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Abstract 

Robust optimization is an important tool to deal with the uncertainty of parameters. 

However, due to the worst-case orientation, the existing robust mean – variance (MV) 

models ignore the plausible portfolio choices, backed by additional criteria or subjective 

judgements. Thus, we propose a way to incorporate the fundamental analysis into the 

robust MV analysis under the assumption that the risk-free asset and short positioning are 

allowed. After laying down the theoretical points, we give an explanatory example by 

using the real data set of six banking stocks trading on the Borsa Istanbul (BIST).  
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1. INTRODUCTION 

The mean - variance (MV) model introduced in (Markowitz, 1952), has had a profound 

influence on the portfolio management theoretically (Goldfarb and Iyengar, 2003). However, 

it is not generally used in the practice due to the statistical errors in the estimation of its 

parameters (Breuer, 2006; De Miguel et al., 2009). The mean vector’s estimation is harder 

and thus a more important problem (De Miguel et al., 2009; Garlappi et al., 2006). 

Furthermore, this vector may change in the future because of the market shocks (Berkowitz, 

2000). Recently, Goktas and Duran (2020) introduce a new robust MV model to overcome 

these problems. The new robust MV model may be preferred to the other robust MV models 

for several reasons such as the ease of use. However, this model, which depends on the 

Principal Components Analysis (PCA), may not be suitable for the non-conservative 

investors. Because the worst-case situation is not very likely to occur and there is a cost of to 

be more conservative than necessary (Huang et al., 2010).  

Portfolio selection based on the fundamental analysis is another alternative for the 

investors. The Analytical Hierarchy Process (AHP) or its fuzzy extensions can be used in 

bringing the information about the stocks together and then determining the optimal portfolio 

allocation (Saaty et al., 1980; Tiryaki and Ahlatcioglu, 2009). We believe that it is a valuable 

approach since it enables to consider the important concepts such as the profitability of the 

companies and the cheapness of the stocks. However, it is an appropriate alternative only 

when the short positioning is not allowed by the regulators or not preferred by the investors.  

To fill in the gaps as mentioned above, we propose a way to incorporate the fundamental 

analysis into the robust MV analysis, which provides the flexibility to the investors unlike the 

classical MV analysis. To be more specific, we use the priority vector found with AHP in 

picking a fundamentally backed solution from the infinitely many plausible solutions obtained 

with the robust MV analysis. This fundamentally backed solution (FBS) simply corresponds 

to the portfolio that maximize the investor’s utility function under the assumption that the 

utility function is linear and the utility vector of the stocks is equal to the priority vector found 

with AHP. The major shortcoming of the proposed approach is that it is applicable only when 

the risk-free asset and short positioning are allowed. 

The rest of paper is organized as follows. In Section 2, we give the theory of the 

proposed approach. In Section 3, we give an explanatory example to illustrate our approach. 
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Here, we use a real data set of all banking stocks listed on the BIST 30 where the training and 

testing periods covers the complete year of 2016 and the first quarter of 2017 respectively. 

We conclude the paper with Section 4.  

2. THE THEORY OF THE PROPOSED APPROACH 

In this paper, we take the initial values of the portfolios as 1 for simplicity where the 

weight of the risk-free asset and the total weight of the stocks sum to 1. We also ignore the 

extra cost of short positioning. We prefer the excess logarithmic return vector of the stocks (r) 

to their simple return vector because the logarithmic returns are summable. This choice also 

brings us several advantages empirically and theoretically (Levy and Robinson, 2016). We 

show its mean vector and positive definite1 covariance matrix with µ and ∑ respectively.  

We assume that the covariance matrix of r is equal to the sample covariance matrix of 

r. Then, the principal components vector (x) is defined as below. Here,   is a diagonal matrix2 

of which its positive eigenvalues given in the ascending order and V is an orthogonal matrix3, 

of which ith column is the corresponding orthonormal eigenvector to the ith eigenvalue 

(Johnson and Wichern, 2007; Jolliffe, 2002). 

:T TV V x V r    (1) 

PCA is an orthogonal coordinate transformation. The linearized profit function p(r) is 

expressed on the new orthogonal coordinate system as below where w is the weight vector of 

the stocks and w  is the weight vector of the principal components. 

