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Abstract. In this paper, we first introduce almost contraction mappings for a pair of two mappings in cone metric
spaces over Banach algebras (CMSBA). Then, we observe that the class of such mappings in this setting contains
those of many well known mappings. Finally, based on the fixed point theorem of the mappings belonging to this
class, we obtain (S ,T )-stability results of Jungck iterations for some mappings in CMSBA.
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1. Introduction

In 1922, Banach showed that T has a unique fixed point if the conditions below hold: Given a complete metric space
(X, d) and a self mapping T satisfying

d(Tν,Tϑ) ≤ λd(ν, ϑ) for all ν, ϑ ∈ X,

where λ ∈ (0, 1). In the literature, there are many studies aiming to improve this result known as Banach’s contrac-
tion principle. In 1973, one of them has been obtained by Hardy and Rogers [4], considering the following class of
mappings:

d(Tν,Tϑ) ≤ l1d(ν, ϑ) + l2d(ν,Tν) + l3d(ϑ,Tϑ) + l4d(ν,Tϑ) + l5d(ϑ,Tν), (1.1)

where li (i : 1, ..., 5) are non-negative constants satisfying
∑5

i=1 li < 1 and ν, ϑ ∈ X. Moreover, in 1976, Jungck (see [10])
gave some results about common fixed points for given commuting mappings. In 2004, another kind of mapping known
as almost contraction was introduced by Berinde in [2] as follows: There exist h ∈ (0, 1) and L ≥ 0 such that

d(Tν,Tϑ) ≤ hd(ν, ϑ) + Ld(ϑ,Tν) (1.2)

for all ν, ϑ ∈ X, which contains well known contractive mappings such as Banach, Kannan, Chatterjea, Zamfirescu. On
the other hand, Harder and Hicks in [5] initiated a great interest in the study of stability for procedures of fixed point
iterations in 1988. In 1995, Osilike extended the results of [5] by considering the following class of mappings:

d(Tν,Tϑ) ≤ ad(ν, ϑ) + Ld(ν,Tν) (1.3)

for all ν, ϑ ∈ X, where a ∈ [0, 1) and L ≥ 0 [16]. Then, in 2005, Singh et al., in [18] introduced the concept of stability
of Jungck-type iteration procedures for a pair of mappings.
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In 2013, Liu and Xu in [14] extended Banach’s contraction principle by replacing the usual Lipschitz constant with
a vector in the setting of CMSBA with normal solid cones. To emphasize the merit of such an extension, they also
presented a mapping which is contraction in this new setting, but not in the usual sense. Furthermore, Xu and Radenovic
in [19] showed that the normality condition of cone can be removed to obtain the main results in [14]. Moreover, Huang
et al., in [8] presented the notion of T -stability of Picard iteration in CMSBA. In 2018, Ozavsar in [15] extended
the notion of almost contraction to the setting of CMSBA, and observed that Banach, Kannan and Chatterjea type
mappings are contained by the class of almost contraction mappings in such spaces. Also, the fixed point results for
almost contraction mappings have been studied recently in cone b-metric spaces over Banach algebras [3].

Now, in the sequel, we present some basic definitions and properties, which will be necessary to obtain our main
results.

2. Preliminaries

Let A be a Banach algebra so that e and θ are unit and zero elements of this algebra, respectively. In order to
establish a partial ordered relation onA, we need to the concept of cone: A nonempty closed subset P ofA is said to
be a cone if

P1: {θ, e} ⊆ P,
P2: P2 = PP ⊆ P,
P3: P ∩ (−P) = {θ},
P4: αP + βP ⊆ P for all nonnegative real numbers α and β.

On this basis, we define a partial ordering � as follows:

ν � ϑ if and only if ϑ − ν ∈ P.

Moreover, ν � ϑ stands for ϑ − ν ∈ intP, where intP denotes the interior of P. A cone P is called a solid cone if
intP , ∅. Throughout the paper, we suppose that A stands for a Banach algebra with a unit e, P is a a solid cone in
A, and � is a partial ordering with respect to P.

