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Abstract

In this work, we investigate an issue of fractional order continuity for a system of pseudo-parabolic equations.
Specifically, we focus on investigating the stability of the derivative index, the solution w, is continuously
with respect to fractional order a in the appropriate sense.
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1. Introduction

Fractional PDEs are important in a variety of domains, including physics and engineering of the memory
effect, viscoelasticity, porous media, and other fields [IH14]. Viscosity has an essential role in the research of
the material characteristics of constructions and biological materials. Many researchers have recently used
fractional calculations to investigate the Viscosity of such materials accurately. The primary tool for solving
that phenomenon model is fraction PDEs. Binh et al. [15] studied the dependence of the fractional order of
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derivatives with respect to the time variable for the pseudo-parabolic equation. To expand on the previous
result, we consider the coupled nonlinear fractional pseudo-parabolic equations which shown as following

o8 (ult,x) + (1 + k)Bu(t,)) = F((t,z,ult,2)), (t.z) € (0,T]) x
o (v(t,2) + (1+DBo(t,x)) = G((t, w0t 7)), (ta) € (0,T] x O
with the boundary conditions and initial value conditions as followed.

u(t,z) = 0,u(t,z) € (0,T] x 9%, u(0,2) = fo(z),x € Q, ut(0,2) = 0,2 € Q,

(1)

and
v(t,z) =0, (t,z) € (0,T] x 09, v(0,2) = go(x), xz € Q, v(0,2) = 0,2 € Q,

In , the operator B is defined in . The function F, G, fo, go will define later. The constant a € (0, 1)
is called the order of fractional. Furthermore, the Caputo fractional derivative 97 is defined as follows.

1 ¢ ! d
e ) = pa g / . US(x’_j) TP 2)
0 Ofu(x,t) = [[(1—a)]™t [yt — )70 =55=ds,
o0
where u is a definitely continuous function with respect to time, I'(w) = [ ¢*~le~!dt is the Gamma function
0

and u/, is regarded as an ordinary first derivative of function u. Let Q is a bounded domain in R™ with
sufficiently smooth boundary 0€2. The case 0 < a < 1, the time-fractional diffusion equation plays an
crucial part in Brownian motion for normal diffusion, the macroscopic version of continuous time random
walk model becomes the well known pseudo-parabolic with derivative of integer order (a = 1)

ut + (k + 1)Buy = F(u). (3)

The equation has a wide range of real world applications, it is called the pseudo-parabolic (see [17-H19]).
In addition, there are numerous works on the well-posedness of the pseudo-parabolic equation with classical
derivative, as evidenced by [20H43] 60H68] and the references therein. Investigating the existence, uniqueness,
and stability of fractional differential equations, has been the important goal in the scientific community,
especially in fractional calculus. Until now, we hardly find many articles related to the fractional order of the
pseudo-parabolic partial differential equation. Recently, the authors [46] researched and generalized Ulam-
Hyers. In [50, 51} 9], authors were recognized a boundary value problem for fractional pseudo-parabolic
equations. Benchohra [56-58] specialize in research about Hilfer fractional derivative. The regularity of the
mild solutions for fractional pseudo-parabolic equations, on the other hand, has not been investigated.

As a result, the solutions’ stability concerning these parameters is crucial for modeling purposes. The
inspiration for this idea came from the article [54]. Experiments are used to define or compute the parameters
of a practical problem. As a result, we only see its value incorrectly, and we can only get an approximate
value even if the parameters are known precisely. Problem becomes complicated when we have to analyze
the upper and lower quantities utilizing terms of fractional order a. Therefore, we must choose an effective
method to provide an appropriate estimate due to the non-local and nonlinear nature of our problem.

The rest of the paper is divided as follows: In Section 2, we present the Mittag-Leffler function’s pre-
liminaries and the mild solution. In the last section, the uniqueness of the solution and continuity of the
solution with respect to fractional order will be present.

