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ABSTRACT 
 
An elastic curve or elastica introduced by Jacques Bernoulli in 1692 is the solution of a variational problem 
which minimizes the integral of the total squared curvature for curves of a fixed length satisfying given 
first order boundary conditions. Many works related to elastica problem, which plays a large role in many 
area such as  engineering, computer science, biology, chemistry, ship building,  bridges ,DNA etc in our 
life have been done by many researchers in Euclidean and non-Euclidean spaces. 
 
 
In this work, we consider the classical variational problem in the Galilean plane. We derive Euler-Lagrange 
equation as a second order differential equation. Then, we obtain the curvature of the elastic curves 
parameterized by arc length in such a plane. Next, we give an example which represents the position vector 
of an elastic curve in explicit form in the Galilean plane.  
 
Keywords: Elastic curve, Elastica, Galilean plane, Euler-Lagrange equation. 
 
 
1. Introduction  
 
Differential geometry of curves appears in many area such as engineering, computer science, 
biology, chemistry, ship building etc. One of the most fundamental problems on the curve theory 
is how to characterize special curves in different types of planes and spaces.  
 
The elastic curve problem has been considered using different approaches since the middle of the 
18௧௛ century. It was first posed by Galileo in 1639 as a solution of the problem which asked about 
weight required to break a beam set into a wall. Many researchers followed Galileo’s results in 
coming decade. However, the complete solution of the elastica problem was obtained by Euler in 
1744 by developing the variational method. In 1740, J. Bernoulli posed a geometric model for the 
elastic curve problem for which the bending energy functional 𝐸 = ∫ 𝜅ଶ 𝑑𝑠 minimizes and solved 
the problem to characterize the family of curves known as elastic curves or elastica by using 
calculus of variations. Elastic curves classified in Euclidean plane by Euler in 1743 were studied 
by Radon who derived and integrated the Euler-Lagrange equations in 1928 [6, 11].    
 
In the 19௧௛ century, A. Cayley and F. Klein discovered the hyperbolic and elliptic geometry by 
considering Euclidean and non-Euclidean geometries as mathematical structures living inside 
projective-metric spaces and they outlined their idea with respect to the real projective plane.  
These hyperbolic and elliptic geometries established by A. Cayley and F. Klein are known as 
Cayley-Klein geometries (Table 1.1) [3]. 
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Table 1.1:  Cayley-Klein Geometries in the Plane 

  

Measure of length between two points 

Elliptic (𝜿𝟏 > 𝟎) Parabolic (𝜿𝟏 = 𝟎) Hyperbolic (𝜿𝟏 < 𝟎) 
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Elliptic 
(𝜿𝟐 > 𝟎) 

Elliptic Geometry Euclidean Geometry Hyperbolic Geometry 

Parabolic 
(𝜿𝟐 = 𝟎) 

co-Euclidean Geometry 
(Anti-Newton Hooke) 

Galilean Geometry 
co-Minkowskian 

Geometry 
(Newton-Hooke) 

Hyperbolic 
(𝜿𝟐 < 𝟎) 

co-Hyperbolic 
Geometry 

(Anti-De-Sitter) 

Minkowskian 
Geometry 

doubly-Hyperbolic 
Geometry 
(De-Sitter) 

 
In this work we consider the problem of elastic curves in Galilean plane which is a Cayley-Klein 
plane.   
 
Although the notion of elastica is quite old, similar problems have been still studied by many 
authors in Euclidean and non-Euclidean spaces by using classical and modern approaches 
[1,2,3,4, etc.]. J. Langer and D. A. Singer classified all closed elastica in the Euclidean space [5].  
Then, D.A Singer obtained and solved Euler-Lagrange equations of the elastic curves in three-
dimensional Euclidean space [7]. In recent years, the characterizations of some curves in Galilean 
spaces are obtained [8,9,10]. In [8], the authors derived Euler-Lagrange and solved the elastica 
problem for  the 3-dimensional Galilean space. 
 
The local theory of curves states that a curve lies in a plane if and only if its torsion vanishes. The 
classification of the elastic curves in the Galilean plane can easily be concluded from equations 
given in [8] for 𝜏 = 0 . The results given in the present work are deduced for the Galilean plane 
from the project course of the students enrolled in the TEBIP High Performers Program . 
 
In this paper, we derive Euler-Lagrange equations for a non-isotropic curve in the Galilean plane 
and then we obtain the curvature of the elastic curves by solving Euler-Lagrange equation. Next, 
we give an example for an elastic curve in such a plane. 
 
