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DIMENSIONALITY REDUCTION METHODS: PCR, PLSR, RRR AND A HEALTH 

APPLICATION 

 

 ABSTRACT 

 Working with data set that has many variables or has fewer 

observation units than variables leads to difficulties in statistical 

analysis. In this situation dimension reduction is a necessary part of 

the data analysis. It is necessary because, it provides working with a 

subset of the existing features or to transform to a new reduced set 

of features and working with low dimensional data and simplify the 

data model by working with parsimonious model. There are some 

dimensionality reduction methods and all of them lean to use a linear 

combinations of m variables by reducing m dimensional data set to a 

dimensional data set (a<m) that explain the majority of the 

variability in the variables. This paper provides study of three 

dimension reduction techniques, namely Principal Component Regression 

(PCR), Partial Least squares Regression (PLSR), and Reduced Rank 

Regression (RRR), and they were illustrated on a data set that has 

PCOS disease to help to choose the efficient factors (latent 

variables) for modeling and predicting fsh and lh hormones when the 

data set has small number of observation unit. 

 Keywords: Dimension Reduction, Principal Component Regression, 

       Partial Least Squares Regression,        

       Polycystic Ovary Syndrome, Reduced Rank Regression 

 

BOYUT ĠNDĠRGEME TEKNĠKLERĠ: PCR, PLSR, RRR VE BĠR SAĞLIK UYGULAMASI 

 

 ÖZET 

 Çok fazla değişkene sahip veya değişken sayısından daha az 

gözlem sayısına sahip veri seti ile çalışmak istatistiksel analizde 

bazı zorluklara yol açmaktadır. Böyle bir durumda boyut indirgemesi 

analizin önemli bir parçasıdır. Boyut indirgemesi, veri setinde var 

olan özelliklere sahip daha küçük bir veri seti ile çalışmayı mümkün 

kılmaktadır. Boyut indirgeme teknikleri m boyutlu veri setini, m 

değişkenlerdeki değişimin büyük bir kısmını açıklayacak ve bu 

değişkenlerin doğrusal birleşimi olacak şekilde a boyutlu veri setine 

indirgemektedir. Bu çalışmada, bu tekniklerden Temel bileşenler 

regresyonu, Kısmi en küçük kareler regresyonu ve İndirgenmiş rank 

regresyonu yöntemleri anlatılarak, sağlık verisi üzerinde uygulaması 

gösterilmiştir. 

 Anahtar Kelimeler: Boyut İndirgeme, Temel Bileşenler Regresyonu, 

     Kısmi En Küçük Kareler Regresyonu,  

     Polikistik Over Sendromu,  

                    Indirgenmiş Rank Regresyonu 
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 1. INTRODUCTION (GĠRĠġ) 

 Regression models the continuous relationship between two sets 

of variables, usually called explanatory and response variables (or 

inputs and outputs). The process of modeling entails finding the 

structure as well as the free parameters of a function such that it 

optimally describes a given set of input and output data. Regression 

is a generic and important statistical tool with a wide field of 

applications ranging from data mining, signal processing, chemometrics 

(Wold et al, 1984) and econometrics (Geweke, 1996) to adaptive 

learning control and robotics (Vijayakumar et al, 2002) (Hoffman et 

al., 2009).  

 In multivariate data analysis, existence of large number of 

variables sometimes fails to understand the data structure. To reduce 

the multivariate problems, dimension reduction is a necessary part of 

a statistical analysis. For this study, dimension reduction methods, 

PCR, PLSR and RRR, belong to the following three groups as defined by 

(Hoffman et al., 2009): “(1) reducing dimensionality only on the input 

data, (2) modeling the joint input-output data distribution, and (3) 

optimizing the correlation between projection directions and output 

data” were explained. Group 1 contains PCR, group 2 contains principal 

component analysis (PCA) in joint input and output space, factor 

analysis, and probabilistic PCA, and group 3 contains RRR and PLSR 

regression (Hoffman et al., 2009). The objective of this work is to 

use of dimension reduction methods such as PCR, RRR and PLSR on 

medical data, in order to make the selection of effective factors on 

PCOS disease. In this study, capital and bold letters represent 

matrix, lower case and bold letters represent vectors.  

