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   Abstract 

This study presents the tribological properties, wear and friction, of ultra-high molecular weight 

polyethylene under conditions of dry sliding and Hank’s balanced salt solution lubrication. A pin-

on-stainless steel disc apparatus was used for the friction and wear tests. Applied load conditions 

were 38, 50, 88, 100, 138, and 150N. Sliding speed conditions were 0.4, 0.5, 0.8, 1.0, 1.2 and 1.5 

m/s. The results show that the coefficient of friction and the wear rate values decrease with the 

increase of applied load. The coefficient of friction and the wear rate values were highest under the 

dry sliding condition for the ranges of the sliding speed values and the applied loads tested in the 

study. In addition, the applicability of artificial neural networks (ANN) for predicting both the 

coefficients of friction and wear rate values of the material in different sliding conditions was 

studied. The neural network results were in agreement with the experimental results for the wear 

rates and coefficients of friction. 

1. Introduction*

Ultra-high molecular weight polyethylene (UHMW-

PE) polymer is used regularly in the orthopedics industry 

due to its superior wear and friction properties. It has many 

properties that allow for quality performance, like a lower 

friction coefficient value, higher wear resistance, chemical 

stability, and biocompatibility, and high impact strength 

[1–3] Because of these properties, UHMW-PE polymer is 

used in the industrial sector as well as in orthopedics. As 

the human body is highly sensitive, the properties of any 

biomaterials used in the various parts of the human body 

should be such that they do not disturb the various 

functions of the human body. One material with the 

properties needed to be used in the human body is 

UHMW-PE. The UHMW-PE polymer is used in 

orthopedic applications involving the knee, hip, elbow, and 

wrist in the human body. Generally, knee operations 

involving prosthesis technology are performed when the 

* Corresponding Author: ermis@subu.edu.tr

patient’s joints have deteriorated. The prosthesis 

geometries and the types of forces acting on it determine 

the contacted area in the prosthetic component, the size of 

the contact stresses, and working conditions [4]. 

A good understanding of the factors affecting 

prosthesis use is important to reduce patients’ pain and to 

extend the life of the joint replacement components. 

The use of artificial neural networks (ANN) has been 

increasing in many applications to develop better and more 

reasonable solutions [5]. Therefore, an ANN can be used as 

an effective method for the prediction of the tribological 

behavior of medical-grade polymers. In the literature, there 

are a few ANN investigations on the tribological properties 

of polymer materials. Zamyad et al. [6] presented a hybrid 

model of recurrent neural networks for predicting ionic 

polymer-metal composite (IMPC) bending behaviors and 

found that their model has acceptable accuracy and 

flexibility when compared to the experimental data. Kurt 

and Oduncu [7] presented an ANN model, which was used 

to compare the volume loss values of UHMW-PE based 

composite materials. Their study has shown good 
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consistency between their model and experimental results. 

Velten et al. [8] studied the prediction of the wear volume 

of fiber-reinforced polymeric bearing materials by an ANN 

prediction model. They used an ANN structure that has two 

inputs and one output; mechanical properties and test 

conditions being the inputs, and wear volume being the 

output. Abdelbary et al. [9] studied the wear mathematical 

model of a polyamide 66 polymer using an ANN. They 

optimized their model using the ANN’s prediction of test 

results. They found good accuracy results when comparing 

the simulation results to the experimental test data. Rajesh 

et al. [10] provided an ANN model of surface roughness 

during the machining of Multiwall Carbon Nanotube 

(MWCNT) nanocomposites, demonstrating that an ANN is 

a dependable tool for predicting and simulating machining 

response. Sabouhi et al. [11] proposed a method that uses 

an artificial intelligence model in combination with generic 

expression programming to evaluate the mechanical and 

physical behaviors of carbon/polymer nanotube 

composites. They showed that their model was used to 

predict satisfactory results for the elastic modulus values of 

the polymer-carbon nanotube composites in their studied 

ranges. Zhang et al. [12] predicted the coefficient of 

friction and the wear rates for polyamide 4.6 (PA 4.6) 

