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Abstract 

 

In this study, some estimations of convolution type operators defined with the help of 

Steklov operator in weighted Lorentz space 𝐿𝜔
𝑝,𝑞(𝕋) are obtained. Also, some basic 

properties of convolution type operators in these spaces are investigated. 

 

Keywords: Convolution, weighted lorentz spaces, fourier series, steklov means, 

approximation. 

 

 

Ağırlıklı lorentz uzaylarında steklov ortalaması yardımıyla 

konvolüsyonlar üzerine bir çalışma 
 

 

Öz 

 

Bu çalışmada, ağırlıklı Lorentz uzaylarında Steklov operatörü yardımıyla tanımlanan 

konvolüsyon tipli operatörlerin bazı değerlendirmeleri elde edildi. Ayrıca, bu 

uzaylarda, konvolüsyon tipli operatörlerin bazı temel özellikleri incelendi. 

 

Anahtar kelimeler: Konvolüsyon, ağırlıklı lorentz uzayları, fourier serisi, steklov 

ortalaması, yaklaşım. 

 

1.  Introduction 

 

Lorentz space was firstly introduced by G. G. Lorentz in [1]. By  means of the weight 

functions satisfying Muckenhoupt condition, the weighted Lorentz spaces were defined 

in [2,3]. We start with the definition and some properties of the weighted Lorentz space. 

As a first motivation for this, we define the weight function. 
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Let 𝕋: = [− 𝜋, 𝜋] and the function  𝜔: 𝕋 → [0, ∞] be a measurable and nonnegative 

function. If the preimage set 𝜔−1({0, ∞}) has the Lebesgue measure zero then we say 

that 𝜔 is called a weight function. If 𝜂 is a measurable set, then we write 

𝜔(𝜂) = ∫ 𝜔(𝑥)𝑑𝑥.

𝜂

 

 

(1) 

The decreasing rearrangement function 𝑓𝜔
∗(𝜏) of 𝑓: 𝕋 → ℝ with respect to the Borel 

measure (1) is defined as 

𝑓𝜔
∗(𝜏) = inf{𝛼 ≥ 0 ∶  𝜔(𝑥 ∈ 𝕋 ∶ |𝑓(𝑥) > 𝛼|) ≤ 𝜏}. 

The average function 𝑓∗∗(𝜏) is defined as follow 

𝑓∗∗(𝜏) =
1

𝜏
∫ 𝑓∗(𝜗)𝑑𝜗

𝜏

0

. 

Let 𝑓: 𝕋 → ℝ be a measurable function. Assume that 1 < 𝑝, 𝑞 < ∞. The weighted 

Lorentz space 𝐿𝜔
𝑝,𝑞(𝕋) consists of measurable functions defined [2, p. 219], [3, p. 20] as 

the set of all measurable functions 𝑓 for which 

‖𝑓‖𝑝𝑞,𝜔 = (∫(𝑓∗∗(𝜏))
𝑞

𝜏
𝑞
𝑝

𝕋

𝑑𝜏

𝜏
)

1
𝑞

< ∞. 

The weighted Lorentz space 𝐿𝜔
𝑝,𝑞(𝕋) is an extension of weighted Lebesgue space 𝐿𝜔

𝑝 (𝕋) 

[3, p. 20] since 𝐿𝜔
𝑝,𝑝(𝕋) = 𝐿𝜔

𝑝 (𝕋). In this paper, we will use 𝐿𝜔
𝑝,𝑞

 instead of 𝐿𝜔
𝑝,𝑞(𝕋). 

 

The weights 𝜔 belongs to the Muckenhoupt class 𝐴𝑝(𝕋) [4] which is defined by the 

condition 

𝑠𝑢𝑝
1

|𝐽|
∫ 𝜔(𝑥)𝑑𝑥

𝐽
(

1

|𝐽|
∫ 𝜔1−𝑝′

(𝑥)𝑑𝑥
𝐽

)
𝑝−1

< ∞, 𝑝′ =
𝑝

𝑝−1
   

where 𝐽 is any subintervals on [0,2𝜋] and |𝐽| represents the lenght of 𝐽. 

