N$_2$O AND CH$_4$ FLUXES FROM Acacia mangium PLANTATION SOILS IN RESPONSE TO NITROGEN APPLICATION AND FH LAYER REMOVAL

R. KONDA1*, S. OHTA1 S. ISHIZUKA2 J. HERIYANTO3 A. WICAKSONO3

1 Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho Sakyo-ku, Kyoto, 606-8502, Japan
2 Forestry and Forest Products Research Institute 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
3 PT. Musi Hutan Persada Jl. Raya PT. TEL, Tebat Agung, Rambang Dangku, Muara Enim, Sumatera Selatan, 31172, Indonesia

*e-mail: rkonda@kais.kyoto-u.ac.jp

Abstract: We measured N$_2$O fluxes and CH$_4$ uptake rates following NH$_4$Cl and KNO$_3$ (100kg N ha$^{-1}$) application with and without FH layer during a relatively dry season in an Acacia mangium plantation stand in Sumatra, Indonesia. High N$_2$O fluxes at control (no treatment) with FH (0.46 – 0.53 mg N m$^{-2}$ d$^{-1}$) suggested that A. mangium soils function as a larger source of N$_2$O than natural forest soils. In the relatively dry season, FH layers in the A. mangium plantation were not a direct source of N$_2$O, but appear to contribute to nitrogen cycling and the following N$_2$O production in mineral soils as a supplier of available carbon and nitrogen. Application of NO$_3^-$ fertilizers significantly increased N$_2$O fluxes irrespective of the FH removal treatment, suggesting that increased NO$_3^-$ availability enhanced N$_2$O emissions through the denitrification process and that anaerobic microsites can exist even in the relatively dry soils in the A. mangium plantation. FH uptake rates at control with FH layer ranged between 0.70 – 0.84 mg C m$^{-2}$ d$^{-1}$, which is consistent with other natural tropical forest soils. A. mangium soils supplied with N rich litter do not appear to decrease the function as a sink for atmospheric CH$_4$ at least in a relatively dry season, though NH$_4^+$ addition significantly reduced CH$_4$ uptake rates.

Key words: Acacia mangium, Fast wood plantation, Nitrous oxide, Methane, Denitrification, Nitrogen application

1. INTRODUCTION

Tropical forest soils are an important source of nitrous oxide (N$_2$O), and act as sinks for methane (CH$_4$) (Keller et al., 1986; Potter et al., 1996). The recent rapid increases in the atmospheric concentrations of these major greenhouse gases significantly contribute to global warming (IPCC, 2007). N$_2$O is mainly produced in soils by microbial processes of nitrification under aerobic conditions and denitrification under anaerobic conditions (Davidson et al., 2000). CH$_4$ is produced by methanogens under anaerobic conditions and is consumed by methanotrophs under aerobic conditions of soils (Le Mer and Roger, 2001).

The emission and uptake rates from soils of these greenhouse effect gases are strongly dependent on various environmental conditions that control microbial activities, such as temperature, soil moisture and substrate availability (Firestone and Davidson, 1989; Davidson et al., 2000). Especially, nitrogen availability indicated by the concentrations of available ammonium (NH$_4^+$) and nitrate (NO$_3^-$), which are direct substrates of nitrification and denitrification, influences the N$_2$O emission rates significantly. Many field studies showed that the NH$_4^+$ and NO$_3^-$ fertilization stimulates N$_2$O emissions from agriculture soils (Skiba et al., 1993), grassland (Velthof et al., 1997) and forest (Keller et al., 1988). Moreover, N$_2$O emissions from soils have been shown to be largely influenced by the quality of the plant litter (Erickson et al., 2001). Presence of leguminous and other nitrogen (N)-fixing trees in forests may enhance N$_2$O emission from the soils, because they produce N rich litter through symbiotic N fixation, leading to high soil N availability and fast soil N cycling (Erickson et al., 2001). In the fast-growing leguminous tree plantations in tropical Asia, their soils have been demonstrated to be a significant source of N$_2$O as well (Arai et al., 2008; Konda et al., 2008). Therefore, it is required to elucidate the mechanisms of N$_2$O emissions from the leguminous tree plantation soils in order to develop methods to predict the emissions more accurately and to mitigate the emissions.