composites with reinforced glass fiber on a measured 

database using a feed-forward artificial neural network 

(ANN) model. According to their results, the predicted 

values had acceptable accuracy when compared to 

experimental test values. Khan et al. [13] used an ANN to 

model the mechanical behavior of cross-ply laminated 

fiber-reinforced polymer composites (FRPCs), 

demonstrating that an ANN is a reliable tool for predicting 

composite mechanical behavior. The study by Lada and 

Friedrich [14] predicted the wear performance and friction 

properties of polymer composites based on their obtained 

data, collected from 124 independent the pin-on-disc 

(POD) wear tests of polyphenylene sulfide (PPS) 

composites, by using artificial neural networks (ANNs) 

and they found their ANN model profiles were consistent 

with their experimental data for the characteristic 

tribological properties. Kazi et al. [15] employed an 

integrated ANN to reduce the time and effort of material 

characterization for large numbers of samples during the 

design of fiber-reinforced polymeric composites. 

Pajchrowski et al. [16] applied an ANN taught by 

reinforcement learning on an adaptive controller design for 

electric drive. ANN studies can be used on the tribological 

performance of polymer materials which have limited 

studies in the literature. 

In this study, an artificial neural network that uses a 

back-propagation with feed-forward structure was used as 

the numerical analysis method except for when conducting 

traditional linear and non-linear analysis in polymer 

materials. This study will provide a new approach in the 

field of tribology, especially with regard to medical 

applications. This study investigated the tribological 

properties of medical-grade UHMW-PE polymer in 

different working conditions, namely dry sliding and 

Hank's balanced salt solution conditions. Tribological 

experiments were performed at 38, 50, 88, 100, 138 and 

150N of applied load and 0.4, 0.5, 0.8, 1.0, 1.2 and 1.5 m/s 

of sliding speed. The coefficient of friction values and 

specific wear rate on the UHMW-PE material under these 

conditions were determined. The data from the ANN 

analysis was compared to the experimental data. At the end 

of the study, the results of the ANN analysis were 

consistent with the experimental data. In addition, the 

ANN analysis showed more accurate predictions of the 

experimental data than linear regression. Generally, the 

ANN prediction of real values is more accurate than classic 

linear and non-linear assumptions. 

 

2. Experimental Study 
 

2.1. Materials 
 

In this study, a UHMW-PE polymer, classified as 

medical-grade for surgical implants according to ISO 5834 

and ASTM F 648 compressed molded low calcium 

CHIRULEN 1020 (Quadrant PHS, Germany), was used as 

the base polymer material. The UHMW-PE polymer was 

also used as the material for the cylindrical pins, each with 

a 3 mm radius and a length of 50 mm. The counter-face 

material was used AISI 304L stainless steel which was 

machined to a radius of 5 cm and thickness of 0.5 cm. The 

Vickers hardness of the counter-face disc material had an 

average HV 297.  

Before testing, each stainless-steel disc was cleaned 

with acetone. Table 1 lists the test parameters for the 

medical-grade UHMW-PE polymer material.  

 

Table 1. Test parameters of medical-grade UHMW-PE 

polymer material. 

Ambient temperature, oC  21±2 

Applied load, N  38, 50, 88, 100, 138, 150 

Sliding speed, m/s  0.4, 0.5, 0.8, 1, 1.2, 1.5 

Dropping velocity of water  20 drops/min 

Humidity, RH  58±2% 

 

2.2. The Tribometer and Tests 
 

To test the sliding wear of the medical-grade 

UHMW-PE polymer, POD was performed using a wear 

test machine. The µ value (coefficient of friction) of the 

UHMW-PE polymer was calculated from the POD 

machine by using Eq. (1). The normalized wear volume 
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divided by the sliding distance and the applied load is 

usually how the specific wear rate is determined. Eq. (2) 

was used to evaluate estimates of the specific wear rate, 

Wsp, of UHMW-PE polymer samples. 

 

μ =
Fs

Fn
                                             (1) 

𝑊𝑠𝑝 =
𝑉𝑠𝑝

𝐹𝑛 𝐿
                                     (2) 

 

where; Fn is applied load, Fs is frictional force on the 

polymer pin material, L is the sliding distance, Vsp 

(mass/density) is volume loss.  

The mass and volume losses were obtained from each 

experimental measurement for different conditions and all 

samples. 