       
T

T T T Tf x w x V w x w Vx w r p r      (2) 

Remark: 
,i i  is the ith eigenvalue of the sample covariance matrix or equivalently the 

sample variance of the ith principal component. T

x V   is the sample mean vector of x 

where   is the sample mean vector of r. 

                                                      
1 A symmetric matrix is positive definite if all of its eigenvalues are positive. 
2 Its non-diagonal elements are equal to 0. 
3 Its inverse is equal to its transpose, which is shown with VT. 
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Remark: We assume that the eigenvalues of the sample covariance matrix are distinct 

as in our case to provide that our robust MV analysis is well-defined. They are distinct with 

probability 1 if its entries have a joint probability density (Girko, 1998). 

The uncertainty set of the mean vector of x can be determined as the following box type 

set where zτ is the τ quantile of the standard normal distribution and m is the number of the 

return data per stock (Goktas and Duran, 2020). 

   1 /2 1 /

,, , , , ,
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,| : : ,L U

x x i i i x ii x iix x i iU
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m m
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   
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 

 


 (3) 

The robust MV model is formulated with the following MaksMin problem where η is 

the nonnegative coefficient of risk aversion (Goktas and Duran, 2020). 

 maksmin 0.5
x

n

T T

x
Uw

w w w


 


   (4) 

Under certain assumptions, the robust MV analysis is independent from the duration of 

the testing period. Furthermore, the solution of (4) for the ith principal component is uniquely 

found as below where sgn () shows the signum function4 (Goktas and Duran, 2020). Then, the 

worst-case solution (WCS) is found as  * ,RVw   . 
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 (5) 

Since the ith principal component’s mean is interval-valued as in (3), its robust MV 

optimal weight set is found as below. 

 

                                                      
4 Signum function takes the value 1 for positive values, -1 for negative values and 0 for 0. Clearly, worst-case 

orientation brings the ith principal component’s optimal weight closer to 0. 
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Since the ith principal component’s mean is interval-valued as in (3), its robust MV 

optimal weight set is found as below 

 
   1 /2 1 /2,*

, ,, ,

,
, ,i

i i i ii i i

x i x i

i

z z
w

m m

 



 
 

  

 
 

 
 

 
   

 (7) 

. (7) gives infinitely many plausible solutions. In this paper, we use AHP in picking a 

fundamentally backed solution from them. Here, we determine the criteria as below. 

 The return on average equity ratio (C1) as a proxy of the company’s profitability. 

 The dividend per earnings ratio (C2) as a proxy of the company’s investor 

centeredness. 

 The book to market ratio (C3) as a proxy of the stock’s cheapness. 

 The long-term domestic credit note given by Moody’s (C4) as a proxy of the 

company’s credibility.  

It is claimed that Saaty’s original AHP method has several shortcomings (Buckley at 

al., 2001). On the other hand, we prefer it to the other (fuzzy) AHP methods for several 

reasons. First, it is widely accepted and used in many areas (Buckley at al., 2001; Saaty and 

Vargas, 2012). Second, fuzzifying the judgements is simply a perturbation, which does not 

improve the overall results (Saaty and Tran, 2007). Third, for each pairwise comparision 

matrix, its Perron vector5 should be used in obtaining the priorities to control the 

inconsistencies in the judgments (Saaty, 2003). Hence, after finding the stocks’ priority vector 

(p) by using this method, we determine the ith principal component’s weight as below. Then, 

fundamentally backed solution (FBS) is equal to  * ,FVw   . 

                                                      
5 Its Perron vector is equal to the normalized eigenvector corresponding to its maximum eigenvalue. We find the 

all Perron vectors by using the MATLAB. 
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The priority vector of the alternatives (stocks) can be thought as the utility vector of the 

alternatives (Malakooti, 2013). Under the linearity assumption, the utility vector of the 

principal components is found as follows. Then, (8) gives the plausible portfolio that 

maximizes the utility based on the linearity in (2) and boundaries given in (7). (8) also 

indicates that when the utility of a principal component is negative (positive), its weight is 

minimized (maximized). 