 Section 3 contains summary of information about the PCR, PLSR, 

and RRR methods. Also, in section three, details of PLSR NIPALS 

algorithm was given. Section 4-5 give detailed information about 

application of PCR PLSR RRR, on PCOS disease and their results using 

SAS statistical program. Conclusions and comments are given in 

Sections 6. 

 

 2. RESEARCH SIGNIFICANCE (ÇALIġMANIN ÖNEMĠ) 

 In this study, some dimensionality reduction methods were 

introduced and illustrated on a health study. These methods simplify 

the data model by working with a parsimonious model. They find new 

latent variables with different aims. PCR and RRR are interested in 

latent variables that capture most of the variation in explanatory 

variables and response variables, respectively. PLSR works with latent 

variables that model the relation between two blocks of variables also 

it overcomes multicollinearity and less number of observation unit 

problems. This study aims to introduce methods especially for the 

researchers in medicine by interpreting the results.  

 

 3. MATERIALS AND METHODS (MATERYAL VE YÖNTEM) 

 3.1. Principal Component Regression  

      (Temel BileĢenler Regresyonu) 

 PCR is obtained by regressing KNY  on the components (latent 

variables) t obtained from PCA. PCA select a new set of explanatory 

variables called components with the decreasing of variance within the 

explanatory variable matrix, MNX . These components are perpendicular 

to each other that there is no multicollinearity among them. It 

defines all the latent variables,   A,,1a,,, aAN   ttT 1 , depends on the 

original descriptors therefore only deals with the variance-covariance 
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matrix of explanatory variables, XX' . The aim is to find the first a 

principal component of XX  starting with the largest eigenvalue 1  and 

down. PCR used principal component analysis of X to determine loadings 

AM)(PCA P  to be used in AM)PCA(MNAN   PXT . Here  aλdiagTT . The 

regression coefficients PCRb̂ for each y can be written as Pqb PCR
ˆ . 

Here q are found by least squares regression of y on T. For further 

information look (Martens and Naes, 1989). 

 

 3.2. Partial Least Squares Regression  

      (Kısmi En Küçük Kareler Regresyonu) 

 Herman O.A. Wold vigorously pursued the creation and 

construction of models and methods for the social sciences, where 

“soft models and soft data” were the rule rather than the exception 

and where approaches strongly oriented at prediction would be of great 

value. The author was fortunate to witness the development firsthand 

for a few years. Herman Wold (1977) suggested to write a PhD-thesis on 

Lisrel versus PLS in the context of latent variable models, more 

specifically of “the basic design” (Dijkstra, 2010). 

 The use of the PLS method for chemical applications was 

pioneered by the groups of S. Wold and H. Martens in the late 

seventies after an initial application by Kowalski (Geladi et al., 

1986). Geladi (1988) was offered a review of historical development of 

PLS. PLS regression was studied and developed from the point of view 

of statisticians by Agnar Höskuldsson (1988). The book by Martens and 

Naes (1989) used statistical concepts that began to provide a 

theoretical basis for PLS. The recent investigations were provided by 

Inge Helland (1990), Paul Garthwaite (1994), Svante Wold (2001), 

Tobias (2003) and Abdi (2007, 2010). 

 PLSR enables working with small number of observation units 

and/or data set with multicollinearity and/or more than one response 

variable. PLSR involves information on both X and Y in the calculation 

of components and loadings by using singular value decomposition of 

YXS   cross product matrix. X and Y data matrices can be modeled 

separately by these components as given below (1), (2): 

MNMAANMN   EPTX         (1)                                   

KNKAANKN   FCUY          (2)                                                              

Here, AMMNAN   WXT , and AKKNAN   CYU , summarize X and Y variables 

and P
 
and C represent loading and weight matrices, respectively. 