For 𝑓 ∈ 𝐿1, the Hardy Littlewood maximal function is defined as 

𝑀(𝑥; 𝑓) ≔ sup
𝑥∈𝐼

1

|𝐼|
∫ 𝑓(𝜏)

𝐼

𝑑𝜏,    𝑥 ∈ [0,2𝜋] 

where the supremum is taken over all subintervals 𝐼 of  [0,2𝜋] and |𝐼| represents the 

lenght of 𝐼. [5, p. 80]. 

When 𝜔 ∈ 𝐴𝑝(𝕋), 1 < 𝑝, 𝑞 < ∞, the Hardy Littlewood maximal function of 𝑓 ∈

𝐿𝜔
𝑝,𝑞(𝕋) is bounded in 𝐿𝜔

𝑝,𝑞(𝕋) [6]. 

Let 𝑓, 𝑔 ∈ 𝐿1. Then the convolution type operator is defined as 

(𝑓 ∗ 𝑔)(𝑥; ℎ) ≔ ∫ 𝜎ℎ𝑓(𝑥, 𝑢)𝑔(𝑢)𝑑𝑢

2𝜋

0

 

 
(2) 

where 

𝜎ℎ𝑓(𝑥, 𝑢) ≔
1

ℎ
∫ 𝑓(𝑥 + 𝑢𝑡)

ℎ

0

𝑑𝑡, 0 < ℎ < 𝜋,    𝑥 ∈ [0,2𝜋], −∞ < 𝑢 < ∞ 

is the Steklov means constructed by means of 𝑓. 

The basic properties of this type of convolution operator used in the structure of the 

approximation polynomials and modulus of smoothness were investigated in variable 

exponent Lebesgue space by Israfilov and Yirtici in [7] and  weighted Lorentz spaces in 
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[6,8-11]. In addition, properties of convolution type transforms were also examined in 

[12-15]. The properties of above type convolution may be established and investigated 

in weighted Lorentz spaces. In this study, we investigate the properties of the 

convolution type operators, and the approximation identities in weighted Lorentz 

spaces. Further information about this convolution can be found in [16]. 

 

 

2.  Main results 

 

We have the following two relations taking into account the definition given by (2) for 

∀ 𝐾, 𝐿, 𝑀 ∈ 𝐿𝜔
𝑝,𝑞

 and for ∀𝛼 ∈ ℝ. 

• ((𝛼𝐾) ∗ 𝐿)(𝑥, ℎ) = 𝛼(𝐾 ∗ 𝐿)(𝑥, ℎ), 

• ((𝐾 ∓ 𝐿) ∗ 𝑀)(𝑥, ℎ) = (𝐾 ∗ 𝑀)(𝑥, ℎ) ∓ (𝐿 ∗ 𝑀)(𝑥, ℎ). 

 

Note: We note that this convolution type operator defined in terms of Steklov operator 

is not commutative. Example: Let 𝑎, 𝑏 ∈ ℝ, 𝐾 be a constant function and 𝐿 be a linear 

function (𝐾(𝑥) = 𝑎 and 𝐿(𝑥) = 𝑎𝑥 + 𝑏). Then, we get 

(𝐾 ∗ 𝐿)(𝑥, ℎ)  ≔  ∫ (
1

ℎ
 ∫ 𝑓(𝑥 + 𝑡𝑢)𝑑𝑡

ℎ

0

) 𝑔(𝑢)𝑑𝑢

2𝜋

0

 

= ∫ (
1

ℎ
∫ 𝑎𝑑𝑡

ℎ

0

) (𝑎𝑢 + 𝑏)𝑑𝑢

2𝜋

0

 

= ∫ 𝑎(𝑎𝑢 + 𝑏)𝑑𝑢

2𝜋

0

 

