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Highlights 
• The article focuses on the construction of a pair copula. 

• The article derived the transformed pair copula model and its submodels. 

• The article presents the D-vine structure. 

• The numerical application of the transformed pair copula models is explored. 
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Abstract 

The study introduced the transformed copula models and a D-vine structure for three variables. 

The numerical applications of the models are evaluated using two different sets of real-life data 

that exhibit nearly no dependence, highly dependent, over, and under dispersed characteristics. 

We examined only the volatilities of the first data using the exponentiated weighted moving 

average (EWMA). The parameter estimates of the models were obtained based on the maximum 

likelihood estimation method for the bivariate copula models and the Dissmann algorithm for 

sequential top-down estimation for the D-vine structure. The results showed that the introduced 

copula models outperformed some existing copula models in terms of their fit statistics for both 

real-life and simulated data sets. In addition, the Gaussian copula model gave a better fit to the 

D-vine structure than some existing copula models and could be recommended for modeling a D-

vine structure comprising of variables that are positively weak correlated and highly correlated. 
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1. INTRODUCTION 

 

Over the decades, copula models have become one of the popular sophisticated statistical tools in literature 

known for multivariate modeling in various fields such as finance, insurance, engineering, economics, 

medicine, and biological sciences among others.  Interest in copula models to capture multifarious 

dependence structures between n-dimensional random variables is increasing exponentially. The variables 

do not necessarily need to have the same or follow a certain distribution and thus the distinguishing and 

appealing properties of copula models for exploring good fit to such variables of various characteristics and 

their dependencies structure cannot be overemphasized. [1] and [2] gave a superb overview of copulas. 

Thereafter, researchers have achieved some developments in copula, such as [3] exploring the method of 

selecting an appropriate bivariate copula for statistical data analysis. [4] proposed a bivariate generalized 

exponential distribution derived from the copula. [5] proposed four types of copula models on the 

exponentially weighted moving average control chart when observations are from an exponential 

distribution. [6] explored the theoretical approach of generating copulas via analytical means and gave 

mathematical treatment to the proposed copula models. [7] discussed the method of constructing bivariate 

asymmetric copulas. [8] introduced a generalized multiple-step procedure for the full inference of the 

directional dependence structure. [9] conducted review research on the efficacy of the copula-based 

methodology and pair copula construction (PCC) and [10] adopted the copula approach to developing 

collective risk models for flexible dependence structure. [11] introduced a family of the Archimedean 

Copula via the contagent functions and derived the dependence characteristics. In the study, the Monte 

Carlo simulation approach is adopted to explore the dependence parameter and the dependence structure of 

two real-life data sets was examined based on trigonometric copulas and observed that the contagent copula 

performed well in the real-life data application. [12] used the goodness of fit test as a measurement 
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parameter to select the copula that gave the best fit to the data set. The study explored this approach on the 

monthly minimum and maximum barometric data and examined the dependence of the data. 

 

Sometimes, fitting these copula models to higher-dimensional data sets from various fields may be very 

complicated. Hence, [13,14] introduced a possible decomposition of higher dimensional copulas to 

bivariate building blocks, the pair copulas, and its margins where a joint distribution can be decomposed 

into bivariate copulas of the original observations and their unconditional and conditional distribution 

functions thus making it more convenient to construct and explore multivariate dependence structure as 

well as exploring goodness of fit. [15] gave an excellent theoretical and applications review of pair copulas 

decomposition. [16] proposed a nonparametric pair copula construction for modeling complex correlation 

problems. [17] discussed the pair copula methods to explore complex dependence structure. [18] examined 

a systematic method to extend the copula to higher dimensions by a vine copula based on the pair copula 

construction. However, the study of the dependence structure of the vine copula depends solely on the use 

of an appropriate pair or bivariate copula model that may not have restrictions in their parameter space as 

well as difficulty in parameter estimation.  Therefore, the study of the pair or bivariate copula construction 

of unrestricted parameter space copula models and vine structure for dependence evaluation and goodness 

of fit has become an area that demands the attention of researchers. Hence, these become the motivation 

and interest behind this study. Hence, the study seeks to introduce the pair copula model via the 

transformation approach using Pareto distribution as the baseline model and the D-vine structure for our 

variables of interest. The introduced model could be useful in economics, engineering, survival analysis, 

financial, and actuarial areas to explore dependence structure and goodness of fit among variables of various 

characteristics. 

 

In most cases, a univariate distribution with two parameters has been proven in the literature to yield a 

better fit to data sets of various characteristics than the one-parameter models. Pareto distribution is one of 

the most attractive distributions with scale and shape parameters. It is a right-skewed and heavy-tailed type 

of distribution with vast applications in incomes and other financial variables. It has been greatly explored 

in the analysis of extreme observations. Recently, most financial time series-based data are right-skewed 

with a tail approaching zero so slowly that their bivariate analysis becomes interesting to researchers. 

Therefore, the Pareto distribution’s properties are in many cases a more appropriate choice as a baseline 

model for the construction of a flexible bivariate copula model that could yield better fits to various time 

series-based data. 

 

2. COPULA FUNCTION 

 

Copula function C combines multivariate distribution functions with their one-dimensional marginal 

distribution functions. That is, it is a function with uniformly distributed marginal functions and in the case 

of 2n = links a bivariate distribution function to its univariate marginal distribution functions. It has the 

following properties. 