2. Preliminaries

2.1. The Mittag-Leffler function
For a > 0,0 € R and w € C, the Mittag-LefHler function is denoted by the symbol E, ;(w) and has the
following definition:

o0 wn
Eop@) =S — 2
#(@) ; I'(na + b)

Remember the following lemmas (see for instance [0, [48] [53]), that would be useful for Section 3.
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Lemma 2.1. For all w > 0, there exist D > 0 depends on a € (0,1) such that
|Ea1 (@) < D, |Eg,o(—w)| < D.
Lemma 2.2. Ifa € (0,1),A > 0 and w € R then we get
OmEa1(—Aw®) = =A@ ' By o(—Aw®),
8w(w“_1Ea,a(—)\w“)) = wa_2Ea,a,1(—)\w“). (4)
Proof. See [60], Lemma (2.2).

Lemma 2.3. If T is large enough and 0 < a < 1 then there exist two constants D} and D? such that
D! D?

— < | B (—\TYH < —2—, VjeN 5)
1+ NTe = a1 (=X T7)] < 1+ A0 J (5)
Proof. See [44]. O
Lemma 2.4 (See [47], Lemma 2.3).
D D
14 o< (B (o) < 2O g (o) < Do) ©)
1+w 1+w

Let 0 < a1 < az <1 and a € (a1,a2). Then there exists constants D;(a1,a2) > 0 (i = 1,3) depending only
on ai,as such that

Pl %) < s (-)) < 220D g, (o)) < P2l0202) )
for any @ > 0.
Lemma 2.5. Let 0 < a; <a<a <as, 0<w <T. There exists D, such that
| — @] < max(T%+%,1)D(d’ — a)T* . (8)
here € is a number greater than zero and independent of a.
Proof. See [60], Lemma 3.2. O

Lemma 2.6. Assume that € > 0 and 0 < a1 < a < ad’ < as < 1. Then there is a positive constant
Di(a1,a2,€,0,T), such that

|Ba 1 (=A€") = Bar 1 (=2;€™)] < Di(an, a9,6,0, T)AT 1720707 (o —a) + (' - a) |, (9)
where 6 € [0,1] and € € (0,T].
Proof. See [60]. O

Lemma 2.7. Suppose that 0 < a1 < a < d < ag < 1. If § € [0,1] and € > 0 then there exist
Ds(ay,as,€,0,T) > 0 which is independent on a and a' such that

£V By (= NEY) = €97 By (=A%)

< Ds(a1, az,¢€,0, T))\?*ltalg_e_l [(a’ —a)+ (d — a)]. (10)
Proof. See [60]. O

Lemma 2.8 (See [69], Lemma 8). Assume exist p; > —1, ug > —1 such that pi + pe > —1 and pg > —1
then the following estimates hold

1
%ﬁf‘mw) = sup tus/ Sul(l _ 5)uze—wt(1—s)ds H_OO) 0.
’ t€[0,T] 0
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2.2. Some spaces and solution representation
Next, we need familiar Hilbert spaces L2(Q), H3(Q), H%(Q). Let B : L?(Q2) — L%(Q) be a symmetrical,
uniform elliptical operator, defined as follows:

Bw(s) = b(s)w(s,t) — % (Brl(s)aaslw(s)),s €Q, (11)
1

where D(B) = H2(Q) N HL(), b(s) € C(,[0,00)), By € CL(Q), By = By, for all 1 < r,l < n, and there
exist B > 0 such that (see [49])

n
EZe? < Z eiBr(z)er, forallz € Q,e=(e1,e2,---,e,) CR™

1<r,i<n

We now consider the spectral problem

{waar) = \jihj(a) (12)
j(x) =0 on 0Q-

where {}; }]>1 (see e.g [55]) is an increasing sequence of positive real numbers that satisfies the condition
that lim \; =

Jj—00
Furthermore, BPw operator is defined as follows:

oo

BPw = (w, ;) N,
j=1
weD(BY) = qweLX(Q): Y [(w,h)PAF < oo, (13)
7=1

The Banach space D(BP) is equipped with the norm
= 2
2
lullBsy = D AP (u, 46)]". (14)
j=1