Definition 2.1 ( [6, 14]). Let X be a nonempty set. A cone metric d over A is defined as a mapping given by d :
X × X → A satisfying

d1: θ � d(ν, ϑ) and d(ν, ϑ) = θ if and only if ν = ϑ;
d2: d(ν, ϑ) = d(ϑ, ν);
d3: d(ν, ϑ) � d(ν,w) + d(w, ϑ)

for all ν, ϑ,w ∈ X.

The pair (X, d) is called the cone metric space onA, and we assume this pair as such from now on.

Definition 2.2 ( [6, 14]). Let {νn} be sequence in X. Then,
(1) {νn} converges to ν ∈ X if for each c ∈ A with θ � c there exists nc ∈ N such that d(νn, ν) � c for all n ≥ nc.

This is denoted by limn→∞ νn = ν or νn → ν, n→ ∞.
(2) {νn} is a Cauchy sequence if for each c ∈ A with θ � c there exists nc ∈ N such that d(νn, νm) � c for all

n,m ≥ nc.
(3) (X, d) is called complete if every Cauchy sequence {νn} in X is convergent.

Definition 2.3 ( [1, 11]). Let S ,T : X → X be mappings on X.
(1) If w = S z = Tz for some z ∈ X, then z is said to be a coincidence point of S and T, and w is said a point of

coincidence of S and T.
(2) The pair {S ,T } is said to be weakly compatible if S and T commute at all of coincidence points, that is,

S Tz = TS z for all z ∈ {z ∈ X : S z = Tz}.

Proposition 2.4 ( [1]). Suppose that S and T are weakly compatible self-mappings of a set X such that these mappings
have a unique point of coincidence w = S z = Tz. Then, w is the unique common fixed point for S and T .

Definition 2.5 ( [19]). A sequence {νn} inA is a c-sequence if for each θ � c, there exists nc ∈ N such that νn � c for
all n > nc.

Note that by the above definition, if {νn} convergens to ν ∈ X, {d(νn, ν)} is a c-sequence.
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Lemma 2.6 ( [19]). If a sequence {νn} inA is a c-sequence, then {ανn} is a c-sequence, where α ∈ P.

Lemma 2.7 ( [13]). If two sequences {νn} and {ϑn} in A are c-sequences, then {ανn + βϑn} is a c-sequence, where
α, β > 0.

Lemma 2.8 ( [12]). The conditions listed below hold:
a: If ν � ϑ and ϑ � c, then ν � c.
b: If θ � ν � c for each θ � c, then ν = θ.

In the following, some definitions and properties, which are necessary to give our results, are introduced. The
spectral radius ρ(ν) of ν ∈ A satisfies

ρ(ν) = lim
n→∞
‖νn‖

1
n = inf ‖νn‖

1
n .

If ρ(ν) < |λ|, then λe − ν invertible inA, and also (λe − ν)−1 =
∑∞

i=0
νi

λi+1 , where λ is a complex constant [17].

Lemma 2.9 ( [17]). Let ν, ϑ ∈ A with νϑ = ϑν. Then, the following inequalities hold:
a: ρ(νϑ) ≤ ρ(ν)ρ(ϑ),
b: ρ(ν + ϑ) ≤ ρ(ν) + ρ(ϑ).

Lemma 2.10 ( [7]). If ρ(ν) < |λ| and λ is a complex constant, then

ρ((λe − ν)−1) ≤
1

|λ| − ρ(ν)
.

Lemma 2.11 ( [7]). If ρ(ν) < 1, then {νn} is a c-sequence.

Lemma 2.12 ( [8]). Let {νn} and {cn} be two sequences inA satisfying the following inequality:

νn+1 � hνn + cn,

where h ∈ P with ρ(h) < 1. If {cn} is a c-sequence, then {νn} is a c-sequence.

3. Main Results

We first consider the versions of (1.1), (1.2) and (1.3) for a pair of self-mappings in cone metric spaces over A,
respectively, as follows:

(HR): There exist li ∈ P (i : 1, ..., 5) with ρ(l1) + ρ(l2 + l3 + l4 + l5) < 1 such that

d(Tν,Tϑ) � l1d(S ν, Sϑ) + l2d(S ν,Tν) + l3d(Sϑ,Tϑ) + l4d(S ν,Tϑ) + l5d(Sϑ,Tν),

(B): There exist h ∈ P with ρ(h) < 1 and θ � L such that

d(Tν,Tϑ) � hd(S ν, Sϑ) + Ld(Sϑ,Tν),

(O): There exist a ∈ P with ρ(a) < 1 and θ � L such that

d(Tν,Tϑ) ≤ ad(S ν, Sϑ) + Ld(S ν,Tν),

for all ν, ϑ ∈ X.