 

1. The function is grounded for all  0,1
n

ju u=   where 1,2,...,j n=  such that for at least a 

coordinate of is 0, then ( ) 0C u = . 

 

2. The function C is non-decreasing in the sense that for every  0,1
n

u  and  0,1
n

v  such that

i ju u and i jv v for 1,2,...,j n= , 1, 2,...,i n= and i j . Then, in this case 2n = , this becomes 

( ) ( ) ( ) ( )2 2 2 1 1 2 1 1, , , , 0C u v C u v C u v C u v− − +   for ( ) ( )  
2

1 2 1 2, , , 0,1 .u u v v   

 

3. For every  , 0,1
n

u v , ( ),1C u u=  and ( )1,C v v= , where only one coordinate is u  or v  and all 

of the others are 1. 
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 In addition, let ( ),C u v be a bivariate copula. For any  0,1u  and  0,1v , the partial derivative 

( ),C u v

u




 exists for almost all  0,1u , and for such v  and u  

( ),
0 1

C u v

v


 


. Similarly, the partial 

derivative 
( ),C u v

v




exists for almost all  0,1v  and for such u  and v ,

( ),
0 1

C u v

v


 


. Thus, the 

corresponding density function for ( ),C u v  is the
( ),C u v

u v



 
. 

 

2.1. Pair Copula Construction 

 

Pair-copula construction pioneered in [13,14] is a more flexible and intuitive approach to expanding the 

applications of bivariate or pair copula to higher dimensional variables that make the study of dependence 

structure between variables more convenient by decomposing n-dimensional variables into their conditional 

and unconditional pair copula. For an n-dimensional variable, the joint density function can be decomposed 

into the conditional and unconditional components as   

 

( ) ( ) ( )1 2 1 2 1 1 2( , ,..., ) ( ) | | , ... | ,...,n n n n n n n nh x x x h x h x x h x x x h x x x− − −=     .             (1) 

 

2.2. Regular Vınes 

 

For high dimensional variables, there are possible numbers of pair-copula construction. That is, for any 

2n  we can easily obtain its pair-copula for inference. The graphical representations of the pair-copula 

construction allow a large number of possible pair-copula constructions called the regular vines which 

comprise of canonical (C) vine, D-vine, and R-vine. For this study, we presented only the density function 

of the D-vine as  

 

( )
1

1 2 , | 1,..., 1 1 1 1 1

1 1 1

( , ,..., ) ( ) ( | ,..., ), ( | ,..., )
n jn n

n i r r j r r j r r r j r j r r j

i j r

h x x x h x c H x x x H x x x
−−

+ + + − + + − + + + −

= = =

=   .        (2) 

 

Where j represents the trees in the D-vine, r represents the edges in each tree such that there is no node in 

the tree jT that connects to more than two edges.  

 

2.3. Transformed Copula 

 

[19] proposed the synchronized transformation approach of copula and its margins. That is, for  0,1u  

and  0,1v  for an initial copulaC , the synchronized transformed copula given as 

 

( ) ( )( ) ( )1 1, ( ), ( ) ,QC u v Q C Q u Q v QC u v− −= =                 (3) 

 

is a copula whereQ  is a non-decreasing function and 
1Q−

 is its quantile function. 

 

The distribution function of the univariate Pareto distribution is given as 

 

( ) 1F x
x


 

= − 
 

.                    (4) 
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Where
( )

( )
dF x

f x
dx

= , x  , and , 0    are scale and shape parameters respectively. 

 

2.4. Measure of Association 

 

For any copulaC , Kendall’s tau measure of association of a pair ( ),u v  is defined as 

 

( ) ( )
1 1

0 0

4 , , 1.C u v dC u v = −                     (5) 

 

It measures the strength based on the probability of concordance and discordance of pairs.  

 

3. THE TRANSFORMED COPULA MODEL 

 

This section presents the derived transformed copula model, pair-copula construction of the random 

variables using regular vines, and parameters estimation. 

 

Let X be a non-negative continuous random variable with distribution function (.)F  and density function

(.)f . Similarly, let another continuous random variable R be defined as 
XR e−=  such that ln R x= − . 

Then, the distribution function can be expressed as 

 

   ( ) 1 ln ,Q r P R r P X r=  = −  −  such that  

 

( )  ( ) 1 ln , 0,1Q r F r r= − −  .                  (6) 

 

Equation (6) is the survival function of X  evaluated related to the expression ˆ ( ln )F r− . Substituting 

Equation (4) in Equation (6), we have 

 

( ) ,
ln

Q r
r


 

=  
− 

                    (7) 

 

such that 
( )

( )1

( )
( )

ln

dQ r
q r

dr r r






+

= =
−

and 

1

1( )

u

Q u e


− 

 −
 

−  =  for u is substituted in place of r . 

 

Recall that ln lnr x r x= −  − = , setu r= . By substituting Equation (7) and 
1( )Q u−

into Equation (3), 

we obtained the proposed transformed pair Pareto (TPP) copula function as 

 

( )
1 1

, , , 0.

ln ,

Q

u v

C u v

C e e

 



 


 

− −   
   − −
   
   

 
 
 
 
 = 
   
   
−   
   
    

               (8) 
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Let us assume that ( )Q r  is an increasing bijection transformation obtained at ln r x− = . In [18], if 

( )  exp : ,0 0,1Q − →  is log-convex, then the transformed copula ( ),QC u v  is a copula.  