 
2. Preliminaries 
 
Consider the Euclidean plane ℝଶ equipped the bilinear form  
 

< 𝒙, 𝒚 > = ℇଵ𝑥ଵ𝑦ଵ + ℇଶ𝑥ଶ𝑦ଶ ,   (ℇଵ, ℇଶ = 0, ±1) 
 
where 𝒙 = (𝑥ଵ, 𝑥ଶ) and 𝒚 = (𝑦ଵ, 𝑦ଶ). 
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When ℇଵ = ℇଶ = 1 we have Euclidean plane denoted by 𝐸ଶ,  
when ℇଵ = 1 and ℇଶ = −1 we obtain Lorentz-Minkowski plane denoted by 𝐿ଶ  and 
when ℇଵ = 1 and ℇଶ = 0 or ℇଵ = 0 and ℇଶ = 1 obtain Galilean plane denoted by 𝐺ଶ [3],[7],[9]. 
 
A vector whose the first component is zero is an isotropic vector and a vector whose the first 
component is nonzero is called a non-isotropic vector.  
The inner or scalar product of the vectors 𝒙 = (𝑥ଵ, 𝑥ଶ) and 𝒚 = (𝑦ଵ , 𝑦ଶ) is defined by 
 

< 𝒙, 𝒚 >= ൜
𝑥ଵ𝑦ଵ, 𝑖𝑓 𝑥ଵ ≠ 0 𝑜𝑟 𝑦ଵ ≠ 0
𝑥ଶ𝑦ଶ, 𝑖𝑓 𝑥ଵ = 0 𝑜𝑟 𝑦ଵ = 0.

 (2.1) 

  
Hence a Galilean  plane is a Cayley-Klein plane equipped with the scalar product given by (2.1). 
 
The vectoral product of the vectors 𝒙 = (𝑥ଵ, 𝑥ଶ, 𝑥ଷ) and 𝒚 = (𝑦ଵ , 𝑦ଶ, 𝑦ଷ) is given by  
 

𝒙 ∧ 𝒚 =

⎩
⎪⎪
⎨

⎪⎪
⎧

   

อ
𝟎 𝒆𝟐 𝒆𝟑

𝑥ଵ 𝑥ଶ 𝑥ଷ

𝑦ଵ 𝑦ଶ 𝑦ଷ

อ , 𝑖𝑓 𝑥ଵ ≠ 0 𝑜𝑟 𝑦
1

≠ 0

 
 

อ

𝒆𝟏 𝒆𝟐 𝒆𝟑

𝑥ଵ 𝑥ଶ 𝑥ଷ

𝑦ଵ 𝑦ଶ 𝑦ଷ

อ , 𝑖𝑓 𝑥ଵ = 0 𝑜𝑟 𝑦
1

= 0

 (2.2) 

 
The metric of the vectors 𝒙 = (𝑥ଵ, 𝑥ଶ) and 𝒚 = (𝑦ଵ , 𝑦ଶ) is defined by 
 

𝑑(𝒙, 𝒚) = ൜
|𝑥ଶ − 𝑥ଵ| , 𝑖𝑓 𝑥ଵ ≠ 𝑥ଶ

|𝑦ଶ − 𝑦ଵ| , 𝑖𝑓 𝑥ଵ = 𝑥ଶ
 (2.3) 

 
Let 𝛾 ∶ 𝐼 = [𝑎ଵ, 𝑎ଶ]  ⊂  ℝ →  𝐺ଶ be a smooth curve parameterized by the arc length parameter 
“𝑠”, where the arc length is a Galilean invariant. 
 
The Frenet vector fields along 𝛾(𝑠) in 𝐺ଶ are defined by 
 

 𝑻(𝑠) =
ௗఊ

ௗ௦
    and   𝑵(𝑠) =

ଵ

఑(௦)
 
ௗ𝑻

ௗ௦
  , (2.4) 

 
where 𝜅(𝑠), 𝑻(𝑠)  and 𝑵(𝑠) are the curvature, tangent and principal normal vector fields of the 
curve, respectively. 
 
A curve whose tangent vector is an isotropic  is called an isotropic curve, otherwise it is called a 
non-isotropic curve.  
 