Proposition 3.1. If l1 commutes with l2 + l3 + l4 + l5, then (HR)⇒ (B).

Proof. By the condition (HR) and triangle rule, we get

d(Tν,Tϑ) � l1d(S ν, Sϑ) + l2d(S ν,Tν) + l3d(Sϑ,Tϑ) + l4d(S ν,Tϑ) + l5d(Sϑ,Tν)
� l1d(S ν, Sϑ) + l2d(S ν, Sϑ) + l2d(Sϑ,Tν) + l3d(Sϑ,Tν) + l3d(Tν,Tϑ)

+l4d(S ν, Sϑ) + l4d(Sϑ,Tν) + l4d(Tν,Tϑ) + l5d(Sϑ,Tν)
= (l1 + l2 + l4)d(S ν, Sϑ) + (l2 + l3 + l4 + l5)d(Sϑ,Tν) + (l3 + l4)d(Tν,Tϑ),

which implies that

(e − l3 − l4)d(Tν,Tϑ) � (l1 + l2 + k4)d(S ν, Sϑ) + (l2 + l3 + l4 + l5)d(Sϑ,Tν). (3.1)
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On the other hand, we have

d(Tν,Tϑ) = d(Tϑ,Tν) � l1d(Sϑ, S ν) + l2d(Sϑ,Tϑ) + l3d(S ν,Tν) + l4d(Sϑ,Tν) + l5d(S ν,Tϑ)
� l1d(Sϑ, S ν) + l2d(Sϑ,Tν) + l2d(Tν,Tϑ) + l3d(S ν, Sϑ) + l3d(Sϑ,Tν) + l4d(Sϑ,Tν)

+l5d(S ν, Sϑ) + l5d(Sϑ,Tν) + l5d(Tν,Tϑ)
= (l1 + l3 + l5)d(S ν, Sϑ) + (l2 + l3 + l4 + l5)d(Sϑ,Tν) + (l2 + l5)d(Tν,Tϑ),

which means that

(e − l2 − l5)d(Tν,Tϑ) � (l1 + l3 + l5)d(S ν, Sϑ) + (l2 + l3 + l4 + l5)d(Sϑ,Tν). (3.2)

Adding up (3.1) and (3.2), we obtain

(2e − l)d(Tν,Tϑ) � (2l1 + l)d(S ν, Sϑ) + 2ld(Sϑ,Tν), (3.3)

where l = l2 + l3 + l4 + l5. Since ρ(l) ≤ ρ(l1) + ρ(l) < 1 < 2, (2e − l) is invertible. By multiplying in both sides of (3.3)
by (2e − l)−1, one can write

d(Tν,Tϑ) � (2e − l)−1(2l1 + l)d(S ν, Sϑ) + (2e − l)−12ld(Sϑ,Tν).

Moreover, since l1 commutes with l, we can obtain that

(2e − l)−1(2l1 + l) = (
∞∑

i=0

li

2i+1 )(2l1 + l)

= 2l1(
∞∑

i=0

li

2i+1 ) + l(
∞∑

i=0

li

2i+1 )

= (2l1 + l)(
∞∑

i=0

li

2i+1 ) = (2l1 + l)(2e − l)−1,

that is, (2e − l)−1 commutes with (2l1 + l). Letting h = (2e − l)−1(2l1 + l), by Lemma 2.9 and Lemma 2.10, we get

ρ(h) = ρ((2e − l)−1(2l1 + l)) ≤ ρ((2e − l)−1)ρ(2l1 + l)

≤
1

2 − ρ(l)
[2ρ(l1) + ρ(l)] < 1.

Considering h = (2e− l)−1(2l1 +k) with ρ(h) < 1 and L = (2e− l)−12l,we can easily see that the condition (B) holds. �

Proposition 3.2. If l1 commutes with l2 + l3 + l4 + l5, then (HR)⇒ (O).