= 2𝑎𝜋(𝑎𝜋 + 𝑏). 
At the same time, 

(𝐿 ∗ 𝐾)(𝑥, ℎ)  ≔  ∫ (
1

ℎ
∫ 𝑔(𝑥 + 𝑡𝑢)𝑑𝑡

ℎ

0

) 𝑓(𝑢)𝑑𝑢

2𝜋

0

 

= ∫ (
1

ℎ
∫(𝑎(𝑥 + 𝑡𝑢) + 𝑏)𝑑𝑡

ℎ

0

) 𝑎𝑑𝑢

2𝜋

0

 

= ∫ (𝑎 (𝑥 +
𝑢ℎ

2
) + 𝑏) 𝑎𝑑𝑢

2𝜋

0

 

= 𝑎2𝜋 (𝑎𝑥 + 𝑏 +
𝑎ℎ𝜋

2
). 

We shall use following auxiliary result for proving the our main theorems. 

 

Theorem 1 [10] Let 𝜔 ∈ 𝐴𝑝(𝕋), 1 < 𝑝, 𝑞 < ∞ and 𝜉 be a measurable function of two 

variables. Then 

‖∫ ξ(𝑥,∙)𝑑𝑥

𝕋

‖

𝑝𝑞,𝜔

≤ 𝑐 ∫‖ξ(𝑥,∙)‖𝑝𝑞,𝜔𝑑𝑥

𝕋

, 𝑐 is a positive constant. 
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Our main results are followings. 

 

Theorem 2  Let 𝜔 ∈ 𝐴𝑝(𝕋), 1 < 𝑝, 𝑞 < ∞, 𝑓 ∈ 𝐿𝜔
𝑝,𝑞(𝕋) and 𝑔 ∈ 𝐿1. Then, there is a 

positive constant c such that 
‖𝑓 ∗ 𝑔‖𝑝𝑞,𝜔 ≤ 𝑐‖𝑓‖𝑝𝑞,𝜔‖𝑔‖𝐿1. 

 

Theorem 3 Let 𝜔 ∈ 𝐴𝑝(𝕋), 1 < 𝑝, 𝑞 < ∞, 𝑓 ∈ 𝐿𝜔
𝑝,𝑞(𝕋) and 𝑔 ∈ 𝐿1. Then the 

convolution type transform 𝑓 ∗ 𝑔 can be approached in 𝐿𝜔
𝑝,𝑞(𝕋) by the finite linear 

combinations of means 𝑓, that is, for ∀ 𝜖 > 0, there are the sets of numbers {𝜆𝑘}1
𝑛 ⊂ ℝ  

and {𝑢𝑘}1
𝑛 ⊂ [0,2𝜋]  such that 

‖(𝑓 ∗ 𝑔)(∙, ℎ) − ∑ 𝜆𝑘𝜎ℎ𝑓(∙, 𝑢𝑘)

𝑛

𝑘=1

‖

𝑝𝑞,𝜔

< 𝜖. 

 

Now we consider the identities of convergence in weighted Lorentz space 𝐿𝜔
𝑝,𝑞(𝕋). By 

the  identity of convergence we understand a sequence {𝐾𝑛}𝑛∈ℕ ∈ 𝐿1 satisfying the 

following conditions: 

a. sup
𝑛

‖𝐾𝑛‖𝐿1 < ∞ ; 

b. lim
𝑛→∞

1

2𝜋
∫ 𝐾𝑛(𝑥)𝑑𝑥

𝜋

−𝜋
= 1; 

c. lim
𝑛→∞

1

2𝜋
∫ |𝐾𝑛(𝑥)|𝑑𝑥

𝛿≤|𝑥|≤𝜋
= 0, ∀𝛿 ∈ (0, 𝜋). 

Under given conditions the following theorem is true. 

 

Theorem 4 Let 𝜔 ∈ 𝐴𝑝(𝕋), {𝐾𝑛}𝑛∈ℕ be an identity of convergence and 1 < 𝑝, 𝑞 < ∞. 