Matrices of loading and weight are loading of the t’s on the X 

variables and the weight of the response variable on the latent vector 

of X, respectively. AMW  is the weight matrix of X variables obtained 

by regressing X on 1Nu  that is, by using variability in the response 

variable. Here, MNE and KNF  are matrices of residuals and show the 

unmodeled structure at all the X and Y. PLS is an iterated process. In 

each step, data matrices are deflated until a convergence between the 

latent variables obtained in current step and used in the previous 

step or a null-matrix of X variables are obtained. Then, regression 

coefficients for PLSR are obtained from   CWPWB 



1

KM . 
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 3.2.1. NIPALS (Non-Linear Iterative Partial Least Squares)    

        Algorithm (Doğrusal Olmayan Ġteratif Kısmi En Küçük  

        Kareler Regresyon Algoritması) 

 The NIPALS algorithm, also known as the classical algorithm, was 

developed by H. Wold, 1960s’. It was first used for PCA and later for 

PLS. It is the most commonly used method for calculating the principal 

components of a data set. It numerically gives more accurate results 

when compared with Singular Value Decomposition (SVD) of the 

covariance matrix, however is slower to calculate. The starting point 

of the algorithm is two data matrices X and Y. Algorithm based on 

deflating X and Y variables in each iteration that is PLS weights are 

iteratively estimated. In each iteration matrices are deflated as  

1d1dd1d ptXX    and 1d1dd1d ctYY   b . Here, d represents the 

iteration number. 1d1d pt    represents the predicted part obtained by 

algorithm in the (d+1)th  iteration, dX  represents the matrix obtained 

by algorithm from the d)th iteration. 1dX   represents residual value 

that will  use in the next iteration. Same comments are valid for  1dY   

only b is the regression coefficients of inner relation. Iteration 

continues with these deflated matrices until X becomes a null matrix. 

For further details look Höskuldsson (1988). SAS software uses NIPALS 

algorithm if you did not specify a different method. 

 

 3.3. Reduced Rank Regression (RRR) (ĠndirgenmiĢ Rank Regresyonu) 

 In the study of the experimental properties of mixtures, a 

linear model is often proposed to relate response to composition. The 

statistical technique of linear regression analysis is then 

appropriate and it is often applied severally when there are a number 

of responses of interest. Now, the responses are often inter-related, 

so that, for instance, it may be possible to use an empirical linear 

relationship to predict the approximate value of a certain response 

from knowledge of the others. The procedure for determining the 

regression coefficients of response on composition should, in these 

circumstances, is modified to reflect the known presence of such 

relationships (whose linearity is implied by the mutual linear 

dependence of responses on composition). This leads to consideration 

of the multivariate regression model with a constraint imposed on the 

rank of the matrix of coefficients, sometimes termed reduced-rank 

regression. Such models have been studied, e.g. by Izenman (1975) and 

also by Burket (1964), who used a factor analysis model (Davies et 

al., 1982). 

 The RRR model is a multivariate regression model with a 

coefficient matrix with reduced rank. The RRR algorithm is an 

estimation procedure, which estimates the RRR model. It is related to 

canonical correlations and involves calculating eigenvalues and 

eigenvectors (Johansen, 2008). The solution for the RRR analysis is 

related to the singular value decomposition of the full rank matrix. 

In RRR analysis, principal component analysis is first performed on Y 

followed by regressing X on the principal components. It is based on 

maximizing the covariance between the principal components and 

response variables. That is, k response variables are regressed 

separately on the explanatory variables.  

 As discussed in the preceding sections, partial least squares 

depends on selecting components Xwt   of the explanatory variables and 

Ycu   of the responses that have maximum covariance, whereas principal 

component regression effectively ignores u and selects t to have 
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maximum variance, subject to orthogonality constraints. In contrast, 

reduced rank regression selects u to account for as much variation in 

the predicted responses as possible, effectively ignoring the 

explanatory variables for the purposes of factor extraction. In 

reduced rank regression, the Y weights ci are the eigenvectors of the 

covariance matrix LSLS
ˆˆ YY

 
of the responses predicted by ordinary least 

squares regression; the X components are the projections of the Y 

components iYc
 
onto the X space (SAS/STAT 9.1 User’s Guide, 2004).

