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MATRIX ALGEBRAS IN Egﬂ AND THEIR APPLICATIONS

ABSTRACT

By Hamilton operators, generalized quaternions have been
expressed in terms of 4x4 matrices. In this paper, geometric

applications of these matrices in generalized 4-space E;?are given. We

also show that the set of these matrices with the group operation of
matrix multiplication is Lie group of 6-dimension.
Keywords: De Moivre’s Formula, Homothetic Motion, Lie Group,
Rotation, Matrix

E;p’' DE MATRIS CEBIRI VE UYGULAMALARI

OZET
Hamilton operatorleri ile bir gelismis kuaterniyon 4x4
matrisleri 1ile gOsterilmistir. Bu makalede matrislerin uygulamalari
gelismis wuzay’da verilmistir. Ayrica, bu matrislerin kiimesi matris
carpim ile alti boyutlu bir Lie grubu olusturulmustur.
Anahtar Kelimeler: De Moivre’s Formiilii, Homothetik Hareket,
Lie Grubu, Donme, Matris
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1. INTRRODUCTION (GIRIS)

The quaternions are commonly used in physics, chemistry,
robotics, mechanics and electronics. A Dbrief introduction of the
generalized quaternions 1is provided in [5], the subject which have
investigated in algebra [6]. The generalized quaternion algebra is an
associative and non-commutative 4-dimensional Clifford algebra.
Recently, we have studied the generalized quaternion and some of their
algebraic properties [17. A matrix corresponding to Hamilton
operators, defined for the generalized quaternions, determines a
Homothetic motion and also can be used to described the rotation in 4-

dimensional space inE;TIn addition, by De-Moivre's formula every power

of this matrix is immediately obtained.

2. RESEARCH SIGNIFICANCE (CALISMANIN ONEMI)

In this work, after a review of some fundamental properties of
the generalized quaternions, we study the applications of matrices
corresponding to generalized quaternions. The set of these matrices
with the group operation of matrix multiplication is Lie group of 6-
dimension. Finally, we give some example for the purpose of more
clarification.

3. EXPERIMENTAL METHOD-PROCESS (DENEYSEL CALISMA)
In this section, we define a new inner product and give a brief
summary of the generalized quaternions.

e Definition (Tanim) 1:Let U:(u1!u21u3!u4)1v:(V11V21V3IV4)ER4' If a,BeR",
the generalized inner product of U and V is defined by
(U, V) =uyV, +au,Vv, + SuV, +afu,y,.
It could be written

1 0 0 O
0 0

(@ y)=u’ 0 f)l p =u'Gv.
00 0 ap

Also, if a>0,8<0, @LV> is called the generalized Lorentz an

inner product. The vector space on R* equipped with the generalized
inner product is called 4-dimensional generalized space and denoted by

4
EM.
e Definition (Tanim) 2: A matrix A 1is called a quasi-orthogonal
matrix if A'¢A=¢and detA=1 where

100 0
0a 0 0
&= ,
00 A4 0
00 0 ap

And a,feR. the set of all quasi-orthogonal matrices, QO(3),with
the operation of matrix multiplication is called rotations group in 4-
spaces E% [27.



Jafari, M. M&R2
NWSA-Physical Sciences, 3A0067, 10, (1), 1-13.

e Definition (Tanim) 3: A generalized quaternion( is an expression
of the form

q=a,+ai +a,] +ak
Where @, a,,a, and @, are real numbers and T, ],IZ are quaternionic
units satisfying the equalities

and
ﬁzafz—i?, a,feR.
The set of all generalized quaternions is denoted by H,, - We
express the basic operations in the T,T,IZ form. The addition becomes as
(8 +ai +a,] +ak)+ (b, +bi +b,]+bk)
z(ao"'bo)"'(ai'*‘bl)r"’(az"“t:)z)]"*'("3‘3"'ba)IZ

and the multiplication as
(8 +ai +a,] +ak)(o, +0i +b,] +bk)

= (8b, —aab, - fa,b, —apah;)
+ (b, +agb, — Bagb, + Ba,b)i
+(8,b, +aah, +ab, —aab,)j
+(ab, —a,b, +ab, + aobs)lz-