Litter layer in forests can function not only as a substrate supplier into the soils but also a direct source of N$_2$O. Some studies indicated that litter layers were the direct N$_2$O emission source (Dong et al., 1998; Tietema et al., 2007). Konda et al. (2008) also suggested the possibility that FH layers accumulated on the A. mangium plantation soils were a direct source of N$_2$O and we suspected that FH layers contributed to their N$_2$O emissions. The effect of high N inputs on CH$_4$ dynamics is still controversial. Many studies have reported that the N fertilization of forest soils had an inhibitory effect on CH$_4$ oxidation rate (Steudler et al., 1989; King and Schnell, 1994), since NH$_4^+$ may compete with CH$_4$ oxidation enzymes (Steudler et al., 1989), however, the inhibitory effect was not observed by Castro et al. (1993). Leguminous tree plantations supply nitrogen in the form of N-rich litter to the soil, and may alter the soil function as a sink for atmospheric CH$_4$.

In this study, we conducted the field experiments combining N application and FH layer removal treatments (1) to evaluate the effect of the increased nitrogen availability on N$_2$O and CH$_4$ emissions, (2) to estimate involved mechanisms controlling N$_2$O emissions and (3) to quantify the contribution of FH layer to the N$_2$O and CH$_4$ emissions in an A. mangium plantation.
2. MATERIAL AND METHODS

2.1. Area Description

The field experiment was conducted in August 2005 at an 8-year-old A. mangium plantation (3°52'40"S, 103°58'40"E) in South Sumatra, Indonesia. The experiment site locates within the large scale (about 1930 km²) plantation of A. mangium. In the stand, trees were planted with 2 × 4-m intervals in 1997, and 85 g of phosphate fertilizer (SP-36) and 35 g of urea per tree were applied once on planting. The mean annual temperature and precipitation from 1991 to 2002 were 27.3°C and 2,750 mm, respectively (Hardjono et al., 2005). The period from June to September is relatively dry (average monthly precipitation < 150 mm (Hardjono et al., 2005)), and this study was conducted during the relatively dry season. The topography is undulating and the soils are Acrisols (ISSS Working Group RB, 1998) derived from Tertiary sedimentary rock.

2.2. Experimental design

Fifteen plots for replication were set up about 20m apart from each other within a 60m × 100m area including different topographical elements. We established 9 plots at the upper plateau and 6 plots at the slope and valley bottom. At each plot, 8 square (0.8m × 0.8m) subplots were established >0.1m apart from each other and a 4 × 2 factorial design was imposed with N application and FH removal as factors. At a half of the subplots, the FH layer was remained (hereafter, +FH) and at the other half subplots, the FH layer was entirely removed in the subplot (hereafter, -FH). At +FH subplots, we prepared the control (control +FH), application of distilled water (water +FH), ammonium chloride (NH₄Cl) (NH₄⁺ +FH) and potassium nitrate (KNO₃) (NO₃⁻ + FH), respectively. Also, at -FH subplots, we prepared the control (control -FH), application of distilled water (water -FH), NH₄Cl (NH₄⁺ -FH) and KNO₃ (NO₃⁻ -FH), respectively.

N application treatment was conducted on 9 August (0 day) and FH removal treatment on 10 August (+1day). Before N application, L layer was removed temporarily from each subplot except for control subplots in order to apply N onto the FH layer. Two L of distilled water or 100 kg N ha⁻¹ of NH₄Cl or KNO₃ dissolved in 2 L of distilled water were applied evenly on top of the FH layer with a watering can at the water, NH₄⁺ and NO₃⁻ subplots, respectively. Two L of water was equivalent to 3 mm of rain. After the application, we returned the L layer evenly to each subplot treated. One day after the application (+1day), we removed FH layers from all subplots for the FH removal experiments no later than 1 hour before gas sampling. We removed L layer temporarily before the FH removal treatment and returned them evenly after the FH removal in order to minimize soil drying.

2.3. Gas and soil sampling and analyses

We measured N₂O and CH₄ fluxes using the static chamber method (Ishizuka et al., 2002; Konda et al., 2008) 1 day before the N application (-1day) at control subplots and 1 day and 3 day after the application (+1day and +3day, respectively) at all subplots. Polypropylene chambers (22.2 cm upper diameter, 18.7 cm lower diameter, and 12.0 cm high) were inserted into the soil to a depth of 2 cm by 1 day before gas sampling. We inserted an extra chamber adjacent to each control +FH subplot and removed FH layers from the inside of chambers on -1day to determine gas fluxes from control -FH subplots on -1day. We took gas samples 0, 15 and 30 min after covering a chamber with a lid. The gas concentration was determined by two gas chromatographs (GC-14B-ECD and GC-14B-FID, Shimadzu Co. Ltd., Kyoto, Japan). We calculated the gas flux by linear regression because the increase in gas concentration in the chamber during this sampling period appeared linear. We calculated CH₄ fluxes as uptake rates. The methods of gas sampling and analysis are detailed in Konda et al. (2008). Total N₂O and CH₄ emissions from 0day to +3day were calculated by summing the daily fluxes within each subplot, assuming the fluxes on 0day to be the same as those on -1day and the flux on +2day by a linear change in emissions between +1day and +3day.