T

xp V p  (9) 

Remark: In practice, the priority vectors can be found with approximations. There are 

two steps in the mostly used approximation. In the first step, the columns of the pairwise 

comparison matrix are normalized by using the Manhattan distance. In the final step, the 

priority vector is found by averaging each row. However, we do not prefer such an approach 

and make the priority vector equal to the exact Perron vector of the pairwise comparison 

matrix. Since approximations may lead important problems such as rank reversal (Saaty and 

Vargas, 2012). 

3. AN APPLICATION ON THE TURKISH BANKING STOCKS 

The all-banking stocks listed on BIST 30 are GARAN, AKBNK, YKBNK, ISCTR, 

VAKBN and HALKB. We calculate their logarithmic returns for the 52 weeks in 2016 by 

using the Friday closing prices. We set the Bloomberg benchmark interest rate at the end of 

30.12.2016, which is equal to 0.1063, as the yearly risk-free rate. Then, we obtain the excess 

logarithmic returns by subtracting the weekly risk-free rate from the logarithmic returns. We 

give their summary statistics in Table 1 where SSD is the sample standard deviation. 
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Table 1: The summary statistics. 

 
Average SSD Skewness Kurtosis Median Minimum Maximum 

GARAN 0.000 0.043 

 

-2.240 6.749 0.010 -0.177 0.072 

AKBNK 0.001 0.043 

 

-1.876 6.509 0.005 -0.183 0.067 

YKBNK -0.001 0.050 -1.998 7.105 0.006 -0.224 0.086 

ISCTR 0.001 0.043 

 

-1.365 4.614 0.002 -0.164 0.083 

VAKBN 0.001 0.050 

 

-1.448 5.140 0.004 -0.210 0.090 

HALKB -0.003 0.051 -1.800 6.309 -0.001 -0.223 0.092 

We give the positive definite sample linear correlation matrix in the Table 2. Clearly, 

linear correlations between them are close to 1. The positive definite sample covariance matrix 

can be obtained by using this matrix and sample standard deviations given in Table 1. 

Table 2: The sample linear correlation matrix. 

 
GARAN AKBNK YKBNK ISCTR VAKBN HALKB 

GARAN 1 0.926 

 

0.868 0.899 0.822 0.854 

AKBNK 0.926 1 

 

0.870 0.894 0.851 0.876 

YKBNK 0.868 0.870 1 0.827 0.873 0.816 

ISCTR 0.899 0.894 

 

0.827 1 0.862 0.907 

VAKBN 0.822 0.851 

 

0.873 0.862 1 0.845 

HALKB 0.854 0.876 0.816 0.907 0.845 1 

After employing the Principal Components Analysis of the sample covariance matrix, 

we form the boxplots of the principal components as in the Chart 1 respectively. Here, the 

plotted whiskers extend to the adjacent values (the extremes of non-outliers) and the principal 

components are shown with PC1, PC2, PC3, PC4, PC5 and PC6 respectively. We find that 

the all eigenvalues i.e., the sample variances of the principal components are distinct and the 

%88.6 of the total variance is result from PC6. 
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Chart 1: Boxplots. 

The evaluation matrix of the alternatives is given in Table 3 under the assumption that 

the investor correctly foresees the companys’ equities with net profits and the stocks’ 

dividends for the year of 2016. Clearly, this assumpiton is very strict but we eliminate most 

of the human-based errors in this paper with this assumption. 

Table 3: The evaluation matrix of the alternatives. 

 
C1 C2 C3 C4 

GARAN 0.154 0.210 

 

0.854 Ba1 

AKBNK 0.164 0.199 

 

0.917 Ba1 

YKBNK 0.119 0 0.561 Ba1 

ISCTR 0.146 0.249 

 

0.598 Ba1 

VAKBN 0.156 0.050 

 

0.553 Ba1 

HALKB 0.125 0.205 0.535 Ba1 

The positive-valued pairwise comparision matrix of the criteria with respect to the goal 

and its Perron vector are as in the Table 4. We also find that its consistency ratio is lower than 

0.10 as in the other cases. Hence, our pairwise comparions are consistent (Saaty and Vargas, 

2012). 
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Table 4: The pairwise comparision matrix of the criteria with respect to the goal. 