In Galilean plane, every non-isotropic curve 𝛾(𝑠) with unit speed can be parameterized as 
 

𝛾(𝑠) = ൫𝑠, 𝑥(𝑠)൯ ,    (‖𝛾ᇱ(𝑠)‖ = 1)  (2.5) 
 
which implies that 
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ௗఊ

ௗ௦
= 𝑻(𝑠) = ൫1, 𝑥ᇱ(𝑠)൯, (2.6) 

  
𝑑ଶ𝛾

𝑑𝑠ଶ
=

𝑑𝑻

𝑑𝑠
= ൫0, 𝑥′′(𝑠)൯ (2.7) 

 
and 
 

ௗ𝑵

ௗ௦
=  

ௗ

ௗ௦
ቀ

𝑻ᇱ

‖𝑻ᇱ‖
ቁ =  

ௗ

ௗ௦
ቈ

ቀ଴,௫ᇲᇲ(௦)ቁ

௫ᇲᇲ ቉ =
ௗ

ௗ௦
[(0,1)] = (0,0). 

 
Hence the orthogonal Frenet frame of the curve 𝛾(𝑠) is obtained as 
 

𝑻ᇱ(𝑠) = 𝜅𝑵, 
𝑵ᇱ(𝑠) = 𝟎, 

(2.8) 

 
where 
 

𝜅(𝑠) =
ฮఊᇲ⋀  ఊᇲᇲฮ

[(ఊᇲ)మ]
య

మൗ
=

௫ᇲᇲ

ଵ
=  𝑥ᇱᇱ. 

 
 
3. Euler-Lagrange Equations in the Galilean Plane 
 
The solution of the elastica problem gives the smooth curves, which minimize total squared 
curvature given by 
 

න 𝜅(𝑠)ଶ 𝑑𝑠 = න 𝜅(𝑡)ଶ

௔మ

௔భ

𝑣(𝑡) 𝑑𝑡 (3.1) 

 
among curves of the same length under the first order boundary conditions.  
 
By the classical Lagrange multiplier method, there is a multiplier Λ ∈ ℝ such that any critical 
point 𝛾 is also a critical point of the one-parameter family of functionals 
 

න 𝜅(𝑠)ଶ 𝑑𝑠

 

ఊ

+ Λ න 𝑑𝑠
 

ఊ

 (3.2) 

 
with fixed length and the same boundary condition. 
 
Assume that 𝛾 ∶ 𝐼 = [𝑎ଵ, 𝑎ଶ]  ⊂  ℝ →  𝐺ଶ is an extremum of (3.2). 
 
If 
 

Ω = {𝛾 | 𝛾(𝑎௜) = 𝛾௜,  𝛾ᇱ(𝑎௜) = 𝛾௜
ᇱ} 
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is the space of the curves and 
 

Ω௨ =  {𝛾 ∈ ℝ | ‖𝛾ᇱ‖ ≡ 1} 
 
is the subspace of limit speed curves then (3.2) can be written as the functional 
 

ℱஃ(𝛾) = ∫  [ ‖𝛾ᇱ‖ଶ + Λ(𝑠)(‖𝛾ᇱ‖ଶ − 1) ] 𝑑𝑠, (3.3) 
 
where Λ(𝑠) is a pointwise Lagrange multiplier. 
 
Then, if 𝑾 is a vector field along 𝛾  then an infinitesimal variation of the curve satisfies the 
equation  
 

𝜕ℱஃ

𝜕𝜀
(𝑾) =  

𝜕

𝜕𝜀
ℱ(𝛾 + 𝜀𝑾)ఌୀ଴ (3.4) 

 
From (3.3) and (3.4) it can be easily seen that 
 

0 =  
𝜕

𝜕𝜀
න [〈𝛾ᇱᇱ + 𝜀𝑾ᇱᇱ, 𝛾ᇱᇱ + 𝜀𝑾ᇱᇱ〉 + Λ(𝑠)〈𝛾ᇱ + 𝜀𝑾ᇱ, 𝛾ᇱ + 𝜀𝑾ᇱ〉 − Λ(𝑠)]

௔మ

௔భ

𝑑𝑠│
 
 

𝜀 = 0
 

= 

 
 

𝜕

𝜕𝜀
න [〈𝛾ᇱᇱ, 𝛾ᇱᇱ〉 + 2𝜀〈𝛾ᇱᇱ, 𝑾ᇱᇱ〉 + 𝜀ଶ〈𝑾ᇱᇱ, 𝑾ᇱᇱ〉

௔మ

௔భ

+ Λ(𝑠)(〈𝛾ᇱ, 𝛾ᇱ〉 + 2𝜀〈𝛾ᇱ, 𝑾ᇱ〉 + 𝜀ଶ〈𝑾ᇱ, 𝑾ᇱ〉) − Λ(𝑠)] 𝑑𝑠│
 
 