RRR takes the first principal components of the ordinary regression 

matrix. These eigenvectors play the same role as the components T in 

PCR and PLS (Kiers et al., 2007). Coefficient matrix can be written as 

a product of two component matrices of lower dimension. It follows 

that the assumption of lower rank for the regression coefficient 

matrix leads to estimation results which take into account the 

interrelations among the multiple responses and use the entire set of 

explanatory variables in a systematic fashion (Reincell, 2006).  

 The model for reduced-rank regression may be written as 

    KNKMMNKN   *
EDXY         (3)                                             

rank (D) < s, 

where s is an integer to be specified. The interpretation of (3) is as 

follows. MNX  and KNY  are data matrices whose N rows contain 

measurements on M and K variables respectively for N individuals or 

experimental units. Assume that column means have been subtracted from 

each variable of X and Y. This corresponds to the situation that a 

constant term associated with each regression has been previously 

estimated (by maximum likelihood in the case of normality) and allows 

us to consider the homogeneous model (1) without loss of generality. 

The problem is to estimate the unknown matrix of regression 

coefficients KMD  subject to the rank constraint rank (D)< s <min (M, 

K) given X and Y. (For convenience we shall assume that X and Y are 

full- rank matrices.) The rank restriction on D has the interpretation 

that fewer than min (M, K) linear combinations of the x-variables in 

fact enter into the prediction of the y-variables; thus for K < M it 

imposes the condition that the predictions shall be linearly 

dependent. Finally, E* is the matrix of stochastic errors which are 

assumed to be uncorrelated row-wise, that is from unit to unit, but 

which may be correlated between variables measured on the same unit. 

We shall assume a zero-mean K-variate multi-normal distribution for 

the rows of E*, Σ)N(0,~e , Σ  is an unknown positive definite covariance 

matrix. It is natural to make explicit the reduced-rank nature of KMD  

by expression this matrix as the product of two matrices, 

KssMKM   BQD , where sMQ  is a matrix whose s columns are a set of 

linearly independent vectors representing a basis for the unknown 

subspace spanned by the columns of D, and KsB  has K columns that 

define the appropriate linear combinations to represent the columns of 

D; i.e. the regression coefficients for each y-variable with respect 

to this basis. We shall choose Q to have the normalization sIPP   

where sMMNsN   QXP ; that is, the s columns of P are orthogonal linear 

combinations of the x-variables. This definition is consistent with 

canonical variate analysis and in fact it shall show that the columns 

of Q may be estimated as the s principal canonical linear combinations 

(Tso, 1981).  
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 4. APPLICATION OF PCR PLSR AND RRR ON PCOS DISEASE  

    (PCR PLSR VE RRR PCOS HASTALIĞI ÜZERĠNE UYGULAMA) 

 The data used in this study was a part of a study that have done 

by (Çapoğlu et al., 2009) in Atatürk University School of Medicine. We 

used only the data of patients with PCOS disorder. In this study, the 

explanatory variables matrix X=(xm , m=1,…,M) consists age, body mass 

index and some hormones measured in different scales, whereas the 

response matrix Y=(yk, k=1,…,K) are formed from hormones fsh (follicle 

stimulating hormone) and lh (lutenizing hormone). The data sets in 

this study is about 15 females, ages between 18 and 26 and have 

Polycystic ovary syndrome disorder (PCOS). PCOS is one of the female 

endocrine disorders with one of characteristics increase in lh 

relative to fsh release, have long been recognized in PCOS (Yen, 

1980). There are many studies in the literature about PCOS. Some of 

them are Escobar-Morreale et al., (2006), Barnard et al., (2007) and 

Brennan et al., (2009). In this study, PCR, PLSR and RRR methods were 

used to obtain components and then PLSR was used in modeling fsh and 

lh hormones in terms of explanatory variables. As mentioned above, fsh 

and lh hormones are one of the diagnostics of PCOS disorder. Variables 

are centered and scaled to have zero mean and one standard deviation 

because of having different measurement units. All of the analyses 

were performed by using SAS statistical software.  