Given q=a0+a17+a2]+a3|2, 8,1s called the scalar part of (,denoted
by S(q)=a,

and aif+a2f+a3I( is called the vector part of (,denoted by

V(a)=ai +a,] +ak.
The conjugate of (is
qG=2a,-ai -a,j-ak.
The norm of (Qis
Ny =00 =90 =& +aal + fa; +afia;.
The inverse of Q withN #0, is
1
71:77,
q qu
Clearly qq*=1+0i +0j+0k. Note also that gp=pg and (gp)*=p7g™

e Definition (Tanim) 4: A Lie group is a group G, equipped with a
manifold structure such that the group operations

Mult: GxG-G, (g1, 92)-9192

Inv: G-G, g-»g! are smooth.
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For example, the general linear group
GL(n,U)={AeMat, (R) :det A= 0}

is an open subset of Ma%(R) hence a sub manifold, and the smoothness

of group multiplication follows since the product map for Mat, (R), 1is
obviously smooth[4].

e Definition (Tanim) 5:Left multiplication by a generalized
quaternion ( is a linear map

4

he(x)=0ax, xeH,,

from the quaternions into the quaternions, as is right
multiplication,

hqe(X)=xq X eH,.

Since these multiplications are linear maps from four

dimensional vector space into itself, we can find a matrix

representation of each.

+ _
The Hamilton operators H and H, could be represented as the matrices;

a, -aa -—pa, -offa
h a a —fa Pa,
H()= 1
D2 wa  a o ®
a, -4, & a,
and
a, —aa, —pa, -—afa,
- —pa
a —aa; g, o8

a 4 E
e Theorem (Teorem) 1l: If (and P are two real quaternions, A is a

+ -
real number and H and H are operators as defined in equations
(1) and (2), respectively, then the following identities hold:

1. q=pe H@=H(p) < H(@)=H(p).

2. H(@+p)=H(@+H(p), H(@+p)=H(@)+H(p).
3. H(2a)=AH(@), H(ig)=2H ().

4. H(@p)=H@H (p), H(@p)=H (p)H@).

5. ﬁ(ql){ﬁ(q)r, H(ql){H(q)T, (N,)? %0,

6. ﬁ(q){ﬁ(q)}, H(q){ﬁ(q)]
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7. det[ljl(q)}:(Nq)z, det[H(q)}:(Nq)z.

8. tr{H(q)}:4ao, tr[H(q)}:4ao.
Proof: The proof can be found in [1].

e Theorem (Teorem) 2: The map

Wi (Hyphr) = (Mg, ©,®)
defined as
a, —aa, —fa, -afa,
a a8 —fa, Pa
a o8 g —aa,
8 a4 & 8

is an isomorphism of algebras.

w (@, +a, +a,] +a,k) -

Proof: See [7] for a similar proof.

e Theorem (Teorem) 3: Let

Xy —aX, —=pBX, -—-afXx,

X X — X X .
Q=JA= " 0 : 2 lix, e, 1<i <44,

X, aX, X, —ax,

Xy, =X X X

3 0

Then Q is a differentiable manifold.
Proof: Let us consider the following function:
f:Q->E)
A (A)=(Xg, X, X5, X3),
f is one-to-one and on to function, and since f((D::E;?then f(Q)
is open set. Furthermore, since X;, i=1234are continuously, and then

f,f _1are Continuously functions. {(f,Q)} is a differentiable atlas with

one chart, so Q is a differentiable manifold.

¢ Theorem (Teorem) 4: Under matrix multiplication, g)*zg)—{o} is a
Lie group of dimension 6.

Proof: () under matrix multiplication is a matrix group. Also,(f
is a sub manifold of Q.Furthermore, the group operations

Mult : QY xQ —-Q, (A,A,)>AA,
Inv: Q' 5Q", A>A™
are obviously smooth.
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Let us find the 1left algebra, i.e., the tangent space at the
unit elementary, T,(Q').Let us consider the map(D:Eiﬂ—{O}aQ*, defined by

X, —aX; —pX, —afiX,

X1 Xo _ﬂxs ﬂxz
D(X,,X,,X5,X,) =

X, aX, X, —aX,

X —X X X

1 0

For point p=(10,0,0), ®(p)=e=1, is identity element of Q.

Theorem (Teorem) 5: Consider the map O,

. 4 * .
o 't TE, > TypQ. This map
is one-to-one.