Litter and soil samples were collected after gas sampling on -1day, +1day and +3day. We collected FH layer samples from 0.059 m² area at each control +FH subplot on -1day (n=15), and from 0.030 m² area at every + FH subplot on +1day and +3day (n=60 everyday). We took top 10 cm mineral soil at each control +FH subplot (n=15) using two 200-ml (5.1 cm in diameter, 10 cm in height) sampling cylinders on -1day, and at every subplot using one sampling cylinder on +1day and +3day (n=120 everyday). One cylinder soil sample (200 ml) +1day and +3day in addition to another cylinder soil sample of -1day were homogenized and stored in a refrigerator at 4°C. Gravimetric water content of FH layer and soil samples were determined after drying subsamples at 105 °C for 24 h. We calculated water-filled pore space (WFPS) of soil using gravimetric moisture, bulk density and particle density (2.58 Mg m⁻³) determined by a pycnometer. Inorganic ammonium (NH₄-N) and nitrate (NO₃-N) were extracted with 10-fold 2M KCl for 7 g and 5 g of FH layer and soil samples by shaking for 1 h, respectively. The filtrate was stored in a freezer, and determined for NH₄-N and NO₃-N concentrations using a flow-injection analyzer (AQUA LAB Co., Ltd., Tokyo, Japan).

3. RESULTS AND DISCUSSION

FH removal treatment had no significant effect on soil properties at control and every application subplot. Water content of FH layers increased significantly about 20-30% after water and NO₃⁻
application on +1day, while WFPS of soils did not change after every application with and without FH layer (Table 1). NH$_4^+$-N and NO$_3^-$-N contents in the FH layers and soils increased significantly after NH$_4^+$ and NO$_3^-$ applications, respectively (Table 1).

Lowercase superscript letters represent significant differences in the FH layer and soil properties among 4 subplots on each day at P value <0.05 level. Water content of FH layer and soil was expressed by gravimetric water content and WFPS, respectively.

Increase of NH$_4^+$-N contents after NH$_4^+$ application at +FH subplots was 1.45 and 4.26 g N m$^{-2}$ in FH layer and soil, respectively (Table 1). NH$_4^+$ contents in the FH layers and soils increased significantly after NH$_4^+$ and NO$_3^-$-N applications, respectively (Table 1).

Lowercase superscript letters represent significant differences in the FH layer and soil properties among 4 subplots on each day at P value <0.05 level. Water content of FH layer and soil was expressed by gravimetric water content and WFPS, respectively.

Increase of NH$_4^+$-N contents after NH$_4^+$ and NO$_3^-$-N applications, respectively (Table 1). NH$_4^+$+ and NO$_3^-$-N contents in the FH layer and soil were lost by 1 day after the applications.

NH$_4^+$ addition significantly reduced CH$_4$ uptake rates on +3 day in both +FH and -FH subplots (ANOVA, P<0.05), though the reduction effect was not consistent on + 1day (Fig. 1). Inhibition of CH$_4$ uptake by NH$_4^+$ application was consistent with many previous studies (Steudler et al., 1989; King and Schnell, 1994). A. mangium trees supply N-rich litter to the overall soil surface. Hence, we suspected that high NH$_4^+$ supply to the A. mangium soils through N-rich litter decomposition could weaken the soil CH$_4$ sink compared to other tropical forest soil. However, CH$_4$ uptake rates at our control subplots, 0.70 – 0.84 mg C m$^{-2}$ d$^{-1}$, were comparable to 0.70 (±0.35) mg C m$^{-2}$ d$^{-1}$ in the natural forest soils in the adjacent province on Sumatra during the relatively dry season (Ishizuka et al., 2005) and 0.63 – 1.22 mg C m$^{-2}$ d$^{-1}$ in the tropical rain forest soils in Australia (Kiese et al., 2003). Therefore, A. mangium plantations do not appear to decrease the function as a sink for atmospheric CH$_4$ in a relatively dry season.