If p = 1, we have D(B') = H?(Q2). For p > 0, the Hilbert space

HP(Q) =< u:uel?(Q) andz |<u,1j)j>|2)\]2-p <00 g, (15)
j=1

it is equipped with the norm
o
2 2 2
HUHHP(Q) = Z/\jp [(u, )7
j=1

If p = 0 then H(Q2) = L2(Q). Denote HP(Q2) = HP(Q) x HP(2). Let w(u,v) € HP(£), we define the following

norm:

llleqy = /1y + 1ol (16)

For o € (0,1) and 7 > 0, we use the notation C5(0,T;HP(Q)) to indicate the subspace of C(0,T;HP(Q2))
such that

lullce o/rmr (o)) = sup t%e ™ u(t)lur@) < oo,  ue€ C(0,T;HI(R)),
0<t<T
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with the convention that C,(0,7;HP(Q2)) := (C?Y(O, T;HP(Q2)) when o = 0. The product space
Co(0,T; HP(9)) = C2(0, T; BP(Q)) x C2(0, T HP(%)

has the norm

D=

||w||c;v(0,T;Hp(Q)) = <||U”%g(o,T;HP(Q)) + ||U\|%:g(o,T;Hp(Q))) (17)

Now, using the result [I5], we can deduce the solution of the coupled nonlinear fractional pseudo-parabolic
equation system as below

| x Ajta ! . —(t—s)"'N\ , |
uq(t, ) —J;E <1 sy > Jojj + Z E=ov Lf )*Eaa (W) f(uy(s))d?] (R

0o —\;1@ t (4 a—1>\,
va(t, ) = Z Eqq < it > 90,05 + Z 1+ZA [f (t—95)"Eqq <(t1 _3)\. ]> g(uj(s))ds] ;.
]:1 ]— ]

1+ ), !
(18)
We can rewritten as follows:
talt,7) = Ral®)fo + [ Sanlt — $)F (uas)ds,
0 (19)
Ua(ta 1‘) = Ra,l(t)go + {Sa,l(t - S)g(ua(s))dsa
where
:ZEa1< ‘>< Vi)Y (20)
— Y
ZEM( ) s (21)
Sealt =973 S| () wn]wg, 22)
B > 1 “ —(t—s)\
Sult=¥ =3 0= oo (TG ) () |0 (23)
Replace a with a’, we have
ug (t, ) = R i (t) fo + fS 1 k(= s) F(uq(s))ds,
(24)

Va/ (t7 33) = Ra’,l(t)go + {Sa’,l(t - S)g(ua’(s))ds'

Next, we give some lemmas to evaluate the solution’s dependence on the parameter. And, we can refer
to the proof in [15].
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Lemma 2.9. ForO0<a; <a<az<1,0€(0,1),p>0 and ¥ € H(Q). The following inequalities hold:

IRak(t)¥ w0y < Dilar, ag, k, 0)t™ || ¥l (q),

(25)
I Rai(t) ¥l () < Dilar, az, 1, 0)t || Wl (q)
(26)
|Sa,k(t — 8)¥ [y < Da(ar, az, k,0)(t — 5) |||y
(27)
S0, (t — 8)¥|lme(ay < Daa, az,1,0)(t — )11 W | )
Lemma 2.10. For a € (0,1), p> 0 with 0 < 0 <1 and ¥ € HP(Q), we get the following inequalities:
, _ T ) CL2(1 9 o I
| [Rerat) = Ras] W], < Dalar, a0k, Tt Iy [ (@ = @) + (@' = )]
Rt = Ras ] ], < Drtansaa, 0,0 1070wl [( )+ (o~ )],
| [ et = 5) = Sunt = )] w||_ o < D2l a2, 60K, Tt = 5[ W (@ =) + (@'~ a)],
| [Suralt =) = Sustt = )] ||, < Dol a2,€,0,1, 1)t = ) | Wllgiey [ (@ — )+ (o —a)].

where D1, Dy are independent of w and also defined in the proof.