The worn particles were removed from the polymer 

samples by the completion of 2 km of sliding distance 

corresponding to the number of turns before and after each 

run. In addition, stainless steel surfaces were polished to 

obtain a surface roughness of 0.25 µm by corundum paper 

for the friction tests. Before the steel discs and the flat-

ended polymer pins were installed in the pin-on-disc wear 

test apparatus, they were cleaned using alcohol and 

acetone. For both the dry sliding and HBSS (Hank's 

balanced salt solution) conditions, the coefficient of 

friction and wear rate tests were performed at sliding 

speeds ranging between 0.4 to 1.5 m/s and applied loads 

ranging between 38N to 188N at a temperature of 

atmospheric ambient. A schematic drawing of the 

experimental apparatus for the wear test is given in Figure 

1. 

 
Figure 1. A schematic drawing of the experimental 

apparatus for the wear test. 

 

The wear test apparatus included a pin sample holder 

and a variable speed, the variable-speed motor delivers 

unidirectional motion to the turntable, and thus to the disk 

sample. To apply forces to the sample in the pin-on-disc, 

the pin sample was rigidly coupled to a pivoted loading 

arm, which was supported by bearing arrangements. The 

force of friction was measured using a transducer installed 

on the loading arm. During the test period, data was 

collected every second. A microprocessor-controlled data 

collecting device was employed in this study to record 

friction force data at a rate of 35 times per minute on 

average. The mass loss was measured by weighting the pin 

with a precision scale, with an accuracy of ± 0.0001 g. The 

obtained mass was converted into a volume using the 

density of the sample. Mass loss measurements were used 

to calculate the specific wear values. Sliding wear data was 

the average of more than three runs. 

 

3. Artificial Neural Network (ANN) Modelling 

 

A well-trained ANN can be used to create an optimal 

material design for certain tribological applications. For 

tool wear estimation on dry hard turning processes of 

AISI4140 steel, Rajeev et al. [17] used an ANN model 

with a feed-forward neural network design. Ufnalski and 

Grzesiak [18] found that special measures should be taken 

to properly evaluate the performance of the controller 

because of the nature of the artificial neural network 

training process. Generally, the back-propagation 

algorithm is used for the multi-layered, feed-forward 

network training of models. Ermis [19, 20] developed a 

new algorithm for training. An ANN model was developed 

in this study to predict tribological data, the coefficient of 

friction, and the specific wear rate. The learning and 

training processes were carried out using an ANN model 

having a back-propagation and feed-forward configuration. 

The computer code, developed using C++ programming, 

was used to solve the ANN model algorithm. This 

algorithm formulation is shown below: 

The training data sets were normalized between 0.1 

and 0.9 to use the procedure. All the connection values of 

the weights were adjusted to threshold values and small 

random to obtain a training model and network outputs. 

The net input for the jth node was calculated on the 

hidden layer, 

 

n

j ij i j
i 1

Net W X θ


                          (3) 

 

where; Wij is the weight's connection value from the ith 

node to the jth node, j is the hidden layer node, i is the 

input layer node and x is the input. ϴj is the threshold 

between the input and the hidden layer.  

Various activation functions are used to develop 

networks, the usage of which depends on a variety of 

factors, including how quickly the function changes when 

the function’s argument changes, the interval where the 

functions are well behaved, or simply personal preferences. 

Sigmoid is one of the most commonly used activation 

functions. The activation function of the logistic sigmoid is 

used in this network structure. 
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The output was calculated for the jth node at the 

hidden layer:  

h

n

j h ij i j h - x
i=1

1
H = f W X - where f  (x)=

1+e


 
 
 
 
       (4) 

where; Hj represents the hidden layer's neuron vector. h 

the logistic sigmoid's activation function from the input 

layer to the hidden layer.  h is a factor that is managing 

the gradient of the sigmoid function in the hidden layer.  

At the hidden layer, the net input for the kth node was 

calculated: 

k k j j k
j

Net W X θ                           (5) 

where; Wkj is the weight connection value from the jth node 

to the kth note, and k is the output layer. The threshold 

between the hidden and output layers is θk. 

At the output layer, the output was calculated for the 

kth node: 

1

1

1 k

n

k k k j j k k λ x
j

Y f W X θ where f  (x)
e




 
 

   
   
 

     (6) 

where; Yk is the output of the output layer neurons. The 

logistic sigmoid's activation function from the hidden layer 

to the output layer is k(x). k is a variable that controls the 

sigmoid function's gradient in the output layer. 