Proof. Since the proof is very similar to Proposition 3.1, it is left to the reader. �

Now, we introduce the following theorem which will be necessary in our results.

Theorem 3.3 ( [3]). Let S and T be two self-mappings of X such that T X is a subset of S X, which is a complete
subspace of X. Assume that there exist h ∈ P with ρ(h) < 1 and θ � L such that

d(Tν,Tϑ) � hd(S ν, Sϑ) + Ld(Sϑ,Tν)

for all ν, ϑ ∈ X. Then, S and T have a point of coincidence in X.

Proof. The proof can be easily seen by setting up s = 1 in Theorem 3.4 given in the paper [3]. �

If S = IX is the identity map on X in Theorem 3.3, we have the following Corollary.

Corollary 3.4 ( [15]). Let (X, d) be a complete cone metric space overA. Assume that there exist h ∈ P with ρ(h) < 1
and θ � L such that

d(Tν,Tϑ) � hd(ν, ϑ) + Ld(ϑ,Tν)

for all ν, ϑ ∈ X. Then, T has a fixed point in X.
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Theorem 3.5. Let S ,T be two self-mappings of X and w be a point of coincidence of these mappings, that is w = S z =

Tz. Assume that there exist a ∈ P with ρ(a) < 1 and θ � L such that

d(Tν,Tϑ) ≤ ad(S ν, Sϑ) + Ld(S ν,Tν) (3.4)

for all ν, ϑ ∈ X. Then, the point of coincidence w is unique. Furthermore, if {S ,T } is weakly compatible pair, then w is
a unique common fixed point of S and T .

Proof. Suppose that w∗ is a different point of coincidence for these mappings, that is w∗ = S z∗ = Tz∗. Then, we get by
(3.4)

d(S z, S z∗) = d(Tz,Tz∗) � ad(S z, S z∗),

which implies that

d(w,w∗) � ad(w,w∗) � · · · � and(w,w∗).

Using Lemma 2.6 and Lemma 2.11, and(w,w∗) is a c-sequence and by Lemma 2.8, it is clear that d(w,w∗) = θ, that
is w = w∗. Finally, if {S ,T } is weakly compatible pair, w is a unique common fixed point of these two mappings by
Proposition 2.4. �

Corollary 3.6 ( [7]). Let S and T be two self-mappings of X such that T X is a subset of S X, which is a complete
subspace of X. Assume that there exist li ∈ P (i : 1, ..., 5) with ρ(l1) + ρ(l2 + l3 + l4 + l5) < 1 such that

d(Tν,Tϑ) � l1d(S ν, Sϑ) + l2d(S ν,Tν) + l3d(Sϑ,Tϑ) + l4d(S ν,Tϑ) + l5d(Sϑ,Tν)

for all ν, ϑ ∈ X, and l1 commutes with l2 + l3 + l4 + l5. Then, there is a unique point of coincidence in X for given S and
T mappings. Furthermore, if {S ,T } is weakly compatible pair, then S and T have a unique common fixed point.

Proof. By Proposition 3.1 and Theorem 3.3, T and S have a point of coincidence. Also, by Proposition 3.2 and
Theorem 3.5, the proof is completed. �

4. (S ,T )-Stability in ConeMetric Spaces over Banach Algebras

Let (X, d) cone metric space over A, and T, S : X → X satisfy T X ⊂ S X. Assume that an iteration procedure is
given as follows:

S νn+1 = f (T, νn), n = 0, 1, 2, ..., (4.1)

holds. As an example, in the case of Jungck iteration we have S νn+1 = Tνn, which reduces to the Picard iteration when
S is the idendity mapping.

Definition 4.1. Let {Sϑn} be any sequence in X and {S νn} converges to a point of coincidence w of S and T , that
is w = S z = Tz. Let define εn = d(Sϑn+1, f (T, ϑn)) for n = 0, 1, 2, .... The iteration procedure (4.1) is said to be
(S ,T )-stable if

εn is a c-sequence ⇒ lim
n→∞

Sϑn = w.