 

Table 1. Explanatory variables 

(Tablo 1. Açıklayıcı değişkenler) 

x1 İnsulin (insu) 

x2 Cpeptide (cpep) 

x3 Dehydroepiandrosterone sulfate (dhs) 

x4 Thyroid stimulating hormone (ths) 

x5 Ferritin 

x6 Resistin (resi) 

x7 Testesterone (tes) 

x8 Androgen (andr) 

x9 Age 

x10 Body mass index (bmi) 

x11 Hemoglobin (hb) 

x12 Endorphin (endo) 

x13 Erythrosin (erit) 

x14 Vascular endothelial growth factor (vegf). 

x15 Adiponektin (adipo) 

x16 C-reactive protein (crp) 

 

 5. FINDINGS AND DISCUSSION (BULGULAR VE TARTIġMALAR) 

 The PCR and PLSR analysis results showed that 7 components 

explain most of the variability on both explanatory and response 

variables while RRR works with 2 components. So, analysis was carried 

on 7 components for PCR and PLSR.  
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Table 2. Percent variation accounted for PCR 

(Tablo 2. PCR ile açıklanan değişim yüzdesi) 

Percent variation accounted for by principal components 

Number of 

extracted 

factors 

Model effects Response variables 

Current 

(X 

variance) 

Total 

(summary for 

model) 

Current 

(Y 

variance) 

Total 

(summary for 

responses) 

1 25.2133 25.2133 1.6055 1.6055 

2 19.0046 44.2179 2.0781 3.6836 

3 16.7312 60.9491 4.3231 8.0067 

4 10.5514 71.5006 14.4033 22.4100 

5 7.2449 78.7455 4.2312 26.6411 

6 6.4187 85.1642 1.5976 28.2387 

7 4.3115 89.4757 13.8213 42.0600 

 

 Table 2 expresses the percentage of variance explanation over 7 

components.  Percentages of the explained variances are 89.48% for 

explanatory variables and 42.06% for response variables. In current 

block, values show the percentages of explained variance for each 

explanatory variables and total block shows the cumulative total of 

the percentage of explained variance for the model.  The same 

explanations are valid for the response variables block.  

 

Table 3. Percent variation accounted for components for PLSR 

(Tablo 3. PLSR bileşenleri tarafından açıklanan değişim yüzdesi) 

Percent variation accounted for by partial least 

squares factors 
  

Number of 

extracted 

factors 

Model effects Response variables fsh lh 

Current 

(X 

variance) 

Total 

(summary 

for 

model) 

Current 

(Y 

variance) 

Total 

(summary 

for 

responses) 

R-Sq 

 

R-Sq 

 

1 15.3886 15.3886 42.4811 42.4811 43.2122 41.7503 

2 15.2228 30.6115 19.2578 61.7389 61.8756 61.6026 

3 12.6001 43.2116 13.2686 75.0075 67.7759 82.2393 

4 12.1295 55.3411 5.5905 80.5979 68.1255 93.0706 

5 7.3759 62.7170 3.9935 84.5914 75.6870 93.4960 

6 7.1210 69.8380 4.1743 88.7658 80.7268 96.8049 

7 13.7375 83.5755 1.3976 90.1634 83.1242 97.2027 

 

 Table 3 gives the results for PLS regression. The total 

percentages of the explained variations are 83.58% for model and 90.2% 

for responses. Unlike PCR, PLSR also gives the percentages of 

explained variation for each response variable. 7 components explain 

the total variation as 83.12% for fsh and 97.20% for lh. For both 

response variables, components explain the variation as 90.16%. 

   

Table 4. Percent variation accounted for RRR 

(Tablo 4. RRR için açıklanan değişim yüzdesi) 

Percent variation accounted for by reduced rank regression factors 

Number of 

extracted factors 

Model effects Response variables 

Current Total Current total 

1 5.1380 5.1380 91.0128 91.0128 

2 3.5400 8.6780 8.9872 100.000 
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 In RRR analysis, first factor explains maximum part of the 

variability in the response variables. Second factor alone explains 

only 9% of the response variation. Same factors explain less amount of 

variation in the explanatory variables.  