 Then for every  𝑓 ∈ 𝐿𝜔
𝑝,𝑞(𝕋), the relation 

lim
𝑛→∞

‖
𝑓 ∗ 𝐾𝑛

2𝜋
− 𝑓‖

𝑝𝑞,𝜔
= 0 

holds. 

 

 

3.  Proof of main results 

 

Proof of Theorem 2 Let 𝑓 ∈ 𝐿𝜔
𝑝,𝑞(𝕋). Using Theorem 1 and the boundedness of Hardy 

Littlewood maximal function we get 

‖(𝑓 ∗ 𝑔)‖𝑝𝑞,𝜔 = ‖∫ 𝜎ℎ𝑓(∙, 𝑢)𝑔(𝑢)𝑑𝑢

2𝜋

0

‖

𝑝𝑞,𝜔

 

≤ 𝑐 ∫ ‖𝜎ℎ𝑓(∙, 𝑢)‖𝑝𝑞,𝜔‖𝑔(𝑢)‖𝑝𝑞,𝜔𝑑𝑢

2𝜋

0

 

≤ 𝑐‖𝑓‖𝑝𝑞,𝜔‖𝑔‖𝐿1 . 

 

∎ 

 

Proof of Theorem 3 Let 𝑆2𝜋 be the set of simple functions defined on [0,2𝜋]. Since 𝑆2𝜋 

is dense subset of 𝐿1, it is sufficient to prove the Theorem 3 in the event of 𝑔 ∈ 𝑆2𝜋. 

Every function 𝑔 ∈ 𝑆2𝜋 can be expressed as a linear conjugation of the characteristic 
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function of subintervals on [0,2𝜋]. Therefore it is sufficient to proof the Theorem 3 in 

the event of 

𝑔(𝑢) ≔  𝜒ς(𝑢) ≔ {
1,   𝑢 ∈ ς
 0,   𝑢 ∈ ς

 , 

where ς: [𝑎, 𝑏], 0 < 𝑎 < 𝑏 < 2𝜋, is a random interval. 

For an arbitrary number 𝛿 > 0, we divide ς into a finite subintervals 𝐼𝑘 with length 
|𝐼𝑘| < 𝛿 and satisfying the conditions 𝐼𝑖 ∩ 𝐼𝑗 = ∅, 𝑖 ≠ 𝑗 and ς =∪𝑘 𝐼𝑘. Then 

(𝑓 ∗ 𝑔)(𝑥, ℎ)  ≔  ∫ 𝜎ℎ𝑓(𝑥, 𝑢)𝑔(𝑢)𝑑𝑢

2𝜋

0

 

= ∫ 𝜎ℎ𝑓(𝑥, 𝑢)𝜒ς(𝑢)𝑑𝑢

2𝜋

0

 

= ∫ 𝜎ℎ𝑓(𝑥, 𝑢)𝑑𝑢

2𝜋

0

 

= ∑ ∫ (𝜎ℎ𝑓)(𝑥, 𝑢)𝑑𝑢
𝐼𝑘

.

𝑘

 

Taking 𝑢𝑘 ∈ 𝐼𝑘 we have 

(𝑓 ∗ 𝑔)(𝑥, ℎ) − ∑|𝐼𝑘|(𝜎ℎ𝑓)(𝑥, 𝑢𝑘)

𝑘

 

= ∑ ∫ (𝜎ℎ𝑓)(𝑥, 𝑢)𝑑𝑢 
𝐼𝑘𝑘

− ∑ ∫ (𝜎ℎ𝑓)(𝑥, 𝑢𝑘)𝑑𝑢 
𝐼𝑘𝑘

 

= ∑ ∫ [(𝜎ℎ𝑓)(𝑥, 𝑢) − (𝜎ℎ𝑓)(𝑥, 𝑢𝑘)]𝑑𝑢 
𝐼𝑘

.