𝜀 = 0
 

= න [2〈𝛾ᇱᇱ, 𝑾ᇱᇱ〉 + 2𝜀〈𝑾ᇱᇱ, 𝑾ᇱᇱ〉 − Λ(𝑠)( 2〈𝛾ᇱ, 𝑾ᇱ〉 + 2𝜀〈𝑾ᇱ, 𝑾ᇱ〉) ]

௔మ

௔భ

𝑑𝑠│
 
 

𝜀 = 0
 

= 2 න [〈𝛾ᇱᇱ, 𝑾ᇱᇱ〉 − Λ(𝑠)〈𝛾ᇱ, 𝑾ᇱ〉]

௔మ

௔భ

𝑑𝑠│
 
 

𝜀 = 0
   . (3.5) 

 
Integration by parts gives 
 

0 = 〈𝛾ᇱᇱ, 𝑾ᇱ〉|
𝑎ଶ

 
𝑎ଵ

− න 〈𝛾ᇱᇱᇱ, 𝑾ᇱ〉

௔మ

௔భ

𝑑𝑠 − 〈Λ𝛾ᇱ, 𝑾〉|
𝑎ଶ

 
𝑎ଵ

+ න 〈(Λ𝛾ᇱ)ᇱ, 𝑾〉

௔మ

௔భ

𝑑𝑠 

= 〈𝛾ᇱᇱ, 𝑾ᇱ〉|
𝑎ଶ

 
𝑎ଵ

− 〈𝛾ᇱᇱᇱ, 𝑾〉|
𝑎ଶ

 
𝑎ଵ

+ න 〈𝛾(ସ), 𝑾〉

௔మ

௔భ

𝑑𝑠 − 〈Λ𝛾ᇱ, 𝑾〉|
𝑎ଶ

 
𝑎ଵ

+ න 〈(Λ𝛾ᇱ)ᇱ, 𝑾〉

௔మ

௔భ

𝑑𝑠 

= ∫ 〈𝛾(ସ) + (Λ𝛾ᇱ)ᇱ, 𝑾〉
௔మ

௔భ
𝑑𝑠 + [〈𝛾ᇱᇱ, 𝑾ᇱ〉 − 〈𝛾ᇱᇱᇱ + Λ𝛾ᇱ, 𝑾〉]|

𝑎ଶ

 
𝑎ଵ

 , (3.6) 
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or putting 
 

𝐽 = 𝛾ᇱᇱᇱ + Λ𝛾ᇱ 
and 
 

𝐸(𝛾) = 𝛾(ସ) + (Λ𝛾ᇱ)ᇱ 
 
(3.6) reduces to 
 

0 = ∫  〈 𝐸(𝛾) , 𝑾 〉
௔మ

௔భ
𝑑𝑠 + [ 〈 𝛾ᇱᇱ, 𝑾ᇱ 〉 − 〈 𝐽, 𝑾〉]|

𝑎ଶ

 
𝑎ଵ

. (3.7) 

 
Since (3.7) is hold for any 𝑾, which is any vector field along the critical 𝛾 the equation 
 

𝐸(𝛾) = 𝛾(ସ) + (Λ𝛾ᇱ)ᇱ = 0 (3.8) 
 
must be satisfied for some Λ(s).   
 
Integration of (3.8) with respect to “𝑠” gives 
 

𝐽 = 𝛾ᇱᇱᇱ + Λ𝛾ᇱ = 𝑐𝑜𝑛𝑠𝑡. (3.9) 
 
On the other hand (2.5), (2.6), (2.7) and Frenet formulas in 𝐺ଶ imply that 
 

𝛾(ସ) − (Λ𝛾ᇱ)ᇱ  = (𝜅𝑵)ᇱᇱ − (𝑻Λ)ᇱ  
   

= (−Λᇱ)𝑻 + (𝜅ᇱᇱ −  Λ)𝑵. (3.10) 
 
Substitution (3.10) into (3.8) gives 
 

−Λᇱ = 0 (3.11) 
 
and 

𝜅ᇱᇱ − 𝜅Λ = 0. (3.12) 
 
From (3.11) we obtain 
 

Λ = 𝐶ଶ = 𝑐𝑜𝑛𝑠𝑡. (3.13) 
 
Substituting (3.13) into (3.12) we get 
 

𝜅ᇱᇱ − 𝜅𝐶ଶ = 0 (3.14) 
 
which represents the Euler-Lagrange equation obtained in [8] for  𝜏 = 0.  So, we can conclude 
that  
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Lemma 3.1 The necessary condition for a curve 𝛾 ∶  [𝑎ଵ, 𝑎ଶ] → 𝐺ଶ with fixed length to be an 
elastic curve is that Euler-Lagrange equation 
 

𝜅ᇱᇱ − 𝜅𝐶ଶ = 0 
 
is hold. 
 