3. The fractional-order stability of a nonlinear FPPES.

In this section, we investigate the existence of a unique mild solution of the problem and how its
continuity depends on the parameters with input (the fractional-order a and the initial state fo,go). The
function F and G are assumed to meet the following criteria:

(F).
) Ollany < Cor(1+ e Dllaniay + [0 i)
[ F (w1, 01)(58) = F(ug, v2) (- D) llar @) < K]—'(H“l( b)) = ug (- 1) lme (o) + flva(58) — U2('7t)”]HIP(Q))7 (28)
F(0) =0,

where (u1,v1), (ug,v2) € HP().

(G).

19, 0) ()l < Co (14 Dl + o€ Dlluncey )
Hg(ubvl)('?t) - g(u27v2)('at)”HP(Q) < Kg<||u1('at) - u2('at)||HP(Q) + Hvl('7t) - U2('7t)HHP(Q))7 (29)
G(0) =0,

here (ug,v1), (ug,v2) € HP(Q).

Definition 3.1. w(u(t,x),v(t,z)) € C3(0,T; HP(Q)) is called a mild solution to the problem (1)) if it satisfies

System .
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Theorem 3.2. Assume that 0 < a1 <a<ad <ay<1,0<0<1,0<a<ai(l-0)<1 and fo € H?(Q),
go € HP(?). Then Problem has unique solution w(u,v) € C$(0,T;HP(S2)), and the following estimate
holds

@k’l (al,ag)
HwCLHCQ‘ZQ 0.T:HP(Q)) — Lo
vy ( 1 ( )) 1 — @

%l ' (30)
ap(ar, az)

here @lf’é(al,ag) and @g’é(al,ag) is defined in (45)). Furthermore, consider w, and wy are solutions of

Problem for fractional orders a and a’ respectively. If exist @ and € such that 0 < € < a160 and 1 — é <

0 < aﬁal then we get

(Ul(al,ag, 6,0,k T)+Vi(a1,az,¢,0, l,T)) [(a’ —a)+ (d — a)}
1— <V1(a17 a2, 6797 kaT) +V2(a17 az, €, 07 Z7T)>

”wa/ — wa||C$2(1_6)+E(0,T;H1’(Q)) S (31)

where Uy(a1,az,¢,0,k,T), Us(ai,as,€,0,k,T),Vi(a1,a2,¢60,1,T) and Va(a1,as,¢,0,1,T) are positive con-
stants.

Proof. We divide the proof into three parts:
Part 1.We use the Banach fixed-point theorem to prove the existence and uniqueness of the solution of
equation ([18). For w, € C3(0,T;HP(Q2)) and operate Y is defined by

Yoy := (Tkua(-,t), Tlva(-,t)) (32)

where

Thttalt, 2) = Ragl®)fo+ [ Sunlt — 5)F (uals))ds
2 (33)
Tiva(t, ) = Ry (t)go + ({Sal(t — 5)G(uq(s))ds,

We will show that for all w, € C$(0,T;HP(2))a € C$(0,T;HP(Q2)) the equation Tw, = w, has a unique
solution. Indeed, let wq,1(ta,1(t, %), va,1(t, 7)), Wa2(Ua2(t, ), va2(t, ) € CS(0,T; HP(Q)), we get

T (ua,1(t, ) — ug2(t, )) Sok(t — s) []—"(ua,l, V4,2)(8, ) — F (a2, v4,2) (s, )} ds, (34)

O L O~

T, (va71(t, ) — vaalt, -)) Sui(t —s) [g(ua,l, va1)(5,) — G(Ua2, Va2) (s, .)}ds. (35)
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Using Lemma (2.9) and condition (28)), will be

e oo =)y

t
/ p(t —s)t%e™ [}"(ua,l, Va,1)(8, ) — F(uq,2, va,2)(s, )} ds
0 HP ()

Da(ar, ., 0)(t = )@ 1401 K x (g1 (5,) — tha (5, ) iwce) + 001 (5: ) = 25, ) vy ) ds