𝑘

 

Considering the triangle property in 𝐿𝜔
𝑝,𝑞(𝕋) norm and Theorem 1 together, we have 

‖(𝑓 ∗ 𝑔)(𝑥, ℎ) − ∑|𝐼𝑘|(𝜎ℎ𝑓)(𝑥, 𝑢𝑘)

𝑘

‖

𝑝𝑞,𝜔

 

= ‖∑ ∫ [(𝜎ℎ𝑓)(𝑥, 𝑢) − (𝜎ℎ𝑓)(𝑥, 𝑢𝑘)]𝑑𝑢
𝐼𝑘𝑘

‖

𝑝𝑞,𝜔

 

≤ 𝑐 ∑ ∫ ‖[(𝜎ℎ𝑓)(𝑥, 𝑢) − (𝜎ℎ𝑓)(𝑥, 𝑢𝑘)]‖𝑝𝑞,𝜔𝑑𝑢
𝐼𝑘𝑘

. 
 

(3) 

By the continuity of 𝜎ℎ𝑓, for ∀ 𝜖 > 0 there is a 𝛿 > 0 such that for every finite 

subintervals 𝐼𝑘 ⊂ ς such that |𝐼𝑘| < 𝛿 and 𝑢 ∈ 𝐼𝑘 the inequality 

‖[(𝜎ℎ𝑓)(𝑥, 𝑢) − (𝜎ℎ𝑓)(𝑥, 𝑢𝑘)]‖𝑝𝑞,𝜔 <
𝜖

2𝜋𝑐
  (4) 

holds. Hence by (3) and (4) we get 

‖(𝑓 ∗ 𝑔)(𝑥, ℎ) − ∑|𝐼𝑘|(𝜎ℎ𝑓)(𝑥, 𝑢𝑘)

𝑘

‖

𝑝𝑞,𝜔

≤ 𝑐 ∑

𝑘

∫ 𝜖𝑑𝑢

𝐼𝑘

= 𝑐 ∑|𝐼𝑘|

𝑘

𝜖

2𝜋𝑐
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= 𝑐 ∑|ς|

𝑘

𝜖

2𝜋𝑐
≤ 𝜖, 

where |ς| is the Lebesgue measure of ς. 

 

∎ 

 

Proof of Theorem 4 Let 𝑓 be a continuous function on [−𝜋, 𝜋], so we write 𝑓 ∈
𝐶([−𝜋, 𝜋]). Using the triangle inequality we get 

‖
𝑓 ∗ 𝐾𝑛

2𝜋
− 𝑓‖

𝑝𝑞,𝜔
≤ ‖

𝑓 ∗ 𝐾𝑛

2𝜋
−

1

2𝜋
∫ 𝑓(∙)𝐾𝑛(𝑢)𝑑𝑢

2𝜋

0

‖

𝑝𝑞,𝜔

 

+ ‖
1

2𝜋
∫ 𝑓(∙)𝐾𝑛(𝑢)𝑑𝑢

2𝜋

0

− 𝑓‖

𝑝𝑞,𝜔

. 

 

(5) 

By rearranging the right side of (5), we get 

|
𝑓 ∗ 𝐾𝑛

2𝜋
−

1

2𝜋
∫ 𝑓(𝑥)𝐾𝑛(𝑢)𝑑𝑢

2𝜋

0

| 

= |
1

2𝜋
∫ (

1

ℎ
∫ 𝑓(𝑥 + 𝑢𝑡)𝑑𝑡

ℎ

0

) 𝐾𝑛(𝑢)𝑑𝑢

2𝜋

0

−
1

2𝜋
∫ 𝑓(𝑥)𝐾𝑛(𝑢)𝑑𝑢

2𝜋

0

| 

= |
1

2𝜋
∫ (

1

ℎ
∫[𝑓(𝑥 + 𝑢𝑡) − 𝑓(𝑥)]𝑑𝑡

ℎ

0

) 𝐾𝑛(𝑢)𝑑𝑢

2𝜋

0

| 

≤
1

2𝜋
∫ (

1

ℎ
∫[𝑓(𝑥 + 𝑢𝑡) − 𝑓(𝑥)]𝑑𝑡

ℎ

0

) |𝐾𝑛(𝑢)|𝑑𝑢

2𝜋

0

. 