 Subsequent analysis was carried on PLSR since it has the maximum 

cumulative percentage of explained variance. PLSR used both response 

and explanatory variables in analysis. The VIP scores and the beta 

coefficients are obtained by PLS regression can be used to select the 

most influential variables (Chong and Jun 2005). The VIP score can be 

estimated for jth explanatory variable by: 

 











a

2
a

a

2
a

2
ja

j
b

bw

MVIP

aa

aa

tt

tt

                (4)                                                               

 

where wja is a weight of the jth X-variable to the ath latent variable 

which is obtained by NIPALS algorithm Jun et al. (2009), and ba is the 

regression coefficients of inner relation.). wja j=1,…,16 and a=1,…,7 

values are given in the following table. Weight values can be 

interpreted as the contribution of the jth explanatory variable to the 

ath latent variable. 

 

 Table 5. The matrix W  

(Tablo 5. W matrisi) 

 w1 w2 w3 w4 w5 w6 w7 

Insu 0.34139 0.01498 0.29812 -0.3572 0.11899 -0.4196 -0.4052 

Cpep -0.2146 -0.1642 -0.2737 0.33091 0.14722 -0.4196 -0.2653 

Dhs 0.02946 0.37145 -0.3913 0.19853 0.32498 0.1530 -0.0419 

Ths 0.12330 0.25932 -0.0938 -0.1538 0.47243 -0.1820 0.48307 

Ferrirtin -0.2649 0.56607 0.09460 -0.2969 -0.1969 -0.2409 -0.0513 

Resi 0.30816 0.41389 0.03404 -0.0802 -0.2134 0.56261 -0.4926 

Tes -0.2256 0.26107 -0.2549 0.18034 -0.0249 -0.1393 -0.5193 

Andr -0.1763 -0.0812 -0.6502 -0.3157 0.02761 0.40849 -0.1669 

Age -0.7652 0.02785 0.06177 0.06380 0.16825 0.29281 -0.0299 

Bmi -0.1463 0.17843 0.21003 -0.3942 0.17344 -0.3548 -0.1893 

Hb -0.3237 0.50381 0.39352 0.14846 0.12260 -0.0954 0.01096 

Endo -0.4538 -0.4841 0.05496 -0.4898 -0.2887 -0.0202 -0.0102 

Erit 0.05601 0.12580 -0.5227 0.04278 -0.4974 -0.7504 0.08397 

Vegf -0.1437 0.20041 -0.1799 -0.1895 0.28242 -0.1448 0.21114 

Adipo 0.10522 -0.3692 -0.1199 -0.1411 0.65249 -0.1479 -0.3574 

crp 0.14008 0.25040 -0.3473 -0.4335 -0.0104 0.20821 0.18789 

 

 Table 6. The matrix C  

(Tablo 6. C matrisi) 

 c1 c2 c3 c4 c5 c6 c7 

fsh 0.71316 0.69610 0.47153 0.17681 0.97299 0.77697 0.92611 

lh 0.70099 0.71793 0.88184 0.98425 -0.2309 0.62954 0.37724 

 

 In Table 6, cka gives the weight of the kth y-variable k=1,2 to 

the ath latent variable. The importance of the ath latent variable in 

modeling yk is measured with cka.  
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Table 7. Regression coefficients and VIP values  

(Tablo 7. Regresyon katsayıları ve VIP değerleri) 

Explanatory 

variable 

Regression coefficients 
VIP 

Fsh Lh 

Insu 0.2056265 0.2473931 0.92802 

Cpep -0.3973759 -0.4273216 0.64815 

Dhs 0.3172521 0.1832351 0.64525 

Ths 0.3931684 0.1943243 0.5586 

Ferritin -0.0800293 0.0357948 1.21258 

Resi 0.4841168 0.6084864 1.10008 

Tes -0.194544 -0.1467852 0.76045 

Andr -0.3394625 -0.5803727 0.49923 

Age -0.3983012 -0.5112621 2.07967 

Bmi -0.0582910 -0.0941500 0.50259 

Hb 0.2067884 0.3086763 1.23595 

Endo -0.8250317 -0.8714472 1.48901 

Erit -0.4870774 -0.3178983 0.26494 

Vegf 0.0125276 -0.1491177 0.52127 

Adipo 0.0299710 -0.2653342 0.69772 

crp 0.1348927 0.0050763 0.57547 

 

 Table 7 gives the regression coefficients of explanatory 

variables for different responses. Explanatory variables with small 

coefficients make a small contribution to the response prediction. 