 

Similarly, expQ is log-convex if ln expQ is convex. To show this, let ( )Q u and 
1( )Q u−

be the 

transformed Pareto and quantile functions respectively.  If we set ln xr x r e=  = , also from Equation 

(7), we can have that ( )xQ e
x


 

=  
 

such that  

 

( ) ln ( ) , ( ,0)x xx Q e e x





 

− 
  = =  −                   (9) 

 

Since 

2

2

( )
0

d x

dx


  and , 0   . Then, the transformed copula function is a copula. Let us consider the 

initial copula C to be an Archimedean copula with a generator function . Then, we have that  

 

( )

1

1( ) ( ) .

u

u Q u e



 

− 
 −
 

−  

 
 

 = =  
 
 

                (10) 

 

3.1. The TPP-Clayton Copula 

 

This section introduces the TPP-Clayton copula as the sub-model of the TPP model. 

 

Let the Clayton copula function be expressed as 

 

( )
1

, , 1 , 0C u v u v   
−

− − = + −   .               (11) 

 

This copula function has a generator ( )
1r

r




− −
 = . Then, the proposed TPP-Clayton copula model is 

given as 

 

( )
( ) ( )

1 1
ln ln

1

, , , , , , , 0

ln 1

u v

Q

e e

C u v

e e

  



 


     



− −
− −

      
− −   
   −    

 
 
 
  

=  
   
   − + −     

    

          (12) 

 

with its generator given as ( )

1

ln( )

1
.

ue

e
u

 




−
−

 
  

−  
  

  −
 =  The density function corresponding to Equation (12) 

is given as 

 



938  Friday I. AGU, Salih CELEBIOGLU/ GU J Sci, 36(2): 933-952 (2023) 

 
 

( )

( ) ( ) ( )

1

2

2
1

1 ln 1

, , , , .

ln 1 1

u v

u v

Q

u v u v

uv e e e

c u v

e e e e

 

   

 

   

   

 
  





   

 

  



 
+ − +−  + − − 

+

− − − −

  
 + + + − 
   =

     
+ − + −    

     

           (13) 

 

Put Equation (12) into Equation (5), Kendall’s tau function for the TPP-Clayton copula is 

 

( ) ( )
1 1

ln ln

1 1

0 0

1

4 1.

ln 1

u ve e

dudv

e e

  



 






− −
− −

      
− −   
   −    

 
 
 
  

= − 
   
   − + −     

    

               (14) 

 

3.1.1. Parameter estimates of the tpp-Clayton copula 

 

This section presents the parameter estimates of the TPP-Clayton copula model.  

 

Let iu and iv ( )1,2,...,i n= be pair of continuous random variables and ( ), ,   = be the parameter 

vector. The log-likelihood function for the data ( ) ,i iu v using Equation (13) is given as 

 

( ) ( ) ( ) ( ) ( ) ( )
1

1 1 1

1

1

, , ; , 2 ln ln ln 1 ln 1

ln 2 ln ln 1 1 .

i i

i i i i

n n n
u v

i i i i

i i i

n
u u u u

i

L u v n u v u v e e

n e e e e

 
  

 

   
   



 



   

 
      





+

− −

= = =

+

− − − −

=

 −  
= + + − + + + + + −  

   

     
− + + − + −    

     

  



  

            (15) 

 

However, it is cumbersome to theoretically obtain the maximum likelihood estimates of Equation (15). 

Thus, the R program is used to obtain the maximum estimates of the parameters ( ), ,   = using the 

maxLik function in R. 

 

3.2. The TPP-Independent Copula 

 

This section introduced the TPP-Independent copula as the sub-model of the TPP model. 

 

Consider the independence copula to be expressed as ( ),C u v uv= . The derived TPP-Independent copula 

model is given as 

 

( )

1 1
1

. , , , .

u v

Q

IndC u v e

 





  

− −
−

 
 − +
 
 

  
   

=   
  

   

               (16) 
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The corresponding density function to Equation (16) is given as 

 

( )

1 1

1 1

2

. , , , .

u v

Q

Indc u v u v e

   

    

− − 
 − − +

− −  
+  =                (17) 

 

The TPP-Independent copula Kendall’s tau expression is given as 

 

1 1

1 1

0 0

4 1.
u v

dudv

e

 








− − 
 − +
 
 

 
 
 = −
 
  

                  (18) 

 

3.2.1. Parameter estimates of the tpp-independent copula 

 

This section presents the parameter estimates of the TPP-Independent copula model.  

 

Let iu and iv ( )1,2,...,i n= be pair of continuous random variables and ( ), ,   = be the parameter 

vector. The log-likelihood function for the data ( ) ,i iu v using Equation (17) is given as 

 

( ) ( ) ( )
1 1

1 1 1

1
, , ; , 2 ln ln( ) ln( ) .

n n n

i i i i

i i i

L u v n u v u v 


     


− −

= = =

 −  
= + − + − +   

  
    (19) 

 

The R program is used to obtain the maximum estimates of Equation (19) parameters by using the 

maxLik function in R. 