Proof: If we show that (D*Np)zo :>Vp:0 then Theorem is proved.

For everyV eT Eiﬁ,we haveV =a,0/0x, +a,0/0X , +8,0/0X ; +8, 0/ X, , so

Vp [Xl] Vp ['aXZ] Vp ['IBXS] Vp [—aﬂx4]
Vp [XZ] Vp [Xl] Vp -ﬂX4] Vp [ﬂX3]
Vo] Vilax ] Vi[x] o Vi [-ax,]

V, X,
Vp [X4] Vp [-X3] Vp [XZ] Vp [Xl]

D,

o (Vo) =

a -oaa, -fa; -ofa,

_ az al _ﬁ a4 ﬂ as _ [0]
a, aa, a -—oa, '
a, —a, a, a

Then a1=a2=a3=a4=0.80, ®, an injective map. On the other hand,
dimT E;,=dimT, Q" =4, thus, ®. is a linear isomorphism. Since every
linear isomorphism maps any basis of space to another one. So we
determine the basis of space Td)(p)Q*.

It is obviously that TpEiﬁ:Sp{6/8X1,8/6X2,6/6X3,8/6x4}. We find the

image of this basis under the map O..

X, —axX, —pX; -afx, 1000
@ (6 )= o |[X, Xy —=px, pxy; | |01 00
iox, ex,|x, ax, X, —ax, | |0 0 1 0
Xe X X, Xy 0 001
Xy —aX, _ﬂX3 —aﬂx4 0 —aa O 0
o, (ﬁ):i X; Xy =fXy pxg | |10 0 0
Piox,” OXx,|X, ax, X, -ax, 0 0 0 -«
Xy X X X 0 0 1 O
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X, —aX, —pBX; —afX, 0 0 -5 0
o, (i):i X, X1 _:BX4 IBX3 _ 0 0 0 B
PROX," OX,| Xy aXx, X, —aX, 10 0 O
X, —Xj X, X, 0 -1 0 O
X, —aX, —pX; —-ofiX, 0 0 0 -apf
®. (i):i X, X, BX,  PX, _ 00 -p O
Prox,” ox,| X, ax, X, —aX, 0 a O 0
X, —Xs X, X, 1 0 O 0
So we have
1 00 0|0 -« 0(|]0 0O =g 0|0 0O 0O -ap
TeQ*:Sp()lOO,lO 0100 O,B,OO—ﬂ 0
00100 0 0 —||1 0 0 0|0 a O 0
000120 0 1 0||0 -1 0 0|1 0 O 0
e Theorem (Teorem) 6: (De Moivre’s formula) Let matrix
cosé —au,sin@ —pu,sind —apu,sinéd
A u,siné cosd —pu,sing  pu,siné ' @)
u,sin@ au,sinéd cosé —au, sin @
u,sind —u,sind  u,siné cosé
correspond to generalized quaternion (. The n -th power of the

matrix A reads as

cosnd —au,sinnd —pu,sinnd —afu,sinnd

o | Usinng cosnéd —pu,sinngd  pBu,sinng
u,sinng  au,sinné cosné —au, sinnd
u,sinné -u,sinnd  u,sinné cosné@

Proof: The proof is easily followed by induction on n.

+ Ty =

2 2 a \/ﬁ NG
generalized quarternion. The matrix corresponding to this
quaternion is

e Example (Ornek) 1: Let qzl 1(1 1 1 ):Cosfﬂjsinf be a unit

1 e B o

2 2 2 2
I S /]
A N3 2 2N 2
1 Ja 1 Va
WP wF 2
11 1 1
|2Jap 2Jp 2z 2 |
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every power of this matrix with the aid of Theorem 6 is found to
be expressible similarly, for example, 28-this

By
&N
Sy

2 2 2
I T S/ /)

pn_| Na 2 2a 2
B 1 NS 1 Ja
2Jp 2 2 2

1 1 1

N |

1
 2Jap 2B 2a
e Definition (Tanim) 6: (Euler’s formula)let

0 -au, -pu, -opu,
u, 0 _ﬁus /mz

A= ,
u, oau, 0 —au,
u, -u, u, 0
be a real matrix. One immediately finds A2:—|4. We have a

natural generalization of Euler's formula for matrixA;

A0) (A6) (A6)
eA6=I4+A9+( ) +( 9) +( ) +..