Let 𝜖 > 0. Due to 0 ≤ 𝑡 ≤ ℎ, by the continuity of 𝑓 for a given 𝜖 there is a 𝛿 > 0 such 

that for ℎ < 𝛿, the inequality |𝑓(𝑥 + 𝑢𝑡) − 𝑓(𝑥)| < 𝜖 holds. Therefore, considering (𝑎) 

we get 

|
𝑓 ∗ 𝐾𝑛

2𝜋
−

1

2𝜋
∫ 𝑓(𝑥)𝐾𝑛(𝑢)𝑑𝑢

2𝜋

0

| 

≤ 𝜖
1

2𝜋
∫ |𝐾𝑛(𝑢)|𝑑𝑢

2𝜋

0

≤ 𝑐𝜖. 

 
(6) 

Also, considering (𝑏) we get 

lim
𝑛→∞

1

2𝜋
∫ 𝑓(𝑥)𝐾𝑛(𝑢)𝑑𝑢

2𝜋

0

= 𝑓(𝑥),  𝑥 ∈ [0,2𝜋] 

and therefore for a given 𝜖 > 0 there is a 𝑛0 ∈ ℕ such that for every 𝑛 ≥ 𝑛0 

‖
1

2𝜋
∫ 𝑓(∙)𝐾𝑛(𝑢)𝑑𝑢

2𝜋

0

− 𝑓‖

𝑝𝑞,𝜔

≤ 𝜖. 

 

(7) 

Using (6) and (7) in (5) we have 
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‖
𝑓 ∗ 𝐾𝑛

2𝜋
− 𝑓‖

𝑝𝑞,𝜔
< 𝑐𝜖. 

 (8) 

Let 1 < 𝑝, 𝑞 < ∞, 𝑓 ∈ 𝐿𝜔
𝑝,𝑞(𝕋). Since 𝐶([−𝜋, 𝜋]) is dense in 𝐿𝜔

𝑝,𝑞
 [1]. For every 𝜖 > 0 

there is a function 𝑔 ∈ 𝐶([−𝜋, 𝜋]) such that 
‖𝑓 − 𝑔‖𝑝𝑞,𝜔 ≤ 𝜖.  (9) 

If we consider (𝑎) and Theorem 1 together, we get 

‖
𝑓 ∗ 𝐾𝑛

2𝜋
−

𝑔 ∗ 𝐾𝑛

2𝜋
‖

𝑝𝑞,𝜔
= ‖

(𝑓 − 𝑔) ∗ 𝐾𝑛

2𝜋
‖

𝑝𝑞,𝜔

 

≤
𝑐

2𝜋
‖(𝑓 − 𝑔)‖𝑝𝑞,𝜔‖𝐾𝑛‖1 

≤ 𝑀0𝜖  (10) 

where 𝑀0 is a positive constant idependent of 𝑛. 

Now, if we consider (10), (8) and (9) for every 𝑛 ≥ 𝑛0, the we get 

‖
𝑓 ∗ 𝐾𝑛

2𝜋
− 𝑓‖

𝑝𝑞,𝜔
≤ ‖

𝑓 ∗ 𝐾𝑛

2𝜋
−

𝑔 ∗ 𝐾𝑛

2𝜋
‖

𝑝𝑞,𝜔
+ ‖

𝑔 ∗ 𝐾𝑛

2𝜋
− 𝑔‖

𝑝𝑞,𝜔
+ ‖(𝑓 − 𝑔)‖𝑝𝑞,𝜔 

≤ 𝑀0𝜖 + 𝑐𝜖 + 𝜖 = 𝜖(𝑀0 + 𝑐 + 1). 
∎ 
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