 

3.3. The Pair Copula Construction and The D-vine Structure 

 

This section presents the pair-copula construction for our variables of interest. The variables of interest are 

the Crude oil, Gold, and Silver data collected from Yahoo Finance between 1st February 2017 to 26th 

February 2021. We set 1x =Crude oil, 2x = Gold, and 3x = Silver, the 3-dimensional D-vine structure for 

the pair-copula construction is shown in Figure 1. The vine structure consists of two trees jT , 1, 2.j =   The 

tree in jT  has 4 j−  nodes and 3 j−  edges, each tree corresponds to a pair-copula density function and 

the label of the edge corresponds to the subscript of the pair-copula density function. All the pair 

constructions are defined by 
( )1

2

k k −
 edges and the marginal densities of each variable. k are the 

dimension of variables for pair construction. Note also that if two edges in a tree jT  share a common node, 

these edges are joined together to form another node in the tree 1jT +  (proximity condition). 

 

1T    12    23 

 

2T      13|2 

 

Figure 1. The D-vine structure of the Crude oil, Gold, and Silver data 

 

1 2 3 

12 23 
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Figure 1 presents the D-vine structure with 3 variables, 3 edges, 5 nodes, and 2 trees. The tree has 3 nodes 

and 2T has 2 nodes with a conditional edge. Each edge is associated with a pair-copula. The graph in Figure 

1 shows how the variables are linked together. Each linkage (edge) is associated with a pair-copula to 

explore their dependence. Note that the D-vine structure for the stock data used in section 4 takes the same 

shape as that of the Crude oil, Gold, and Silver in Figure 1, and hence it is not presented in the study. 

 

Using Equation (2), the expression for the D-vine structure in Figure 1 is given as 

 

( ) ( ) ( )1 2 3 12 1 2 23 2 3 13|2 1 2 3 2 1 2 3( , , ) ( ), ( ) ( ), ( ) ( | ), ( | ) ( ) ( ) ( )h x x x c H x H x c H x H x c H x x H x x h x h x h x= , (20) 

 

where 1 2( ), ( )h x h x , and 3( )h x are the marginal distributions. The log-likelihood function of Equation (20) 

is given as 

 

( ) ( ) ( ) ( )( ) ( )12 12 1 2 23 2 3 13|2 1 2 3 2 1 2 3

1 1

( ; , ) ln ( ), ( ) ( ), ( ) ( | ), ( | ) ; ln ( ) ( ) ( );
n n

j j

j j

L h x c c H x H x c H x H x c H x x H x x h x h x h x
= =

     =  + 
      

 where j is the set of parameters in the marginal functions and j what is the set of parameters in the 

copula functions? 

 

4. NUMERICAL APPLICATIONS  

 

This section presents two numerical applications of the study. Firstly the world’s monthly trading volumes 

of Crude oil, Gold, and Silver were collected from Yahoo Finance between 1st February 2017 to 26th  

February 2021. The summary statistics for the Crude oil, Gold, and Silver data sets are presented in Table 

1a. It is observed that the monthly trading volumes of Crude oil “between” 1st February 2017 to 26th 

February 2021 are left-skewed and under dispersed. However, the monthly trading volumes of Gold and 

Silver for the same period are right-skewed and overdispersed. Silver among others has the highest positive 

skewness value and showed a high level of overdispersion. 

 

Finally on Eustockmarket data (1860 observations each ) of the Daily Closing Prices of Major European 

Stock Indices of Germany DAX (Deutscher Aktien Index), Switzerland SMI (Swiss Market Index), and 

France CAC (Cotation Assistée en Continu) from 1991–1998. These data sets are available on the R 

data.frame package. The summary statistics for the daily closing prices of the stocks are presented in Table 

1b. All the stocks are right-skewed with France CAC having the highest kurtosis value indicating that it is 

highly leptokurtic among other stocks. The stocks are all overdispersed. Though, France CAC exhibits a 

high level of overdispersion among others. We only presented the pairwise scatter plot of the daily closing 

prices of the stocks in this study. 

 

The scatter plots in Figure 2 are constructed to examine the pair dependencies or association of the variables 

while the pairwise scatter plot of the variables is presented in Figure 3a. The plots showed how close and 

far the points are from each other. The correlated values of the variables are presented in Table 2a. For the 

Crude oil, Gold, and Silver data, the result showed that there exists a positive association between the 

world’s monthly trading volumes of Crude oil, Gold, and Silver. Furthermore, it is observed that Gold and 

Silver seem to have a better association than the association between the monthly trading volumes of Crude 

oil and Gold, and Crude oil and Silver. Similarly, we only considered the volatility in the world monthly 

trading volumes of Crude oil, Gold, and Silver. We obtained the log-return rate of the data and used the 

EWMA model to compute the monthly volatility rate. The volatility rate plots were obtained for the values 

and are presented in Figure 4 respectively. These plots give clear trends in the monthly trading volumes of 

the data. Furthermore, the Q-Q plots for the Crude oil, Gold, and Silver data are presented in Figure 7a and 

it is observed that only Crude oil data points are seen to be close to the straight line indicating the possibility 

of it being normally distributed. 
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Similarly, the pairwise scatter plot of the daily closing prices of the stocks is presented in Figure 3b. The 

pairwise scatter plot showed how close the stock’s daily closing prices are to each other. The Q-Q plots of 

the stocks are presented in Figure 7b and it is observed that the points are far from the straight line indicating 

the possibility of the data deviating from normal. The correlated values for the daily closing prices of the 

stocks are presented in Table 2a. It is seen that DAX and SMI are highly correlated followed by DAX and 

France CAC, and SMI and France CAC stocks seem to have the least correlated value. 