@‘ o“\W

S (CL]_,CLQ,]C,G)K
t
X 1% / S—a(t S)(a1—1—a19)e—7(t—s) [Sae_’ys(Hua,l(S, ) — ua’z(s, ')HHP(Q) + Hva,l( s ) Va 2( )HHp(Q)ﬂd
0
< Ds(ay, az, k, 0)K;<|]ua,1 = Ua2llce(o,rmr (@) + [[vay — Ua,2||Cg(o,T;Hp(Q))>
1
« tal—ale/s—a(l o S)al—l—alﬁe—'yt(l—s)ds.
0

By setting p1 := —a; s ;= a1 — 1 — a160 and

1
512::21 ('Y) = sup ta1a19/ Sia(l _ 8)a17a1«97167'yt(173)d8’
’ te[0,7) 0

appling inequality (m + n)? < 2(m? 4+ n?), we can get
e (1) (36)

[ (010 = w020 |y ey = VP02 O K = waallesormmon G

Similarly, we also get
HTl (ua,l (ta ) - ua,?(tv )) < ﬁﬁ?(alv az, I, Q)KgHwa,l - wa72||C$(O,T;HP(Q))<€51272L—21 (7) (37)

From —, we can obtain estimate as follow

C3 (0, T3P ()

2
C2(0,T5HP ()

HT<w“’1(t’) wa,2(t )> Ca (0.7;HP ()

= et =)

2
Cg(0,T;HP())

HTZ (va 1(5,t) — va2(+, t))

< \/@2(@1, az. k,0) K2 + 2D3(ay, az, 1, O)KZEL2 L () [was — wasllos ooy (38)
Using the assumption 0 < a < a1(1 — 0), we see that
{ —a > —1,
—a+a(l—60)—1>—1.
Hence, by applying Lemma , we deduce that
(39)

Y—00
51277;21 (’Y) — 0
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Therefore, we can choose g such that

\/2D2 (a1, az, k, 0)K% + 2D (a1, as, L, 0) K215 (3) < 1.

Accordingly, we discover that T is a contractive mapping in C5(0,T;HP(Q2)). Following the Banach fixed
point theorem, we confirm that has a uniques solution in C$(0, T'; HP(Q2)).

Part 2. Estimates ||wq(t, ')||C§29(07T;HP(Q)). From we get

et Mgy < [ R0, 0 +

t
/ k(t — 8)F(uq,va) (-, s)ds||.
0

Using Lemma (2.9), and (28)). we can deduce

11920 e ug (¢, ) ||me (o)

< %077 Dy (ar, az, k. )t~ | folluw() + 2% 77" | Da(ar, az, k, )(t — )= Fug, va) (-, 8)l|szw () ds

o\“
o

< Di(a1, a2, k,0)e™"| follmr (o)
t
_|_E2(a17 as, k, Q)C}_taQO/S—aQG(t _ S)(al—1—a19)6—7(t—8)5a26’6—’78(1 + ”ua('7 S)”HP(Q) + ||Ua('a S)HHP(Q))dSa
0
(40)

It is clear that e < 1 for all t > 0. Using the same evaluation technique as with asumption

0<l< a+a < 1, we can deduce

[£92% e ug (¢, ) ||me (o)
t

< Di(a1, az, k,0)|| follme () + D2(a1, a2, k, ) Cftaza/ s)u~l-alyg
0

1
+E2(a1, as, k, Q)C]:tal_ale / S—uz@(l _ S)(al—l—m@)e—‘ﬂf(l—S) |:St129€—’)’8(Hua(,7 S)HHP(Q) + Hva(.’ S)HHP(Q))]dS
0

Ta1+(a2—a1)9
<D (alaa2ak Q)HfOHHP +D2(a17a27k 9)0 -

a1 — a19

+ Dalar, az, b, 0)Cr &4 (4 )(Hu@n oot o gy + 10l QQQOT;HP(Q)))