 
Multiplication both sides of (3.14) by 2𝜅ᇱ leads to 
 

𝑑

𝑑𝑠
[(𝜅ᇱ)ଶ − (𝐶𝜅)ଶ] = 0, (3.15) 

 
which implies that 
 

(𝜅 ᇱ)ଶ − 𝜅ଶ𝐶ଶ = 𝐷 = 𝑐𝑜𝑛𝑠𝑡. (3.16) 
 
Setting 𝜅ᇱ = 𝑢, (3.15) reduces to 
 

𝑢ଶ − 𝜅ଶ𝐶ଶ = 𝐷 
 
and differentiating both sides with respect to “𝑠”  we get  
 

2𝑢(𝑢ᇱ − 𝐶ଶ𝜅) = 0. (3.17) 
 
If 𝑢 = 0 then 𝜅 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and from (3.14), we obtain 𝜅 = 0,  which states that the curve 
reduces to a straight line in the Galilean plane. 
 
If 𝑢 ≠ 0 then we have the first order homogeneous differential equation 
 

𝑢ᇱ − 𝐶ଶ𝜅 = 0 (3.18) 
 
Differentiating (3.18) and using 𝑢 = 𝜅ᇱ we obtain the differential equation 
 

𝑢ᇱᇱ − 𝐶2𝑢 = 0. (3.19) 
 
The general solution of the homogeneous differential equation (3.19) is  
 

𝑢 = 𝐶ଵ𝑒஼௦ + 𝐶ଶ𝑒ି஼௦ , 
 
where 𝐶ଵ and 𝐶ଶ are constants.  
Substituting  𝑢 = 𝜅ᇱ we get 
 

𝜅ᇱ  = 𝐶ଵ𝑒஼௦ + 𝐶ଶ𝑒ି஼௦, (3.20) 
  
which leads to 
 

𝜅(𝑠)  = 
𝐶ଵ

𝐶
𝑒஼௦ −

 𝐶ଶ

𝐶
𝑒ି஼௦ (3.21) 



50 G. ÇİVİ BİLİR, İ. ALTINKOL, A. BEYHAN 
 

GiDB|DERGi Sayı 20, 2021 
 

Taking into account all above we end up with parametrization of 𝛾(𝑠) = ൫𝑠, 𝑥(𝑠)൯ as 

𝛾(𝑠)    = 
 

൫𝑠, 𝑥(𝑠)൯ 
 

= ቀ𝑠,
஼భ

஼య 𝑒஼௦ −  
஼మ

஼య 𝑒ି஼௦ቁ, 

 
where 𝑐 = Λ is the Lagrange multiplier. 
 
Theorem 3.2. An elastic curve given by 𝛾 ∶ I = [𝑎ଵ, 𝑎ଶ] → 𝐺ଶ in the Galilean plane is classified 
as 

𝛾(𝑠) = ቀ𝑠,
஼భ

஼య
𝑒஼௦ −  

஼మ

஼య
𝑒ି஼ ቁ, 

 
where 𝐶ଵ, 𝐶ଶ,   𝐶 ∈ ℝ  such that 𝐶ଵ ≠ 𝐶ଶ,   and 𝐶ଶ represents Lagrange multiplier. 
 
Example 3.3.  Let consider the curve 𝛾(𝑠) = (𝑠, cosh 𝑠) defined in the Galilean plane. 
 
The curvature of 𝛾(𝑠) is 𝜅(𝑠) = cosh 𝑠 and it satisfies the necessary condition for a curve to be 

an elastic curve in 𝐺ଶ given by 𝜅ᇱᇱ − 𝜅𝐶ଶ = 0, where 𝐶ଵ =
ଵ

ଶ
,  𝐶ଶ = −

ଵ

ଶ
  and the Lagrange 

multiplier 𝐶 = 1. Then  the curve 𝛾(𝑠) = (𝑠, cosh 𝑠) is an elastic curve in the Galilean plane.  
 
 
4. Conclusion 
 
The elastica problem has a number of analogies with physical and biological systems including 
the mathematical models used for shipbuilding, bridge building and similar applications. The 
classification problem of elastic curves and its generalizations in real space forms have been 
studied by using different approaches by many researchers. In this work, the elastica problem of 
has been considered for the Galilean plane associated with Galileo’s principle of relativity.  
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