 

In this study, we only fit the Pareto marginal density to the monthly trading volumes of Crude oil, Gold, 

and Silver using the maximum likelihood estimation method. We obtained the following estimates from 

the Crude oil marginal, Gold, and Silver marginal ( ) ( )3 31 32 1127.8524ˆ ,  0.40ˆ 60ˆ,  = = . 

 

Though the use of scatterplot may help us to guess what bivariate copula model might be appropriate for a 

given data, however, a guess is not the optimal way of selecting the best bivariate copula model that 

provides a better fit to our data. Thus, we fit the introduced copula models to our data and compared the 

results with some existing copula models. The parameters estimates, log-likelihood (LL), Akaike 

Information Criteria (AIC), and the corresponding Kendall's tau values for the fitted bivariate copula 

models to our data are presented in Tables 3, 4, 5, 10, 11, and 12. Tables 6 and 13 present the parameter 

estimates of the copula models fitted to the D-vine structure. We use the loglik and maxLik functions in the 

R package to obtain the parameter estimates of our models. The model with the least AIC value is 

considered to be the model with a better fit to the data under consideration. In Table 3, the TPP-Clayton 

model provides a better fit to the data than other copula models. The competing models are the TPP-

Independent model and the Clayton model. This could mean that the introduced TPP-Clayton model is 

quite appropriate for modeling pair variables with right-skewed, one left-skewed,  under, and overdispersed, 

as shown in Tables 1a and 1b respectively. The pair variable under consideration is the Crude oil and Gold 

data and DAX, SMI, and France CAC stocks. In Table 4, the TPP-Independent model provides a better fit 

to the data than other copula models. The competing models are the TPP-Clayton and Clayton models. 

Thus, the TPP-Independent model could be considered appropriate in modeling pair variables with one left-

skewed and under dispersed and the other highly right-skewed and overdispersed. Though the TPP-Clayton 

model has a parameter more than the parameter of the TPP-Independent model it performs poorly to the 

data under consideration than the TPP-Independent model. This result could also mean that the model with 

more parameters may not likely provide a good fit for some data on various behavior. The pair variable 

under consideration is the Crude oil and Silver data. In Table 5, the pair variables are Gold and Silver and 

the TPP-Clayton model provides a better fit to the data than other copula models. In this case, the competing 

models are the TPP-Independent and Gaussian models. Hence, the TPP-Clayton model could be considered 

appropriate in modeling pair variables with both right-skewed and overdispersed.  Tables 10, 11, and 12 

examined the fitness of the models on the following pairs variables DAX and SMI, DAX and France CAC, 

and SMI and France CAC respectively. All the results presented in Tables 10 and 11 showed that the 

proposed TPP-Independent copula model provides the best fit to the pair of the daily closing prices of stock 

data sets than other models while the TPP-Clayton model seems to be the only competiting model. 

Furthermore, in Table 12 it is observed that the TPP-Clayton copula provides the best fit for the pair of SMI 

and France CAC stocks. These stocks are right-skewed and France’s CAC is highly overdispersed. This 

implies that TTP-Clayton copula could be the appropriate option in modeling pairs that are strongly 

correlated and one is highly skewed and overdispersed. This result is in line with the result obtained in 

Table 5 in favor of the TPP-Clayton model. 

 

The parameter estimates of the D-vine structure in Figure 1 are based on the [21] algorithm for sequential 

top-down estimation to maximize the log-likelihood of the tree for a regular vine copula. The steps of the 

algorithm are presented in Table 7. The results obtained for the fitted copula models to the D-vine structure 

using Crude oil, Gold, and Silva and DAX, SMI, and France CAC stock data sets are presented in Tables 

6 and 13 respectively. The copula models were selected using the RVineStructureSelect() in the R vine 

package. The choice of the copula models is based on their characteristics (see Aas et al. 2009) for modeling 

data from various fields. The LL and AIC values for the estimated parameters are reported. The AIC is 

selected using the select()AIC function in the R vine package. From Tables 6 and 13, the Gaussian copula 

model provides the least AIC value among other copula models, and hence, it is considered the model that 
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yielded the best goodness of fit to the data sets under consideration. The competiting model to the Gaussian 

copula is the Student-t copula model for the Crude oil, Gold, and Silver data in Table 6 while the Gumbel 

copula model performed second best to the stocks data as seen in Table 13. This means that the Gaussian 

copula model could be considered appropriate for modeling a D-vine structure comprising variables that 

are right-skewed, left-skewed, over and under dispersed, and positively correlated while the competiting 

model could be the Gumbel copula for all right-skewed, overdispersed, and highly correlated variables and 

Student-t copula for right-skewed, left-skewed, nearly no correlated (weak), under and overdispersed 

variables.  

 

4.1. Simulation Study 

 

This section presents the simulation study to examine the flexibility behavior of the proposed copula models 

on large sample size. The adopted simulation procedures are presented below. 

 

1. Generate two independent standard-uniform (0,1) variates u and v. 

 

2. Repeat the process for 2000n = times. 

 

3. Fit the bivariate copula models. 

 

The pair and the scatter 3D plots of the generated variates are presented in Figures 5 and 6 respectively. 

The flexibility behavior of the copula models results obtained based on the generated variates are 

presented in Table 8.  

