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A NOTE ON THE GROWTH OF POLYNOMIALS 

 

        ABSTRACT 

        Let z be a complex variable, p  a complex polynomial, and 

let ),( RpM = )(max zp
Rz 

, )1,( pM = )(max
1

zp
z 

. In this work, we investigate 

some new inequalities between ),( RpM and )1,( npM as well as between 

),( RpM n
and )1,( pM  where 2n is a natural number. 

       Keywords: Mathematicle Analysis, Complex Polynomials,     

                 Growth of Polynomials, Maximum Modulus Values,     

                 Inequalities 

 

POLİNOMLARIN BÜYÜTÜLMESİ ÜZERİNE BAZI NOTLAR 

 

       ÖZET 

       z bir kompleks değişken, p bir kompleks polinom ve 2n bir doğal 

sayı olmak üzere, ),( RpM = )(max zp
Rz 

, )1,( pM = )(max
1

zp
z 

 olsun. Bu 

çalışmada, ),( RpM ve )1,( npM  arasında ve ayrıca ),( RpM n
 ve )1,( pM  

arasında yeni eşitsizlikler araştırılmıştır. 

        Anahtar Kelimeler: Matematiksel Analiz, Kompleks Polinomlar 

                           Polinomların Büyütülmesi, Maksimum Modül  

                           Değerler, Eşitsizlikler 
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 1. INTRODUCTION    

      Let C  be the complex field, z  a complex variable, and  

CCp :  an entire function. We set )(max)1,(
1

zppM
z 

  for 

)(max),( zpRpM
Rz 

 , where 1R  (or 1R ) is a reel number.      

Theorem A is proved in 7. 

      Theorem A. If p is a polynomial of degree m  satisfying 0)( zp  

for 1z , then for 1R  

    )1,(
2

1
),( pM

R
RpM

m 
                                      (1) 

      Theorem B.  If p is a polynomial of degree m  which does not 

vanish in the disk 1z , then  for 1R                                                   

     )(min
2

1
)1,(

2

1
),(

1
zp

R
pM

R
RpM

z

mm








 



                     (2) 

For a proof, see 2.      
       Lemma A.   If p is a polynomial of degree m , having no zeros 

in Kz  , 1K , then                    

      )1,(
1

),( pM
K

KR
RpM

m













 ,

21 KR                         (3)              

For a proof, see 3. 
       Theorem C. If p is a polynomial of degree m  which does not 

vanish in the disk Kz   where 1K , then                                                                                            

      )1,(
1

),( pM
K

KR
RpM

m

mm




  for  

2KR                       (4) 

 For a proof, see 1. 
       Theorem D.  If p is a polynomial of degree m , having all its  

zeros in Kz  , 1K , then  for 
2KRK                                                   

      )1,(
1

),( pM
K

KR
RRpM s













                                 (5) 

s  (< m ) is the order of a possible zero of  )(zp  at the origin. 

For a proof, see 9. 
       Lemma B. If p is a polynomial of degree m , having all its  

zeros in Kz  , 1K , then                                                

       )1,(
1

),( pM
K

KR
RpM

m













 , 12  RK                       (6) 

For a proof, see  8.        

        Now let 0  R  , ni 1  2( n , a natural number)  and 

)(zfMaxM i
Rz

fi 
 . Let 




id

j

jii zzzf
1

)()( be a polynomial function where  
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Rz ji  . The following theorems E and F are proved for 0  R   in 4, 

and theorem E is proved for 1R in 6, respectively. 

       Theorem E. Let nddd ,...,, 21  be the degrees of polynomial functions 

nfff ,...,, 21  respectively. Then                                                                                                                         

     
nfffM .... 21

k .
nfff MMM ....

21
                                  (7)   

 where 1)
8

2
(

1

d

dn
Sink


 . 2)

8

2
(

2

d

dn
Sin


… nd

ndn
Sin )

8

2
(


                                        

       Theorem F. Let nddd ,...,, 21  be the degrees of polynomial 

functions nfff ,...,, 21 , respectively, which have the zero point as the 

multiple roots   nrrr ,...,, 21 . Then                                                                                       

     
nfffM .... 21 1k .

nfff MMM ....
21

                                  (8)                                           

  where 11)
(8

2
(

11

1

rd

rdn
Sink







. 22)

)(8

2
(

22

rd

rdn
Sin






… nn rd

nn rdn
Sin




)

(8

2
(


.  

 

        2. RESEARCH SIGNIFICANCE 

        Let CCp :  be a polynomial function with a complex variable 

z. In the unit disc, we define )(max)1,(
1

zppM
z 

  for )(max),( zpRpM
Rz 

 , 

where 1R  (or 1R ) is a reel number. Inequalities between  ),( RpM  

and )1,( pM  are investigated in 1, 2, 3, 7, 8, 9.     