Between the experimental output and the target, the 

output layer error was computed. 

  where 1- D - Y f f Y ( - Y )
k k k k k k k

      (7) 

where; Dk is the target activation of the output layer. k is 

the vector of errors for each output neuron, and it only 

depends on the faults in the output layer between the target 

activation and the output. ’k is the node activation 

function’s local slope in the output nodes. 

The error in the hidden layer was calculated as 

follows: 

1

1

n
δ f W δ where f H ( H )

j h kj k h j j
k

   


       (8) 

where; j is the vector of errors for each neuron in the 

hidden layer, Hj is the hidden layer's neuron vector, and k 

is the weighted sum of all nodes. In the hidden nodes, ’h 

is the local slope of the node activation function. 

In the output layer, the weights and thresholds were 

adjusted: 

Wkj
(t+1)

= Wkj
(t)

+∝ δkHj + η (Wkj
(t)

− Wkj
(t−1)

)      (9) 

θk
(t+1)

= θkj
(t)

+∝ δk and θj
(t+1)

= θj
(t)

∝ δj       (10) 

 

Where   is the learning rate, t is time, and  is the 

momentum factor. 

For each neuron and pattern, all calculation steps 

were repeated until the output layer error was within the 

required tolerance. The learning rate and the momentum 

factor were utilized to allow the prior weight change to 

affect the weight change in this phase. 

The neural network has back-propagation, 

feedforward, and a three-layer configuration for use in 

friction coefficient and specific wear rate estimation, as 

shown in Figure 2. 

 

Figure 2. A three-layer feed-forward back-propagation 

neural network for the coefficient of friction and specific 

wear rate. 
 

 In the network structure, two input parameters 

applied loads and sliding speeds, and two output 

parameters, coefficients of friction and wear rate values, 

were used. To reduce the error between current data and 

output values, the weights, biases, and hidden node 

numbers were examined. The ANN configurations were 

set by selecting the hidden layer’s numbers, nodes, the 

momentum coefficient, and the learning rate values to 

achieve the least error convergence. 18 data sets were 

evaluated for the cases. All data were separated into two 

groups. The first group has two sets of data randomly 

selected from the HBSS and dry sliding conditions to test. 

One of them was used for network training (67% of all 

cases) and the other set was used to test the validation of 

the ANN model. The layered structure of the ANN model 

for the specific wear rate and the coefficient of frictions are 

shown in Figure 3. 

 
Figure 3. The ANN model's layered structure for the 

specific wear rate and the coefficient of friction. 
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The ANN model was utilized by using the two inputs, 

two outputs, and nine hidden layers. The learning ratios 

and the momentum coefficients setup default to 0.7 for the 

learning processes in the ANN model. For this process, 

300,000 iterations were used to achieve good consistency 

in the algorithm. The three error measuring parameters 

given by Sablani [21] are utilized to compare the 

performance of the various ANN configurations. Three 

parameters were used for the performances of the ANN 

configuration. These parameters were the mean relative 

error percentage (MRE %), the relative standard deviations 

of error (STD), the absolute fraction variance of error (R2). 

Their formulations are defined as follows:

1

n

i

1
MRE ABS(A)

n


   (11) 

 
2

1

1

n

i

A A

STD
n









 (12) 

2

1

2

1

1

n

i i
2 i

n

i
i

(a y )

R

(y )





 
 
 

   
 
 
 




 (13) 

Where; A = (P-D)/D. Parameter D and P are the 

experimental data and the estimated output from the 

modeled ANN respectively. The arithmetic mean of the 

numbers is A̅, whereas the estimated output value is yi, the 

experimental data is ai, and the data number is n. 

 

4. Results and Discussion 

 

The results show that with the increase of applied 

load, both the coefficient of friction and the wear rate 

values decrease under both dry sliding and HBSS 

lubrication conditions for the UHMW-PE polymer. For the 

range of speed and load values tested, the wear rate value 

and the coefficient of friction were higher under the dry 

sliding condition than the HBSS lubrication condition as 

shown in Figure 4 and Figure 5. Comparisons between the 

experimental data and the estimations by the ANN model 

for the coefficient of friction values at 50, 100, and 150N 

of applied load and various sliding speeds for both the dry 

sliding and HBSS lubrication conditions are shown in 

Figure  4. 

The average friction factor was 0.2039 for the dry 

sliding condition and 0.1150 for the HBSS lubricate 

condition. The ratio of dry sliding to HBSS lubricate was 

1.8 for the friction factor as shown in Figure 4. The 

average specific wear rate value was 4.40 for the dry 

sliding condition and 3.14 for HBSS the lubrication 

condition. 