! 3! 41

6> 64 0 6
_I4(1—§+E—...)+A(6—§+§—...)

=l,cos0+A.sind
0 —ou, —pu, -apu,
u; 0 _ﬂus ﬂuz
u, au, 0 —au,
u, -u, u, 0
cosé —au,sin@ -pu,sinfd -apu,sind
u,siné cosé —pu,sin@  pu,siné
“|u,sing —augsingd  cosd  —au,sing
ussind -u,sind  u,siné cosé

=1,cos6+ .sin@

Let g=cos@+Usind be a unit generalized quaternion. The matrix
associated with this quaternion q is of the form (3). In a more
general case, we substitute the matrix (3) by

cos(@+2kz) —au,sin(@+2kz) —pu,sin(@+2kr) —apfu,sin(@+2kr)

u, sin(@ + 2k ) cos(0 + 2k ) —pu,sin(@+2kz)  pu,sin(@+2kr)
- u,sin(@+2kz) —au,sin(@+2kr) cos(0 + 2k ) —au, Sin(@ + 2k )

u,sin(@+2kz) —u,sin(0+ 2kr) u, sin(@ + 2k ) cos(6 + 2krx)

where k €Z. The equation X"=A has n roots, and they are as follows
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COS(0+2k7r) —aWSM(0+2k”) —ﬁ%S"K0+§k”) —aﬂ%SM(0+2k”)
. ulsin(o9+2k7r) COS(9+2kﬂ) —ﬁu3Sin(9+2k”) Au, Sin(c9+2k7r)
n_ n n

A . 0+2kr . 0+2kr 0+2kr . 0+2kr

u, sin( ) —au,sin( ) cos( ) —au, sin( )
uaﬁn(6+2kﬂ) —Uzﬁn(0+§kﬁ) ulﬁn(6+2kﬂ) COS(c9+2k7z)

For k=0, the first root is

cos(g) —au, sin(g)
n n

Clusind) cos)
n n

—-pu, sin(g) —aﬁu3sin(€)_
n n

—-pu, sin(g) Su, sin(g)
n n

A]n: il
usin) —ausin®)  cosd)  —ausin)
n n n n
ussin(g) —uzsin(g) ulsin(g) cos(g)
L n n n n"
and for k=1 the second root is
COS(9+27Z) —aulsin(6+2ﬂ) —ﬂUZSin(6+2ﬂ) —aﬁussin(6+2”)
n n
. 0+2n 0+2r . 0+2r1 . 0+2r1
1| ugsin( ) cos( ) —pu,sin( . ) pu,sin( )
Anr =
uzsin(6+2”) —au3sin(9+2ﬂ) cos(6+2ﬂ) —aulsin(9+2”)
u3sin(6+2”) —uzsin(0+2”) ulsin(9+2ﬂ) COS(0+27[)
Similérly, for k=n-1, we obtain the n-th root. i

Some relations between the powers of matrices associated with a

generalized quaternion is sketched in the following Theorem.

Proof:

Theorem (Teorem) 7: Let (¢ be a unit generalized quaternion with

27

the polar form g=cos@+Using. And let m=""cz'_{} and the matrix
0

A correspond to (. Then n=p(modm)is true if and only if A"=AP.

The proof follows easily from the induction on n.

Example (Ornek) 2:
1 1,1

Let 1 1 2z 1.1 1 1 27 be a unit
g=——+=-(—=,—/—=,—+—)=005S—+—=(——=,——=,——).sin—
2 2Ja JE>Jaﬁ 3 B Va JE>Jaﬂ 3
generalized gquarternion. The matrix corresponding to this

quaternion is
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1 o B _Jop]
2 2 2 2
I S/ /]
A 2o 2 2Ja 2
1L e 1 e
2Jp 2B 2 2
11 1 1
|2Jap 2y 2da 2 |

The square roots of the matrix Acan be calculated as follows:

Os(an'+22n'/3) 1sin(2k7z’+227z'/3) fﬂuzsin(Zk”+22”/3) faﬂu3sin(2k”+22”/3)
. ulsin(2k” +227r/3) Cos(2k” +227r/3) —ﬂulsin(2k” +227r/3) B, Sin(2k7r +227r/3)
2 —
A . 2kr+2713 . 2kr+27/3 2kz+2713 . 2kzr+27/3
u, sin(————) au35|n(f) cos(f) —aulsln(f)
. 2kz+2713 . 2kz+2713 . 2kr+2713 2k +2713
U, sin(—————) —Uu,sin(————) u, sin(————) cos(———)
L 2 2 2 |
The first root for k=0 is
1 Na B _Jop
2 2 2 2
L1 B B
A)%— 2Ja 2 2o 2
7|
2B 2B 2 2
11 1 1
12Jap 2y e 2 |

1 N Jf
2 2 2 2
S S SR/ B/
o N 2 2Ja 2
S TN - R 7
28 2B 2 2
1 111
2Jop  2yp a2 |

10
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e Case (Durum) 2: Let a be a positive number and f be a negative
number. In this case, the Theorems 6 holds.

In following Theorem, we show how unit quaternions can be used to
described the rotation in 4-space E%_

e Theorem (Teorem) 8: ILet (Q be a unit generalized quaternion.
+

Matrices generated by operators H and H are quasi-orthogonal
matrices, 1i.e.

0 [ﬁ(qﬂ cH(@)=e,

1 0 0 O
T
ii) - - 0O a 0 O
H H@)=¢c=
[(q)}s(q)aaooﬁo
00 0 ap

e Corollary (Sonug) 1: Let (=coséd+0sind be a unit generalized

+ _
quaternion. Then the generalized Hamilton operators hq and m

represent rotations of X jIlE;r

The angle of rotation (using hq) is easily determined. This is the

angle @ between X and QX
_ S(x(@)
COSw \/N_X\/N_qx
= S(X&a» _5@ _ S(g) =cosd.

_7NX\/N_q N

Therefore that the angle of rotation® is the angle of Q.

e Example (Ornek) 3: Let q:41,+1(;£n4£ﬂ0) be a unit generalized
2 2 o' B
quaternion and ,f>0. The matrix corresponding to this

quaternion is

~a -Jp 0 ]
V2. 0 B
0 V2 af
11
NCA ]

A is a quasi-orthogonal matrix and therefore it represents a
rotation in 4—spaceE;r

° Sl-8l- %

11
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In following, we show how matrices corresponding to generalized
quaternion can be used to described the homothetic motion 4-space E;r

Let us consider the following curve:
a:Icﬁ?—aE;
defined bya(t)=(a,(t).a,t).a,(t).3(t))for everytel.

We suppose that the unit velocity curve af(t) is differentiable
regular curve of orderr.The operator B called the Hamiltonian operator,
corresponding to a(t)is defined by the following matrix;

a () -oa(t) -fal) -afa(t)
at) at) -palt) palt)
at) aat) &) -—cal)
a(t) -a) al) a, (t)

e Definition (Tanim) 9. The l-parameter Hamilton motions of a body

B =H [a(t)]=

inE;7 are generated by transformation

MEiM

Here B::H[aﬂ)]and Y, X and C are nx1l real matrices. Y and X

or equivalently

correspond to the position vectors of the same point P.

e Theorem (Teorem) 9: The Hamilton motion determined by equation
(4) is a homothetic motion inE;T
Proof: We suppose that length of af(t) is not zero, so the matrix
B can be represented as

[a,(t) aa(t) palt) apa(t)]
h h h h
alt) al)  palt) pal)
B_pl N h h h
at) o) at)  caf)
h h h h
at) -at) ad) a(t)
L h h h h

whereh:l cR - R,

t —>h() = a)]|=Jait) +aat(t) + pai(t) + apal(t). -

So, we find ATéA =canddetA =1, thus B is a homothetic matrix and
equation (4) determines a homothetic motion. For detailed information
about the homothetic motions; we refer the reader to [2].

12
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4. CONCLUSION (SONUC)

With the aid of the Hamilton operators, generalized quaternions
have been expressed in terms of 4x4 matrices. In this paper, algebraic
properties and geometric applications of these matrices in generalized
4-space Eiﬁ are studied. Also, it 1is shown that the set of these

matrices with the group operation of matrix multiplication is a Lie
group of 6-dimension and its Lie algebra is found.
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