   For naturel number 2n , the function CCpn : is also a 

polynomial function with complex variable z. In this work, we 

investigate inequalities between ),( RpM  and )1,( npM  and also 

),( RpM n
 and )1,( pM , using inequalities between ),( RpM and )1,( pM . 

Given 1, 2, 3, 7, 8, 9 and taking in account inequalities from 4 and 

6.  
        

       3. ANALYTICAL STUDY 

       Our work is based on pure mathematics. Therefore, we deduce 

relations (formulas) and equations (analitical relations) by means of 

theorical methods, which are proof techniques. As usual, these methods 

in terms of hypothesies-conclusions 4. 
 

       4. NEW INEQUALITIES ON THE GROWTH OF POLYNOMIALS  

       Let p a polynomial; 
np is also a polynomial for 2n , a natural 

number. Then some of the inequalities between ),( RpM n
 and )1,( npM can 

be obtained from formulas (1)----(6). Similarly, some of the 

inequalities between ),( RpM n
 and  nRpM ),( can be derived from (7) and 

(8). Inequalities between )1,( npM  and ),( RpM , and between ),( RpM n
 

and )1,( pM  are investigated in the light of the following theorems. 

      Theorem 1. If p is a polynomial of degree m , Kz   and 0)( zp  

for 1K , but all the zeros of )(zp  lie in RzK  , then we have 

for 2n  and  
21 KR   
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   nnmm pM
K

KR

K

RK
RpM

12

)1,(.)
1

.()(),(



                           (9) 

Proof: Consider the polynomials )()(
1





im

j

ijii azczf  and the disc 

D 
2: KzCz   where )1(   RaK ij   )( 2K ni ,...,2,1(  ; 

)1 imj  and Cci  .Now for every Dz  we have                          





im

j

ijii azczf
1

.)( )(.
1

ij

m

j

i azc
i

 


)(. 2

1

RKc
im

j

i  


and hence we find       

)(zf i
im

i KRc ).( 2 ni ,...,2,1(  ). Thus, in turn we get 

        im

ii KRcRfM ).(),( 2   ni ,...,2,1(  ) and               

        nmmm
n

i

n

i

ii KRcRfM


 

 
...2

1 1

21)).((),(                     (10) 

On the other hand, since 

        


n

i

if
1

)0( 


nm

j

nj

m

j

j

m

j

j

n

i

i aaac
11

2

1

1

1

....).(
21

by hypothesis we have  

        


n

i

if
1

)0( nmmm
n

i

i Kc





...

1

21)).((  

 

Then we find by the Maximum Modulus Principle 5 

         ),(
1

RfM
n

i

i


nmmm
n

i

i Kc





...

1

21)).((                        (11)  

We can write (10) and (11)                                                                           

          
n

n

mmm

mmm

n

i

i

n

i

i

RK

K

RfM

RfM















...2

...

1

1

21

21

)(

)(

),(

),(

 ,                       (12) 

from which we have                                                     

           nmmm
n

i

i
K

RK
RfM








...
2

1

21)(),( . ),(
1

RfM
n

i

i


            (13) 

Now insert )()( zpzf i   and mmi    ( ni ,...,2,1 )   into (13) to get                                

              ),(),(
2

RpM
K

RK
RpM n

nm

n








 
                     (14)      

On the other hand, we have from formula (3) in Lemma A for 2n                                              

         )1,(
1

),( n

nm

n pM
K

KR
RpM 












 , 

21 KR             (15)                                                      

Finally, from (14) and (15) we can write                                           

            )1,(.)
1

.()(),(
2

nnmnmn
pM

K

KR

K

RK
RpM




  

which gives us desired (9).                                                                    
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      Theorem 2. If p is a polynomial of degree m  and 0)( zp  for 

1z , but all the zeros of )(zp  are  in Rz 1  , then we have for 

2n                                          

            

n
n

nm
m pM

R
RRpM

1

)1,(
2

1
.)2(),( 
















 
                  (16) 

Proof: We obtain by formulas (1) in Theorem A   

2

1
),(




nm
n R

RpM  )1,( npM .Following the proof style in Theorem 1, we 

obtain   ),(.)2(),( RpMRRpM nnmn
 .     

      From formulas (2) in Theorem B we can state the following:  

      Corollary 1. If p is a polynomial of degree m  and 0)( zp  for 

1z , but all the zeros of )(zp belong to Rz 1 , then we have for 

2n                   

       

n
n

z

nm
n

nm
m zp

R
pM

R
RRpM

1

1
)(min).