 Comparisons between the experimental data and the 

estimations by the ANN model for the wear rate at 38 N, 

88 N, and 138 N of applied load and various sliding speeds 

for both the dry sliding and HBSS lubrication conditions 

are shown in Figure 5.  

Sliding speed, m/s
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ANN results                50 N

150 N

100 N

Figure 4. Comparisons of the coefficient of friction values 

between the experimental data and the ANN model 

estimations at 50N, 100N, and 150N of applied load under 

various sliding speeds. 

 

The ratio of dry sliding to HBSS lubrication was 1.4 

for wear rate as shown in Figure 5. 

Figure 5. Comparison of the specific wear rate values 

between the experimental data and the ANN model 

estimated at 38N, 88N, and 138N of applied load under 

various sliding speeds. 

 

This study investigated the applicability of artificial 

neural networks (ANN) for predicting both specific wear 

rate values and coefficients of friction of medical-grade 

UHMW-PE polymer in different sliding conditions. The 
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results show that the data predicted by the ANN analysis is 

consistent with the experimental test results. Comparison 

of the mean relative error percentage (MRE %), the 

absolute fraction variance of error (R2), and the relative 

standard deviations of error (STD) for the coefficient of 

friction are shown in Table 2 and the specific wear rate are 

shown in Table 3. 

 

Table 2. Comparison of MRE, R2, and STD for the coeffici

ent of friction 

T
es

t 

C
o

n
d

it
io

n
 Coefficient of friction 

Load  

(N) 

Sliding  

speeds (m/s) 

Experimental 

results 

ANN 

model 

results 

D
ry

 s
li

d
in

g
 

50 0.5 0.205000 0.205295 

50 1.0 0.220000 0.220056 

50 1.5 0.230000 0.229521 

100 0.5 0.190000 0.190695 

100 1.0 0.200000 0.198500 

100 1.5 0.210000 0.210655 

150 0.5 0.180000 0.179855 

150 1.0 0.195000 0.197533 

150 1.5 0.205000 0.205640 

The mean relative error, MRE (%) 0.388528 

The relative standard deviations of error, (STD)  0.002163 

The absolute fraction variance of error (R2) 1.000000 

H
B

S
S

 (
H

an
k

’s
 b

al
an

ce
d

 

sa
lt

 s
o

lu
ti

o
n

) 

50 0.5 0.110000 0.110000 

50 1.0 0.120000 0.120000 

50 1.5 0.130000 0.130000 

100 0.5 0.106000 0.105999 

100 1.0 0.115000 0.115001 

100 1.5 0.125000 0.124998 

150 0.5 0.104000 0.104000 

150 1.0 0.111000 0.111001 

150 1.5 0.114100 0.114101 

Mean relative error, MRE (%) 0.000628 

The relative standard deviations of errors 

(STD) 
0.002164 

The absolute fraction variance of errors (R2) 1.000000 

 

 The modeled ANN has 0.388528 and 0.005873 for 

the MRE result for the friction coefficient and the wear 

rate, respectively, for the dry sliding condition. For the 

HBSS lubrication condition, the ANN model has 0.000628 

and 0.002580 for the MRE result for the coefficient of 

friction and specific wear rate, respectively. Absolute 

fractions of variances were 1 under both conditions. STD 

were 0.002163 and 0.046676 for the friction coefficient 

and wear rate, respectively, for the dry sliding condition. 

 For the HBSS lubrication condition, the ANN model 

has 0.002164 and 0.046680 of STD for the friction 

coefficient and wear rate, respectively, which were 

consistent with the experimental results. 

 

Table 3. Comparison of MRE, R2, and STD for the specific 

wear rate 

T
es

t 

C
o

n
d

it
io

n
 

Specific wear rate 

Load  

(N) 

Sliding  

speeds  

(m/s) 

Experimental 

results 

 (10-6) 

ANN 

Model 

results 

 (10-6) 