 

The LL and AIC values are used as the measure of goodness of fit criteria of the copula model that provides 

a better fit to the generated data. Based on the generated data of size 2000 from uniformly distributed 

variates u and v, the introduced TPP-Clayton copula model provides a better fit to the data than other copula 

models. Furthermore, the TPP-Independent becomes the most competing model in terms of goodness of fit 

to the generated variates. Ultimately, in both real-life data sets and the generated data, the introduced copula 

models have proven to yield better fits to the data sets in both cases. Thus could be considered an alternative 

model to the Gaussian copula, Clayton copula, Frank copula, and Joe copula models respectively. 

 

Table 1a. The summary statistics for the Crude oil, Gold, and Silver data sets 

Variabes skewness kurtosis  mean        median 1stQ 3rdQ Var. 

Crude oil -0.288  2.117  121  129 993 141 0.000 

Gold  0.659  1.790  131  160 920 287 2380 

Silver  1.027  3.659  515  647 257 103 3731 

 

Table 1b. The summary statistics for the daily closing prices of stocks data sets 

Variables skewness kurtosis  mean        median 1stQ 3rdQ Var. 

DAX  1.534  4.565  253  214 174 272 1177  

SMI  1.309  3.832  338  270 217 381 2766 

France CAC 1.946  6.271  223  199 188 227 3368 

 

Table 2a. The correlated values of Crude oil, Gold, and Silver 

Variables  Crude oil *Gold  Crude oil*Silver  Gold*Silver 

   0.0569    0.0755     0.1800  
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Table 2b. The correlated values of DAX, SMI, and France CAC stocks 

Variables  DAX *SMI  DAX*France CAC  SMI*France CAC 

   0.9912   0.9662     0.9478 

 

 

 

 

Figure 2. The scatter plots of the real trading volumes scale of Gold and Crude oil (top), Silver and 

Crude oil (left), and Silver and Gold (right) 

 

The real trading volumes scale of Gold, Crude oil, and Silver showed that the points are dispersed or far 

away from each other. This implies that there exists no such stronger relationship among the real trading 

volumes scale of Gold, Crude oil, and Silver. Similarly, Figure 3 showed such a trend in the pairwise 

pattern. 

 
Figure 3a. The pairwise scatter plot 

 

The plot presents how each variable in pair tends to form close points. From the plot, the points are nearly 

dispersed from each other as only a few points seem to be close indicating the level of the association 

among the variables to be nearly weak. However, in Figure 3b, the points are very close to each other 

indicating the possibility of a strong association between the pair of stocks. 
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Figure 3b. The pairwise scatter plot 

 

4.2. Skewness and Kurtosis Tests for the Data Sets 

 

These are statistical measures that represent the distribution of data. These tests describe the position of 

many of the data concerning the distribution against the average value of the specific data. The Shapiro-

Wilk (W) test is used to test the null hypothesis (H0) that the data sets are normally distributed against the 

alternative (H1) at a 0.05 significance level. The Q-Q plots for the datasets are presented in Figures 7a and 

7b respectively.  The W test for the variables is presented in Tables 9a and 9b. The W test for Crude oil is 

in favor of the null hypothesis since the p-value is greater than 0.05. Similarly, the Q-Q plot for Crude oil 

supports this. However, the W tests for all the daily closing prices of the major stocks, Gold, and Silver are 

in favor of the alternative hypothesis since their p-values are less than 0.05. Their Q-Q plots showed that 

the datasets deviate from normal.  

 

 

 
Figure 4. EWMA plot 

 

Figure 4 showed that the volatility of the Crude oil, Gold, and Silver returns plots exhibit upward and 

downward patterns in the trends for the given periods. The first upward trend in Crude oil and Gold returns 

is seen around the first 5 months where a decline occurred until another upward trend is observed around 

the 10th month. This process continues as seen in Crude oil and Silver returns and Gold and Silver returns. 

Though, the upward and downward trends occurred during various periods. 
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Table 3. Parameters estimates, LL, AIC, and Kendall's tau values for the copula models fitted to Crude 

oil and Gold data 

Copula model  ̂   ̂  ̂   LL  AIC  tau 

TPP-Independent 0.265  - -1659.389 45142.690 -90281.390 NA 

TPP-Clayton  -0.125  -0.047 0.001  161.000 -3224566.000 NA 

Gaussian  0.590  - -  106.620 -211.250 0.400 

Clayton   65.530  - -  134.620 -267.230 0.970 

Frank   67.080  - -  134.320 -266.640 0.940 

JOE   50.000  - -  133.070 -264.130 0.960  
*Key. NA (not available) 

 

 
Figure 5. Pair plot of the independent uniformly generated variates u and v 

 

Figure 5 presents the pairwise plot of the uniformly simulated variates. It showed that the points are very 

close to each other and this indicates how strongly the variates could be correlated. Figure 6 showed the 

visualized 3D plot of the simulated variates. 

 
Figure 6. The 3D scatter plot of the independent uniformly generated variates u and v 
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Figure 7a. Q-Q plot for Crude oil, Gold, and Silver datasets 

 

The plots show that Crude oil data points are close to the straight line while only a few of the Gold and 

Silver data points are seen close to the straight. That is, many of the Gold and Silver data points are far 

away from the straight line. This is an indication that the Gold and Silver datasets are in favor of the 

alternative hypothesis. Similarly, Figure 7b presents the Q-Q plots for the stocks data and showed how a 

few data points are on the straight line. This indicates that the data sets are in favor of the alternative 

hypothesis. 