If the conditions of Definition 4.1 hold for S νn+1 = Tνn, then we will say that Jungck’s iteration is (S ,T )-stable.

Remark 4.2. The concept of stability given in Definition 4.1 is nothing else that one in obtained in [8] when we take
S = IX .

Theorem 4.3. Let S ,T be two self-mappings of X and w be a point of coincidence of these mappings, that is w = S z =

Tz. Assume that there exist a ∈ P with ρ(a) < 1 and θ � L such that

d(Tν,Tϑ) � ad(S ν, Sϑ) + Ld(S ν,Tν)

for all ν, ϑ ∈ X. Then Jungck’s iteration is (S ,T )-stable.

Proof. Let {Sϑn} ⊆ X, εn = d(Sϑn+1,Tϑn) and εn is a c-sequence. We shall show that Sϑn → w. Since

d(Sϑn+1,w) � d(Sϑn+1,Tϑn) + d(Tϑn,w) = d(Tz,Tϑn) + εn

� ad(S z, Sϑn) + Ld(S z,Tz) + εn = ad(w, Sϑn) + εn,

by taking νn = d(Sϑn,w) and cn = εn in Lemma 2.12, we get that d(Sϑn,w) is a c-sequence and then Sϑn → w. �
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Corollary 4.4. Let S and T be two self-mappings of X such that T X is a subset of S X, which is a complete subspace
of X. Assume that there exist li ∈ P (i : 1, ..., 5) with ρ(l1) + ρ(l2 + l3 + l4 + l5) < 1 such that

d(Tν,Tϑ) � l1d(S ν, Sϑ) + l2d(S ν,Tν) + l3d(Sϑ,Tϑ) + l4d(S ν,Tϑ) + l5d(Sϑ,Tν)

for all ν, ϑ ∈ X, and l1 commutes with l2 + l3 + l4 + l5. Then, Jungck’s iteration is (S ,T )-stable.

Proof. By Corallary 3.6, it is seen that there is a point of coincidence for these mappings S and T . By Proposition 3.2
and Theorem 4.3, the proof is completed. �

Taking S = IX in Corallary 4.4, the following result is clear.

Corollary 4.5 ( [8]). Let (X, d) be a complete cone metric space over A. Assume that there exist li ∈ P (i : 1, ..., 5)
with ρ(l1) + ρ(l2 + l3 + l4 + l5) < 1 such that

d(Tν,Tϑ) � l1d(ν, ϑ) + l2d(ν,Tν) + l3d(ϑ,Tϑ) + l4d(ν,Tϑ) + l5d(ϑ,Tν)

for all ν, ϑ ∈ X, and l1 commutes with l2 + l3 + l4 + l5. Then, Picard’s iteration is T-stable.

5. Conclusion

In this paper, we first give a relation between Hardy-Rogers type mappings (HR) and almost contraction type
mappings (B) (see Proposition 3.1). Then, we observe that the fixed point result of mappings in the class (B) improves
the result of those in (HR) as a consequence of this relation. Finally, we extend the notion of (S ,T )-stability to the
setting of CMSBA. Notice that εn → θ (n → ∞), which is called θ-sequence, implies that {εn} is a c-sequence in solid
cone, but its converse is not true (see [9]). This fact says that there may be a pair of mappings T, S : X → X such that
some related iterations are not (S ,T )-stable in usual sense but (S ,T )-stable in the setting obtained in this extension.
For this reason, Definition 4.1 improves the notion of (S ,T )-stability in [18].
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F. Develi, M. Özavşar, Turk. J. Math. Comput. Sci., 15(1)(2023), 35–41 41

[17] Rudin, W., Functional Analysis. 2nd edn., McGraw-Hill, New York, 1991.
[18] Singh, S.L., Bhatnagar, C., Mıshra, S.N., Stability of Jungck-type iterative procedures, Int. J. Math. Math. Sci., 2005(2005), 3035–3043.
[19] Xu, S., Radenovic, S., Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebras without assumption

of normality, Fixed Point Theory Appl., 2014(2014), 1–12.


	Almost Contraction Mappings and (S,T)-Stability of Jungck Iteration in Cone Metric Spaces over Banach Algebras. By 