 
C1 C2 C3 C4 Perron vector 

C1 1 2 

 

3 3 0.455 

C2 1/2 1 

 

2 2 0.263 

C3 1/3 1/2 1 1 0.141 

C4 1/3 1/2 1 1 0.141 

The positive-valued pairwise comparision matrix of the alternatives with respect to C1 

and its Perron vector are as in the Table 5.  

Table 5: The pairwise comparision matrix of the alternatives with respect to C1. 

 
GARAN AKBNK YKBNK ISCTR VAKBN HALKB Perron v. 

GARAN 1 1 

 

5 2 1 5 0.252 

AKBNK 1 1 

 

5 2 1 5 0.252 

YKBNK 1/5 1/5 1 1/4 1/5 1 0.047 

ISCTR 1/2 1/2 

 

4 1 1/2 4 0.149 

VAKBN 1 1 

 

5 2 1 5 0.252 

HALKB 1/5 1/5 1 1/4 1/5 1 0.047 

The positive-valued pairwise comparision matrix of the alternatives with respect to C2 

and its Perron vector are as in the Table 6. 

Table 6: The pairwise comparision matrix of the alternatives with respect to C2. 

 
GARAN AKBNK YKBNK ISCTR VAKBN HALKB Perron v. 

GARAN 1 1 

 

7 1/3 5 1 0.173 

AKBNK 1 1 

 

7 1/3 5 1 0.173 

YKBNK 1/7 1/7 1 1/9 1/2 1/7 0.028 

ISCTR 3 3 

 

9 1 7 3 0.410 

VAKBN 1/5 1/5 

 

2 1/7 1 1/5 0.042 

HALKB 1 1 7 1/3 5 1 0.173 

The positive-valued pairwise comparision matrix of the alternatives with respect to C3 

and its Perron vector are as in the Table 7. 
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Table 7: The pairwise comparision matrix of the alternatives with respect to C3. 

 
GARAN AKBNK YKBNK ISCTR VAKBN HALKB Perron v. 

GARAN 1 2 

 

1/8 1/8 1/8 1/8 0.033 

AKBNK 1/2 1 

 

1/9 1/9 1/9 1/9 0.024 

YKBNK 8 9 1 1 1 1 0.236 

ISCTR 8 9 

 

1 1 1 1 0.236 

VAKBN 8 9 

 

1 1 1 1 0.236 

HALKB 8 9 1 1 1 1 0.236 

Since the all elements of the pairwise comparision matrix with respect to C4 is 1, the all 

elements of the Perron vector found for C4 is equal to 1/6. Then, the priority vector of the 

alternatives (stocks) are found by taking a simple weighted average of the Perron vectors 

found for the criteria where the weight vector of the criteria is equal to the Perron vector given 

in the Table 4.  

We determine η and τ as 13.866 and 0.5 respectively. Then, we find the portfolios as in 

the Chart 2 where the weight vector of AHPS is equal to the priority vector of the stocks. We 

see that only ISCTR has the positive weight in each portfolio. 

 

Chart 2: Weight vectors. 

Sharpe ratio (SR), defined as the mean or the realized profit per the standard deviation, 

is a commonly used performance measure. Since, the mean is interval-valued, Sharpe ratio is 

also interval-valued. Then, we have the following predictions for the first quarter of 2017 

-1,500

-1,000

-0,500

0,000

0,500

1,000

1,500

2,000

MPS WCS AHPS FBS

GARAN AKBNK YKBNK ISCTR VAKBN HALKB Risk-Free



 

165 

Economics Business and Organization Research  

 

 

based on the square root of time rule6. We see that FBS promises the vaguer performance than 

WCS whereas the predictions about AHPS’s performance is not satisfactory. 

Table 8: Performance predictions. 

 MPS WCS AHPS FBS   

Lower Bound of SR 0.342 0.418 -0.386 0.076   

Upper Bound of SR 1.439 1.279 0.337 

7 

1.460   

We find the realized results for the first quarter of 2017 in the Table 9. We see that all 

portfolios give better performance than the performance predictions due to the better market 

conditions. We also see that the FBS has the best results in each criterion whereas AHPS has 

the satisfactory profit but not the performance. WCS is the worst (second best) portfolio in the 

profitability (performance) criterion whereas MPS is the third one in each criterion. 