Ta1+(a2 a1)d

< Di(a1, az, k, 0)|| follme (o) + D2(a1, az, k,0)Cr

a1 — a0
+V2Ds (a1, az, k, Q)Cf%ﬁ:; Mlwallgaze o 7.300(c2))- (41)
here 1 := —agf. Therefor, we obtain
— To1+(az—a1)d
lua (s Mazt (o rgmay) < Dilar, a2, ks O)ll follew (o) + D2(ar, as, k, 0)Cr "
+V2Ds(ay, as, k, e)c;%;,lﬁ;j O ST C )
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By the same evaluation technique above, we also have

Ta1+(a2—a1)9
||7}a(t, ‘)HC?PO(O,T;HP(Q)) S D ((11, az, la G)HQOHHID + DQ(CLl, az, l) 9)0 -

a) — CL19
+ \/>D2(ala az, la H)CQ%MQJrl( )Hwa” ‘129(0 T;Hp(Q))' (43)

From (42)-({43)), we get

kil
Hwa(tv ')HC,?QG(O,T;HP(Q)) S ®1 9(0‘17 a?) + @2 e(ah GQ)H’IUQH a29(0 T;HP(Q))" (44)
where the following symbols are used
kil Ta+(a2—a)0
D7p(ar,az) := Di(ar, a2, k,0)| follur ) + D2(a1, a2, k,0)Cr F 0 al
TaJr(agfa)@
+D1(a1>a27l10)Hg(]HHp +D2(a‘170‘27l>9)0 W:
Dhh(a1, a2) 1= V2Da(a1, 0, k, 0)Cr 642 () + V2Do(ar, a3, 1, O)Cg 62 (4). (45)
Therefore, we obtain
Juwal Ou(0r.02) (40)
Wq || ra20 . =
¢ (OTHP(Q)) = 1 _ @g:le(ahaz)
Part 3. Similar as part 2, from —, we can show that
[uar (£, ) — val(t, )|lme (o)
t 2
< H[Rk — Rax(®)]() fo‘ + / [Sur it = 5) = Sak(t — 5)] Flttar, var) (-, 8)ds
HP(Q)
0 HP ()
t 2
| [ Saat = ) [Fltarsv),9) = Fluasa) )] ds
0 HP (€2)

Applying Lemma (2.942.10)), we obtain
$a2(1=0) ket g (8, ) — u, (¢, -) ”]?-]IP(Q)

< ta2(179)+6677tﬁl(a17 az, €0, k, T)ti(m(lie)ie”fﬂ”ﬂ'ﬂp(ﬂ) |:(CL/ - a)e + (a/ - a)

¢
+ ¢22(1=0)+e o=t [(a —a)+ (a' —a) / a(ar, ag, e, p, k, T)(t — )Y Flug, va) (-, 8) || we () ds
0

Uz

+ 192070t [ Dy(ar, ag, k, 0)(t = ) || F(uar, var) (-5 ) = F(tha, va) (- 8)|[1r () ds - (47)

o\ﬁ

Us
Estimate I;: using inequality e % < 1 for all ¢ > 0, we obtain

Uy < Di(ar, a2,€ 0,k Tl follmn(o (¢ — @) + (a/ — @) (48)
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Estimate Us: Using the same estimation with assumption , we get

Us < Dalar, a2,¢,0,k,T) (0 = a) + (a' — a)|Cx

t
« t2a2(1—0)+2e/8—a29(t - 8)(1119—6—1)6—’7(75—5) |:8(1296_'YS <1 4 Hua’<'at)HHP(Q) + Hva’('vt)HHP(Q)ﬂds-
0

t

< Da(at, az, 6,0,k T)Cr [(a’ —a) + (d — a)} paz(1-0)+¢ / (t — s)mb=c"1gs.

0
+ Da(ar, az, ¢,0,k, T)Cr (' = a)f + (o' a)]
t
X V2| we| c22% (0,1;mP ( Q))ta2(1_9)+€/3_a29(t — 5)0 s,
0
Assume that 0 < e < a10, 0 < o +a < 1 then
—as > —1,
a—e—1>—1.