D
ry

 s
li

d
in

g
 

38 0.4 4.200000 4.199650 

38 0.8 5.900000 5.900125 

38 1.2 7.000000 7.000000 

88 0.4 3.200000 3.200575 

88 0.8 3.600000 3.599575 

88 1.2 6.000000 5.999875 

138 0.4 2.800000 2.800000 

138 0.8 3.100000 3.099775 

138 1.2 3.800000 3.800125 

 The mean relative error, MRE (%) 0.005873 

 The relative standard deviations of error, (STD)  0.046676 

 The absolute fraction variance of error (R2) 1.000000 

H
B

S
S

 (
H

an
k

’s
 b

al
an

ce
d

 

sa
lt

 s
o

lu
ti

o
n

) 

38 0.4 3.300000 3.299900 

38 0.8 3.700000 3.700025 

38 1.2 5.600000 5.600000 

88 0.4 2.400000 2.399825 

88 0.8 2.800000 2.799950 

88 1.2 4.400000 4.400038 

138 0.4 2.300000 2.300000 

138 0.8 2.800000 2.799950 

138 1.2 3.300000 3.299900 

 Mean relative error, MRE (%) 0.002580 

The relative standard deviations of errors (STD) 0.046680 

 The absolute fraction variance of errors (R2) 1.000000 

 

5. Conclusions  

 

The following are the conclusions of this study;  

• The coefficient of friction and wear rate of medical-

grade UHMW-PE polymer under HBSS lubricated 

condition was lower than the dry sliding condition. 

• The highest wear rate was 7.x10−6 mm3/Nm for the 

UHMW-PE polymer at 1.2 m/s sliding speed and 38 N of 

load under the dry condition. The lowest wear rate was 

2.3x10−6 mm3/Nm under the HBSS lubricated condition at 

0.4 m/s sliding speed and 138 N load as shown in Table 3. 

• For the range of lubricant conditions used in this 

investigation, the wear rate was highly influenced by the 

size of the applied load and the type of lubrication media. 

For the two lubricant conditions used in this tribological 

study, HBSS was a more effective lubricant than dry 

sliding. 

• In this paper, we have suggested a new artificial 
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neural network (ANN) algorithm, which has feed-forward 

and backpropagation, to predict the specific wear rate and 

the coefficient of friction.  

• The estimates for the wear rate values and the 

coefficient of friction by the ANN model were consistent 

with the experimental data. 

• For the coefficient of friction, the ANN model has    

0.194578% of average mean relative error and 1.0 of the 

absolute fraction of variance (R2) for both conditions. Also, 

for wear rate, the model has 0.0042265 % of mean relative 

error and 1.0 of the absolute fraction of variance (R2) for 

both conditions. The obtained results show that the use of 

the ANN for predicting the coefficient of friction and wear 

rate is a perfectly acceptable method. 

 

Declaration of Ethical Standards 

 

The authors of this article declare that the materials 

and methods used in this study do not require ethical 

committee permission and/or legal-special permission. 

 

Conflict of Interest 

 

The authors declare that they have no known 

competing financial interests or personal relationships that 

could have appeared to influence the work reported in this 

paper. 

 

References 

 

[1] Bartel D. L., Burstein A. H., Toda M. D., Edwards 

and D. L., 1985 The Effect of Conformity and Plastic 

Thickness on Contact Stresses in Metal-Backed 

Plastic Implants. Journal of Biomechanical 

Engineering, 107(3), pp. 193–199. 

 

[2] Brach del Prever E. M., Bistolfi A., Bracco P., Costa 

L., 2009. UHMWPE for arthroplasty: Past or future?. 

Journal of Orthopaedics and Traumatology, 10(1), pp. 

1–8. 

 

[3] Chandrasekaran M., Loh N. L., 2001. Effect of 

counterface on the tribology of UHMWPE in the 

presence of proteins. Wear, 250(1–12), pp. 237–241.   

 

[4] Briscoe B. J., Sinha S. K., 2002. Wear of polymers, 

Proceedings of the Institution of Mechanical 

Engineers, Part J: Journal of Engineering Tribology. 

216(6), pp. 401–413. 2002.  

 

[5] Lin T. Y., Tseng C. H., 2000. Optimum design for 

artificial neural networks: an example in a bicycle 

derailleur system. Engineering Applications of 

Artificial Intelligence, 13(1), pp. 3–14. 

 

[6] Zamyad H., Naghavi N., Godaz R., Monsefi R., 2020. 

A recurrent neural network-based model for 

predicting bending behavior of ionic polymer-metal 

composite actuators. Original Article Journal of 

Intelligent Material Systems and Structures, 31(17), 

pp. 1973–1985. 