 

 

MPS WCS AHPS FBS  

Realized profit 0.172 0.091 0.202 0.371  

Sharpe ratio 2.685 3.009 1.272 3.525  

 

4. CONCLUSION 

Although we believe that the worst-case solution is the best choice in the robust MV 

analysis for the conservative investors or financial institutions, it may not be suitable for the 

non-conservative investors. Because it may not provide the sufficiently high profit due to the 

worst-case orientation. On the other hand, the fundamentally backed solution (FBS) provides 

the best profit and performance in our example. It also conveys more information based on 

the fundamental analysis of the stocks. Hence, it may be a better choice for the non-

conservative investors especially when they want to consider both the quantitative analysis 

and fundamental analysis in the portfolio selection. On the other hand, it should not be 

forgotten that proposed approach is applicable under certain conditions. Furthermore, in the 

real life, it may not give good results due to the human-based errors or inefficient market. 

 

 

 

                                                      
6 Under certain assumptions, the mean and variance are the linear function of time. Thus, the standard 

deviation and Sharpe ratio increase by square root of time. 



 

166 

Economics Business and Organization Research  

 

 

REFERENCES 

Berkowitz, J. (2000). A coherent framework for stress-testing. Journal of Risk, 2(2), 1–11. 

Breuer, T. (2006). Providing against the worst: risk capital for worst case scenarios. 

Managerial Finance, 32(9), 716–730. 

Buckley, J. J., Feuring, T. & Hayashi, Y. (2001). Fuzzy hierarchical analysis revisited. 

European Journal of Operational Research, 129(1), 48-64. 

De Miguel, V., Garlappi, L., Nogales, F. J. & Uppal, J. (2009). A generalized approach to 

portfolio optimization: improving performance by constraining portfolio norms. 

Management Science, 55(5), 798 - 812. 

Garlappi, L., Uppal, R. & Wang, T. (2006). Portfolio selection with parameter and model 

uncertainty: A multi-prior approach. The Review of Financial Studies, 20(1), 41–81. 

Girko, V. L. (1998). An introduction to statistical analysis of random arrays, VSP BV. 

Goktas, F. & Duran, A. (2020). New robust portfolio selection models based on the principal 

components Analysis. Journal of Multiple Valued Logic & Soft Computing, 34(1-2), 

43-58. 

Goldfarb, D., & Iyengar, G. (2003). Robust portfolio selection problems. Mathematics of 

Operations Research, 28(1), 1-38. 

Huang, D., Zhu, S., Fabozzi, F. J., & Fukushima, M. (2010). Portfolio selection under 

distributional uncertainty: A relative robust CVaR approach. European Journal of 

Operational Research, 203(1), 185-194. 

Johnson, R. A. & Wichern, D. (2007). Applied multivariate statistical analysis, Pearson 

Prentice Hall. 

Jolliffe, I. T. (2002). Principal component analysis, Springer. 

Levy, H. & Robinson, M. (2016). Stochastic dominance: Investment decision making under 

uncertainty, Springer. 

Malakooti, B. (2013). Operations and production systems with multiple objectives, John 

Wiley & Sons. 

Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91. 



 

167 

Economics Business and Organization Research  

 

 

Saaty, T. L. (2003). Decision making with the AHP: Why is the principal eigenvector 

necessary. European Journal of Operational Research, 145(1), 85-91. 

Saaty, T. L., Rogers, P. C. & Pell, R. (1980). Portfolio selection through hierarchies. The 

Journal of Portfolio Management, 6(3), 16-21. 

Saaty, T. L. & Vargas, L. G. (2012). Models, methods, concepts & applications of the analytic 

hierarchy process, Springer. 

Saaty, T. L. & Tran, L. T. (2007). On the invalidity of fuzzifying numerical judgments in the 

Analytic Hierarchy Process. Mathematical and Computer Modelling, 46, 962-975. 

Tiryaki, F. & Ahlatcioglu, B. (2009). Fuzzy portfolio selection using fuzzy analytic hierarchy 

process. Information Sciences, 179(1), 53-69. 

 

 

 

 

 

 

 

 

 

 

 