 

 

Figure 7b. Q-Q plot for the DAX, SMI, France CAC, and UK FTSE stocks data 
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Table 4. Parameters estimates, LL, AIC, and Kendall's tau values for the copula models fitted to Crude 

oil and Silver data 

Copula model  ̂   ̂  ̂   LL  AIC  tau 

TPP-Independent 0.264  - -1593.273 43326.230 -86648.460 NA  

TPP-Clayton  0.053  0.141 0.058  42014.930 -84023.860 NA  

Gaussian  0.550  - -  105.490 -208.970 0.370  

Clayton   65.090  - -  134.530 -267.070 0.970  

Frank   66.630  - -  134.240 -266.480 0.940  

JOE   50.000  - -  133.050 -264.090 0.960  

*Key. NA (not available) 

 

Table 5. Parameters estimates, LL, AIC, and Kendall's tau values for the copula models fitted to Gold 

and Silver data 

Copula model  ̂   ̂  ̂   LL  AIC  tau 

TPP-Independent 0.265  - -1241.528 33668.010 -67332.020 NA  

TPP-Clayton  0.000  0.195 0.000  631421.600 -1262837.000 NA  

Gaussian  0.860  - -  301.750 -601.490 0.660  

Clayton   0.000  - -  -0.050  -2.110  0.000 

Frank   100.000 - -  192.460 -382.920 0.960 

JOE   -1.000  - -  0.060  -2.130  0.000  

*Key. NA (not available) 

 

Table 6. Parameter estimates of the copula models fitted to the D-vine structure of the Crude oil, Gold, 

and Silver data 

Tree Edge  Copula model  Parameter tau     LL  AIC 

1 2, 3  Gaussian  0.29  0.19     

 1, 2     0.22  0.14 

2 1, 3|2     0.33  0.22    85.50       -165.00 

*********** 

1 2, 3  Student-t  0.29  0.19      

 1, 2     0.20  0.13 

2 1, 3|2     0.28  0.18  87.60  -163.00 

*********** 

1 2, 3  Clayton  -  -      

 1, 2     -  - 

2 1, 3|2     0.12  0.06  62.00  -118.00 

*********** 

1 2, 3  Gumbel  -  -      

 1, 2     -  - 

2 1, 3|2     1.73  0.42  66.80  -128.00 

*********** 

1 2, 3  Frank   2.37  0.24      

 1, 2     3.34  0.33 

2 1, 3|2     5.61  0.49  54.60  -103.00 

*********** 

1 2, 3  Joe   -  -      
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 1, 2     -  - 

2 1, 3|2     8.41  0.79  52.40  -98.80 

 

Table 7. The Algorithm for sequential top-down estimation steps 

➢ Input the data ,i ku for all possible variable pairs, 1 i k n    

➢ Select the maximum spanning tree 

➢ for each edge say ( )e E do 

➢  Select a copula say ,a bC with estimated parameter(s) ,
ˆ

a b  

➢ For, generate the pseudo observations 

➢ end for 

➢ for 2,..., 1j n= − do 

➢ Calculate the empirical Kendall's tau for all conditional pairs that can be part of the tree JT . That 

is, all edges fulfilling the proximity condition 

➢ Among these edges, select the maximum spanning tree. 

➢ for each edge say ( )e E do 

➢ Select a pair copula ,a bC with estimated parameter(s) that provides the best fit based on goodness 

of fit measure criteria. 

 

Table 8. Parameters estimates, LL, AIC, and Kendall's tau values for the copula models based on 

generated uniform variates u and v 

Copula model  ̂   ̂  ̂   LL  AIC  tau 

TPP-Independent 219.000 - 0.686  144.000 -284.000 NA  

TPP-Clayton  -0.104  -0.215 0.007  429.000 -852.000 NA  

Gaussian  0.050  - -  2.410  -2.820  0.030  

Clayton   0.050  - -  2.030  -2.050  0.020 

Frank   0.270  - -  1.880  -1.750  0.030 

JOE   1.010  - -  0.060  -1.890  0.000  

*Key. NA (not available) 

 

Table 9a. Shapiro test of normality for the Crude oil, Gold, and Silver data 

Variables   W   P-value   Decision 

Crude oil   0.950   0.067   H0 (accepted)  

Gold    0.753   5.03×10-7  H0 (not accepted) 

Silver    0.779   1.65×10-6  H0 (not accepted) 

 

Table 9b. Shapiro test of normality for the DAX, SMI, CAC, and FTSE data 

Variables   W   P-value   Decision 

DAX    0.799   2.2×10-16  H0 (not accepted)  

SMI    0.838   2.2×10-16  H0 (not accepted) 

France CAC   0.739   2.2×10-16  H0 (not accepted) 

UK FTSE   0.889   2.2×10-16  H0 (not accepted) 
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Table 10. Parameters estimates, LL, AIC, and Kendall's tau values for the copula models fitted to DAX 

and SMI data 

Copula model  ̂   ̂  ̂   LL  AIC  tau 

TPP-Independent 0.207  - -4658.000 81850.000 - 16370.000 NA  

TPP-Clayton  0.059  0.193 0.002  53074.00 -10615.000 NA  

Gaussian  0.930  - -  1899.530 -3797.060 0.770  

Clayton   11.570  - -  29330110 -5864.230 0.850  

Frank   25.830  - -  2519.38 -5036.750 0.860  

JOE   12.300  - -  2938.900 -5875.800 0.850  

*Key. NA (not available) 