FH layer removal did not change N$_2$O fluxes at control subplots significantly. This result indicated that FH layers in A. mangium plantation soils were not a direct source of N$_2$O at least in the drier season, or we could not detect inherently very low N$_2$O emissions from FH layers because of large spatial variability of the fluxes. This result contrasts with previous studies (Dong et al., 1998; Tietema et al., 2007), indicating that litter layers produced N$_2$O. On the other hand, at 10 NO$_3^-$ subplots out of 15, 3 days’ total N$_2$O emissions after NO$_3^-$ application were lower in -FH subplots than in +FH subplots (P = 0.082, paired t-test). This result indicates that NO$_3^-$ application possibly promoted denitrification and resulting N$_2$O emissions in the FH layers. Thus we consider that FH layers of A. mangim plantation may have potential for denitrification, though the reactions to the NO$_3^-$ application were not consistent among 15 sites. CH$_4$ uptake was not observed in FH layers and suggested that it was mainly related to the mineral soil rather than in the surface litter layer (Tang et al., 2006).

Table 1. Mean (SD) of water content, NH$_4^+$-N and NO$_3^-$-N contents of FH layer and soil at each subplot with and without FH removal before and after the treatments.

<table>
<thead>
<tr>
<th>Subplot</th>
<th>water content / WFPS (%)</th>
<th>NH$_4^+$-N (g m$^{-2}$)</th>
<th>NO$_3^-$-N (g m$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FH layer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+FH</td>
<td>-</td>
<td>+1day</td>
<td>+3day</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>169 b</td>
<td>123 b</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>152 b</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>NH$_4^+$</td>
<td>151 b</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>NO$_3^-$</td>
<td>164 b</td>
<td>129</td>
</tr>
<tr>
<td>Soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+FH</td>
<td>-</td>
<td>+1day</td>
<td>+3day</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>56.1</td>
<td>57.4</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>61.1</td>
<td>58.9 ab</td>
</tr>
<tr>
<td></td>
<td>NH$_4^+$</td>
<td>59.3</td>
<td>60.8 b</td>
</tr>
<tr>
<td></td>
<td>NO$_3^-$</td>
<td>58.7</td>
<td>59.2 b</td>
</tr>
<tr>
<td>-FH</td>
<td>-</td>
<td>+1day</td>
<td>+3day</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>58.0</td>
<td>56.3</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>58.0</td>
<td>59.6</td>
</tr>
<tr>
<td></td>
<td>NH$_4^+$</td>
<td>59.6</td>
<td>58.5</td>
</tr>
<tr>
<td></td>
<td>NO$_3^-$</td>
<td>59.2</td>
<td>58.4</td>
</tr>
</tbody>
</table>
N$_2$O and CH$_4$ fluxes from acacia mangium plantation soils in response to nitrogen application and FH layer removal

4. CONCLUSION

FH layers in *A. mangium* plantation were not a direct source of N$_2$O at least in the drier season, but appear to contribute to nitrogen cycling and following N$_2$O emissions in the soils as a supplier of available carbon and nitrogen into the soils. Because NO$_3^-$ application to the soils significantly increase N$_2$O fluxes, increased NO$_3^-$ availability could enhance denitrification contributing to N$_2$O emissions in *A. mangium* plantation soils. Since leguminous tree plantations supply N rich leaf litter to the soil surface, high nitrogen input through litter decomposition might magnify the variation of N$_2$O fluxes. Whereas NH$_4^+$ addition significantly reduced CH$_4$ uptake rates, the contribution of N rich litter of *A. mangium* do not appear to decrease the function as a sink for atmospheric CH$_4$ at least in a relatively dry season.

5. ACKNOWLEDGEMENT

We thank Mr. Shigeru Shimoda and Ms. Maya Liony Lioe for their helpful cooperation, and all staff members who assisted with fieldwork at the MHP Company. We also thank Dr. Mamoru Kanzaki for valuable suggestions, and Mr. Takayuki Kaneko for setting of the research plot. This study was supported financially by the Ministry of Education, Culture, Sports, Science and Technology, Japan (number 19255011).

6. REFERENCES

Case of PT. MUSI HUTAN PERSADA – Carbon Fixing Forest Management Project (FORDA & JICA), Bogor, Indonesia, pp. 25

