2.1,

there is a 7, 2¢, and /=0 (otherwise, x(t) is not bounded) such that
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_l)kx(k)(t)>0 for k=0,1,2,---,n—=1 and ¢>17,. That is

(_1 kz(k)(t)<0 for £=0,1,2,---,n—1 and ¢>¢,. In particular, as
t

proof that L =0. As for the rest of proof, it similar to the case of
y(i) > 0. Thatis, lim y (t) = 0. Hence, the proof is completed m
[—0

Teorem 3.2: Assume that # is even and (C)) is held. If
C5) there is a function go(t) € C'[to,+oo) . Moreover

t m
lim sup fg/)(s)ZQj (s)ds = +o0 and
, 2
limsup I [(0 (S)] ds <+ for i=1,2,---,m is satisfied,

o 2L o(s)ol(s)al 7 (s)
then every bounded solution of Eq. (1.1) is oscillatory.

Proof: Assume that Eq. (1.1) has a bounded nonoscillatory solution y(t).
Without loss af generality, assume that y(z‘) is eventully positive (the
proof is similar when y(z‘) is eventually negative). That is, y(t)>0,
y(ri(t))>0 and y(O',.(z‘))> 0 for >t >t, and i=1,2,---,m. By
(1.1) and (1.2), we have for 7 > ¢,

mn

(1) = —Zl 0.(1) f(¥(a:(1))) <0 (3.4)

That is, Z(”)(l‘)<0. It follows that, z(")(t) (j:O,l,Z,--~,n——1) is

strictly monotone and of constant sign eventually. Since y(t) is a bounded

n

function and limZR (Z) =0 for i=1,2,---,m, there exists a #, > #, such
i=1

=0

that as 7 >1, Z(t) >0 eventually and there is a #, > ¢, such that Z(l) is
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also bounded for 7 =7, . Because of n is even, by Lemma 2.1, when [=1

(otherwise Z(t) is not bounded) there exists a f, > f; such thatas 7 27,
(-1 29 (6)>0 (k=0,12,-,n=1) (3.5

In particular, since z'(t) >0 fort=>1,, z(t) is increasing. Since y(t) is

n

bounded, limZR(t)y(z'i(z‘)) =0 by (C)). Then, there exists a f5 21,
B
and O positive integer,
m 1
y(t):z(t)—ZP,.(t)y(r,(z))>gz(z)>0
i=l

for 1>t by (1.2). We may get f 2f5 such that for t>t, and
i=12,---,m

v(,(1))> %z(a,, (1))>0 (3.6)

From (3.4), (3.6) and the properties of f, we have

(1) 550,04 52l )

1
=0, (j(a, ] ]z(a,(t)) 3.7)

for t>1,. Since z (2‘) >0 is bounded and increasing, limz (t) =L
[—>0

(—oo <L< +oo) . By the continuity of f°, we have

(50 o)

) B

Then, there is a 7, > 7, such thatas >, for i = 1,2,---,m

7 (-;—z(a,« (l‘))) Y ('g)

lim - = =a>0. 3.8
= z(o,(1)) 2L 9
By (3.7) and (3.8), we obtain

n

Z\ (t)é—ﬂZQ,.(Z)Z(G,.(t)) for 1 >1,. (3.9)
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Define

We know from (3.5) that, there is a #, >, such that w(_t)>0 for

sufficiently large # > 7, . Since Z(t) >0 is increasing, there exists a 7, > Iy
1 .

such that Z(Gi(l‘))ZZ EO',.(I) >0 for sufficiently large #>1¢,. We

may get a result together with (3.9) such that

z(%o-i (t)jzw (1)- z'(%q (;))Zu_n 0 a,'g(z)

w(1)= (3.10)

Gk
We know from (3.5) that, z'(¢ )>O and z"7 ( )> 0 for t>1,. Since

G,.(t)SZ and o, ( )>O there exists a constant M >0 and a 1, 21,

10 =—
such that
z'(é o (r)J > Mo (1)o! ()2 (o (1)) 2 Moo (1) (1) 27 (1)

1
for 4= -5 and z'(t) and 721, by Lemma 2.2. Therefore, we may get a

result together with (3.10)

11

—aZQ ——w2 (o2 (1)ol () (.11
From (3.11), we have

@20,() < () ~5v ()07 (051(1). (r21,) 612
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[f we multiply (3.12) by (o(t) and integrate it from #,, to ¢, we obtain

a ]‘go(s)gQ, (s)ds < — ’J'(p(s)w’(s)ds

i

=—p(1)w(t)+ (1) w(ty)+ [0'(s)w(s)ds

i olew] ]
Sartatyor (Vo)

fio !

' 5[g'(s))’
< (t,0)wlt) + I4M¢(S)G;(S)G'7_2f (s)

ho

ds < 400,

Therefore, we have

! m

+o0 = ¢ limsup j¢(S)ZQ, (s)ds

= i=1

) s [¢'(s)]
= ¢(110)W(t10)+ J-4M(p(s)6-"_2 (S)Gi’(s)

fo i

ds < 400

for i=1,2,---,m by (C;). This is a contradiction. If we assume that
y (t) <0 then we may prove when y(t) <0 asin Teorem 3.1. Hence, the

proof is completed.
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