According to the regression coefficients, the contribution of dhs to 

fsh is bigger than the contribution to lh and also the contributions 

of ferritin, erit, vegf and adipo show a contrast in terms of response 

variables. Adipo has a great contribution to a negative sign in 

predicting lh while it has less contribution to predicting fsh. The 

contribution of endorphin to response variables is the biggest of 

those.  

 VIP (variable importance in the projection) is a statistic of 

Wold (1994), summarizing the contribution that a variable makes to the 

model. VIP block gives the value of each explanatory variable in 

fitting the PLS model for both explanatory and response variables. If 

an explanatory variable has a relatively small coefficient (in 

absolute value) and a small value of VIP, then it is a prime candidate 

for deletion. Wold(1994) considers a value less than 0.8 to be “small” 

for the VIP(SAS/STAT 9.1 User’s Guide, 2004). 

 From VIP block, it can be easily seen that those explanatory 

variables: insu, ferritin, resi, age, hb and endo have VIP value 

bigger than 0.8. These variables are the most relevant ones modeling 

and predicting response variables. According to Palermo et al. (2009), 

“because of its definition a VIP score derived by multivariate PLS 

regression would not allow to separate the contribution of each 

explanatory variable to different responses” we need to give VIP 

values for each response variable separately. The following table 

gives VIP values for explanatory variables that exceed threshold 

value.  
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Table 8. VIP values for each response variable 

(Tablo 8. Herbir bağımlı değişken için VIP değerleri) 

Explanatory variable fsh Explanatory variable lh 

Insu 1.00083 Insu 0.79970≈0.80 

Ths 0.88920 Ferritin 1.23858 

Ferritin 1.16870 Resi 1.19726 

Resi 0.90351 Tes 0.81854 

Age 2.05781 Andr 0.80888 

Hb 1.26217 Age 1.97222 

Endo 1.44924 Hb 1.21129 

Adipo 0.83664 Endo 1.40358 

crp 0.80488 Adipo 0.85117 

 

 As seen from Table 7 and Table 8, insu, ferritin, resi, age, hb 

and endo have contributions to predicting both response variables 

simultaneously and predicting responses separately.   

 

 6. CONCLUSION (SONUÇ) 

 There are many multivariate statistical methods that overcome 

multicollinearity and multiple variables problem. These methods serve 

different aims according to the study’s purpose. In this study, we 

briefly summarized three of them, RRR, PCR and PLSR, and then 

interpret the results. Methods were explained on the application about 

medical PCOS data. There are so many studies about PCOS in the 

literature. In the literature, it is stated that clinical findings 

such as increasing and/or decreasing in hormones; insu, fsh, lh, resi, 

hb and endo are used as a diagnostic in PCOS. But in this study, we 

try to find the contributions of hormones to fsh and lh. As seen from 

the results, insu, ferritin, resi, age, hb and endo have the maximum 

contributions in responses. Also Table 7 shows that the variables with 

high VIP value have high coefficients except ferritin. Statistically, 

this is the expected situation.   

 

 According to Table 7, there is an interaction between insulin 

and responses. Insulin has a positive contribution to fsh and lh 

measurement levels. Coefficients show that ferritin has a negative 

contribution to fsh and positive contribution to lh, respectively. 

Resistin has a positive contribution to both responses with a highly 

coefficients. The contribution of age to responses is in a negative 

way. Because of PCOS being a disease in women of reproductive age, and 

also fsh and lh measurement levels are already different from normal, 

therefore being in small age has a negative contribution to responses. 

Finally, the contributions of hormones; hemoglobin and endorphin to 

responses are in a positive way and in a negative way with high 

coefficients, respectively.  

 All this comments are the results of PLSR analysis. We choose it 

because of better describing of variability on both responses and 

explanatory variables than PCR and RRR. As a further study the effects 

of age and body-mass index have been investigated with RRR analysis by 

taking them as explanatory variables and hormones as response 

variables.  
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