2

1
()1,()

2

1
(.)2(),( 







 






.  (17)                                                                                                                                                         

       Theorem 3. If p is a polynomial of degree m  which does not 

vanish in the disk Kz   where 1K , but all the zeros of )(zp are in 

2KzK   then we have for 2n  and  
2KR                                          

          nn
n

nm

nmnm
m pM

K

KR

K

RK
RpM

1

1

2

)1,(.
1

.)(),( 











              (18) 

Proof: We have )1,(.
1

),(

1

n
n

nm

nmnm
n pM

K

KR
RpM 












  from formulas (4) in 

Theorem C where 2n  and 
2KR  . Furthermore, since the hypothesis of 

Theorem 2 are satisfied, we arrive (18) by taking in account formula 

(14).                                      

 

       Corollary 2: If p is a polynomial of degree m  which does not 

vanish in the disk Kz   where 1K , but all the zeros of )(zp  

are in RzK 2
, then we have for 2n                                         

         nn
n

nm

nmnm
m pM

K

KR

K

R
RpM

1

1

2
)1,(.

1
.)

2
(),( 












                  (19) 

Proof: One can see that   ),(.
2

),(
2

RpM
K

R
RpM n

nm

n








  and then it 

suffices to consider formula (1.4) in Theorem C.               

      Corollary 3: If p is a polynomial of degree m  which does not 

vanish in the disk Kz   where 1K , but all the zeros of )(zp  are 

in RzK   ,  then we have  for 2n  and  
2KR                                        
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       nn
n

nm

nmnm
m pM

K

KR

K

R
RpM

1

1

)1,(.
1

.)
2

(),( 











                    (20) 

Proof: It suffices to show    ),(.
2

),( RpM
K

R
RpM n

nm

n








  and consider 

formula (4) in Theorem C.                           . 
 

      Theorem 4. If p is a polynomial of degree m  and all its zeros 

are in 1K , Kz  , then we have for 2n  and 12  RK                                      

         nnmm pM
K

KR

mn
SinRpM

1

)1,(.)
1

.()
8

2
(),(




 

                (21) 

Proof: We can write from formula (6) in Lemma B for 2n                                          

         )1,(
1

),( n

nm

n pM
K

KR
RpM 












 , 12  RK                (22)  

Moreover, replace )()( zpzf i   and md i    ( ni ,...,2,1 ) in formula (7) in 

Theorem E to get 

          n
nm

n RpM
mn

SinRpM ),(.
8

2
),( 











 ( 12  RK )         (23) 

Then we can write from (2.14) and (2.15)                               

           )1,(.)
1

(),(),(.
8

2 nnmnn

nm

pM
K

KR
RpMRpM

mn
Sin












 
,    

which yields formula (21).                                   

 

      Theorem 5. If p is a polynomial of degree m  and all its zeros 

are in Kz  , 1K , then we have for 2n  and 
2KRK                                

           )1,()
1

(.)
8

2
(),(

1

pM
K

KR
R

mn
SinRpM ssm

n
n




 

             (24)  

s (< m)  is the order of a possible zero of )(zp  at origin. 

Proof: Substitute )()( zpzf i   and smrd ii   ( ni ,...,2,1 ) in formula 

(8) in Theorem F to obtain                               

        n
smn

n RpM
smn

SinRpM ),(.
)(8

2
),(

)( 














                  (25)  

On the other hand, we have from formula (5) in Theorem D for 2n                     

          nnnsn
pM

K

KR
RRpM )1,(.)

1
.(),(




                          (26) 

Thus from (25) and (26) we can write                                                         

       .
)(8

2
),(

)( smn

n

smn
SinRpM
















 nnns pM

K

KR
R )1,(.)

1
.(




,  

and this inequalities poduce us formula (24).                  

 

      Theorem 6. If p is a polynomial of degree m , having all its  

zeros in Kz  , 1K , then we have   for  1n   and  12  RK                                         
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         )1,()
1

(),(
1

pM
K

KR
RpM m

n
n




                              (27) 

Proof:  We can write )1,(.
1

),( n

nm

n pM
K

KR
RpM 












  from formula (6) in 

Lemma B. However, by the Maximum Principle, we have )1,( npM  npM )1,( .                                              

 

      5. DISCUSIONS, CONCLUSION AND RECOMMENDATIONS 

      Formulas (1),(2),(3),(4),(5),(6)are found by considering the 

zeros of polynomial p  in some circular regions. Polynomial   

np ( 2n ) does not ocur in any of those formulas. Given polynomial 

np ( 2n ), its degree is nm  whenever the degree of p  is m . Thus, 

similar formulas to (1)-(6) can be obtained between ),( RpM n
 and 

)1,( npM . However, it may not the case ),( RpM n
and )1,( pM  or ),( RpM  

and )1,( npM is in question. Inequalities between then are expressed in 

formulas (9),(16),(17),(18),(19),(20),(21)and(24)by using inequalities 

in 4 and 6. We emphasize on the fact that those inequalities are not 

generalization of inequalities (1)-(6) although Formula (27) is a 

generalization of Formula (6); note that Formula (6) follows from (27) 

for 1n . 

     One may investigate similar inequalities for a hyperbolic region 

or full hyperbolic regions. 
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