Following the Beta’s function property

t
/ st — )" lds = ™I B(m, n)
0

where

n
= W,m>0,n>0,

from we can deduce

. Ta2(1—9)+a19
Us < Dalar,a,e,0,k, T) | (' = a) + (a’ = a) | Cr—p—
a1l — e

Cf\fglf’é(al,%)
1-— @2 é(al, a2)

+ Doay, as, ¢,0,k,T) [(a' — @)+ (d - a)} Ta2—2020+00 B(1 _ 400 010 — ).  (49)

Estimate U3: Using globally Lipschitz property of F (| . 0<e<afand1l—-—- > < 0 < , we also have

a2+

t
Us < DQ(al,ag,k 0 K]-‘ta2 (1-0)+ / alilialeeivt(“ua’('at) _ua('at)”HP(Q) + ||Ua’('7t) _Ua('at)HHP(Q))dsa
0
< Eg(al, as, k, 0)K].‘(||ua/ - ua||C:2(1—0)+e(0,T;Hp(Q)) + Hva/ — UG‘”C§2(1_9)+E(0,T;HP(Q))>
t
« ta2(179)+e / Sfag(lfé’)fe(t - S)al717111067'y(1573)ds7
0

<V2Dy(ay, a9, k, ) KrT O~ B(1 — ay(1 — 0) — €, a1 — a10)||wyr — (50)

Wallgaa0-0r+< o 1510 )
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From —, we obtain

[uar — ua||C:2(1—9)+6(0,T;Hp(9))

< 51 ((11, az, €,0,k, T)HfOHHP(Q) |:(CL, - a)e + ((I/ - CL):|

TCLQ (1—9)—}—1110

Y I _ € I
+ Da(a1, a2,€,0,k,T)Cr af ¢ {(a )+ (a a)]

Cf\@@]fjlg(al, az)

+ EQ(GM a2, €, ‘97 k? T)
1-— @;’é(al, CLQ)

T2 2020400 B _ 90, a,0 — €) [(a' —a)*+ (d —a)

+ \/552((117 az, k) Q)K]‘—Tal(lie)B(l - G‘Q(]‘ - 0) —6ar — a19)||fwa/ - wa“C$2(179)+6(07T;HP(Q))' (51)
To facilitate the calculation, we set
. . . Ta2(1—0)+a19
Ui (alv az, €, 97 k, T) = Dl(ah az, €, 07 k, T) HfOHHP(Q) + D2<a17 az, €, 6) k, T)C]:W
_ C ﬂ@k’l ai,a
+D2(a17a2>€aeak7T) 7 kllﬁ( - 2)Ta2—21129+l119B(1 —CLQG,CHH— 6)7
1-— @2:9(6“, CLQ)
Ug(al, as, €,0, k, T) = \@bg(al, as, k, G)K]:Tal(lie)B(l —az(1—0)—e€a1 — CL19). (52)
We obtain the following estimate
luar = tallgazt-01+<( 71m(a
< Ui(ar,az,6,0,k,7) (@ = ) + (0 = a)| + Ua(ar, az, €0, k, 7)1 = wall a0 oy (59)
Similarly, we have
”Ua/ - Ua||C32(1_9)+€(0,T;HP(Q))
<Vi(ay,az,¢6,1,T) [(af —a)+ (a — a)} + Valay, az,€,0,1,T)||wy — wa||C$2(1_9)+E(O’T;HP(Q)). (54)
From —, we can deduce
0 = wallgoat-or+ g rggn ey < (T1(a1, 02,60, T) + Vi(ar, az,¢,0.0,7)) (@ = a) + (a' = a)]
+ <V1 (al, az, €, 9, k:, T) + Vg(al, ag, €, 9, l, T)) ||wa/ - wa’|C$2(179>+5(0,T;HP(Q))'
Finally, we get the following evaluation:
(Ul(al, az,€,0,k,T)+ Vi(ai,as, e 0,1, T)) [(a’ —a)+ (d — a)}
|war = wall paz -6yt . < — — :
C72 (OTHP (D) 1-— (Vl(a17a276797k7T) + V2(a17a276797l7T))
The theorem ([3.2)) has been proved. O
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