 

Table 11. Parameters estimates, LL, AIC, and Kendall's tau values for the copula models fitted to DAX 

and France CAC data 

Copula model  ̂   ̂  ̂   LL  AIC  tau 

TPP-Independent 0.206  - -4558.450 80169.000 - 16034.000 NA  

TPP-Clayton  0.060  0.194 0.003  25152.000 -50305.000 NA  

Gaussian  0.870  - -  1309.560 -2617.120 0.670  

Clayton   4.330  - -  1584.520 -3167.030 0.680  

Frank   9.010  - -  1074.380 -2146.770 0.640  

JOE   5.070  - -  1582.610 -3163.210 0.680  

*Key. NA (not available) 

 

Table 12. Parameters estimates, LL, AIC, and Kendall's tau values for the copula models fitted to SMI 

and France CAC data 

Copula model  ̂   ̂  ̂   LL  AIC  tau 

TPP-Independent 0.032  - -1242.000 74212.000 - 14842.000 NA  

TPP-Clayton  0.002  0.068 0.259  40182.000 -80364.000 NA  

Gaussian  0.840  -   1131.120 -2260.240 0.630  

Clayton   3.840  - -  1445.730 -2889.450 0.660  

Frank   8.420  - -  990.240 -1978.480 0.620  

JOE   4.570  - -  1444.190 -2886.380 0.650  

*Key. NA (not available) 

 

Table 13. Parameter estimates of the copula models fitted to the D-vine structure of the DAX, SMI, and 

France CAC data 

Tree Edge  Copula model  Parameter tau     LL  AIC 

1 2, 3  Gaussian  0.99  0.90     

 1, 2     0.54  0.37 

2 1, 3|2     0.25  0.16    16.50    -270.00 

*********** 

1 2, 3  Student-t  0.99  0.90      
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 1, 2     0.47  0.31 

2 1, 3|2     0.22  0.14  15.10  -240.20 

*********** 

1 2, 3  Clayton   3.70  0.65     

 1, 2     28.00  0.93 

2 1, 3|2     -  -  14.20  -220.40 

*********** 

1 2, 3  Gumbel  4.38  0.77     

 1, 2     2.26  0.56 

2 1, 3|2     1.39  0.28  16.00  -260.00 

*********** 

1 2, 3  Frank   35.00  0.89      

 1, 2     35.00  0.89 

2 1, 3|2     8.67  0.63  14.00  -220.00 

*********** 

1 2, 3  Joe   4.40  0.64      

 1, 2     30.00  0.94 

2 1, 3|2     -  -  15.00  -240.00 

 

5. SUMMARY AND CONCLUSION 

 

The study introduced the transformed pair Pareto copula model and TPP-Clayton and TPP-Independent 

copulas as sub-models and a D-vine structure model for our data. The application of the study is illustrated 

using two sets of real-life data and simulated data of size 2000. The pair plots of the real-life and simulated 

data sets are presented. The parameter estimates of the models were obtained based on the maximum 

likelihood estimation method and the [21] algorithm for sequential top-down estimation. The AIC values 

for the models are used as a goodness of fit criteria to select the appropriate model that provides a better fit 

to our data. In Tables 3-5 and 10-12, it is observed that the TPP-Independent and TPP-Clayton models 

performed excellently well to the real-life data than other models in terms of their fit statistics. Similarly, 

Table 8 presents the parameter estimates of the copula models based on the simulated data. Again, it is 

observed that the TPP-Independent and TPP-Clayton models performed excellently well to the simulated 

data than other models in terms of their fit statistics. Furthermore, in Tables 6 and 13, the Gaussian copula 

model outperformed other models in terms of their fit statistics and could be considered an appropriate 

model for modeling a D-vine structure. Though we could not obtain results for Kendall’s tau values of our 

introduced models for both the real-life and simulated data sets, however, the future research questions are 

how to obtain Kendall’s tau values for the introduced models and a study on how these models could be 

used to obtain the estimates of a given vine structure. 

 

Furthermore, in Table 2a, we observed that Gold and Silver have a better correlation value than other pairs. 

This is an indication of possible dependence or association between Gold and Silver monthly trading 

volumes. Gold and Silver trading volumes dependence seems to be promising among other pairs’ trading 

volumes. Their pair dependence value indicates that there is a better positive association between their 

trading volumes. Hence, Gold and Silver trading may likely be promising in pairs compared to other pairs.  

Similarly, DAX and SMI stocks have a high correlation value than other pairs and it is an indication of 

possible dependence or strong association between the DAX and SMI stocks. DAX is a stock market index 

consisting of the largest 40 and most liquid German companies that trade on the Frankfurt Stock Exchange 

while SMI is a major stock market index in Switzerland and the 20 largest and most liquid stocks based on 

the Swiss Exchange. Conclusively, the pair trading of these two stocks by investors or stock marketers 

could be very helpful as it may barricade some undercurrent risks because an unexpected performance of 

one could be complemented by the other and minimize risk in the market base on their pair dependence 

level among other pairs.   
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