 

[7] Kurt H H. I. and Oduncuoglu M., 2015. Application 

of a Neural Network Model for Prediction of Wear 

Properties of Ultrahigh Molecular Weight 

Polyethylene Composites. International Journal of 

Polymer Science, 315710, pp. 1–11. 

 

[8] Velten K., Reinicke R., Friedrich K., 2000. Wear 

volume prediction with artificial neural networks. 

Tribology International, 33(10), pp. 731–736. 

 

[9] Abdelbary A., Abouelwafa M. el Fahham N. I. M., 

Hamdy A. H., 2012. Modeling the wear of Polyamide 

66 using artificial neural network. Materials and 

Design, 41, pp. 460–469. 

 

[10] Rajesh D., Verma K., Kumar Kharwar P., Kumar 

Verma R., Mohan M., 2020. Artificial Neural 

Network-Based Modeling of Surface Roughness in 

Machining of Multiwall Carbon Nanotube Reinforced 

Polymer (Epoxy) Nanocomposites. FME 

Transactions, 48(3), pp. 693-700. 

 

[11] Sabouhi R., Ghayour H., Abdellahi M., and 

Bahmanpour M., 2016. Measuring the mechanical 

properties of polymer-carbon nanotube composites by 

artificial intelligence. International Journal of 

Damage Mechanics, 25(4), pp. 538-556.  

 
[12] Zhang  Z., Friedrich K., Velten K., 2002. 

Prediction on tribological properties of short fibre 

composites using artificial neural networks. Wear, 

252(7–8), pp. 668–675.  

  

[13] Khan S. M., Malik S. A., Gull N., Saleemi S., Islam 

A., Butt M. T. Z., 2019. Fabrication and modelling of 

the macro-mechanical properties of cross-ply 

laminated fibre-reinforced polymer composites using 

artificial neural network. Advanced Composite 

Materials, 28(4), pp. 409–423. 

 

[14] Gyurova L. A., Friedrich K., 2011. Artificial neural 

networks for predicting sliding friction and wear 

properties of polyphenylene sulfide composites. 

Tribology International, 44(5), pp. 603–609. 

 

[15] Kazi M. K., Eljack F., Mahdi E., 2020.  Optimal filler 

content for cotton fiber/PP composite based on 

mechanical properties using artificial neural network. 

Composite Structures, 251, pp. 1-7. 

 

[16] Pajchrowski T., Siwek P., Wójcik A., 2020.  Adaptive 

controller design for electric drive with variable 

parameters by Reinforcement Learning method. 

Bulletin of the Polish Academy of Sciences: 



Kemal ERMİŞ et al. / Koc. J. Sci. Eng., 4(2): (2021) 171-178 

178 

Technical Sciences, 68(4), pp. 1019–1030. 

 

[17] Rajeev D., Dinakaran D., Singh S. C. E., 2017. 

Artificial neural network based tool wear estimation 

on dry hard turning processes of AISI4140 steel using 

coated carbide tool. Bulletin of the Polish Academy 

of Sciences: Technical Sciences, 65(4), pp. 553–559.  

 

[18] Ufnalski B. Grzesiak L. M., 2012. Particle swarm 

optimization of artificial-neural-network-based on-

line trained speed controller for battery electric 

vehicle. Bulletin of the Polish Academy of Sciences: 

Technical Sciences, 60(3), pp. 661–667. 

  

[19] Ermis K., Sen Y., 2017. Investigating Performance on 

Intercooler in Turbocharger Diesel Engine with ANN. 

5th International Symposium on Innovative 

Technologies in Engineering and Science, Baku – 

Azerbaijan, 29-30 September, pp. 1383–1392. 

 

[20] Şen Y., Ekmekçi İ., Çallı İ., 2003. Açık kanatlı düz 

çarklı sirkilasuon pompalarında sıcaklığa bağlı 

Değişimlerin Yapay sinir ağları ile analizi. 

International XII Symposium of Artifıcial 

İntelligence and Neural Networks. Çanakkale, 

Turkey, 02-04 July, pp. 1-7. 

 

[21] Sablani S. S., Kacimov A., Perret J., Mujumdar A. S., 

Campo A., 2005. Non-iterative estimation of heat 

transfer coefficients using artificial neural network 

models. International Journal of Heat and Mass 

Transfer, 48(3–4), pp. 665–679. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


