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Abstract − In this paper, we study a special class of elements in the finite commutative rings called 

involutions. An involution of a ring 𝑅 is an element with the property that 𝑥2 − 1 = 0 for some 𝑥 in 

𝑅. This study describes both the implementation and enumeration of the involutions of various rings, 

such as cyclic rings, non-cyclic rings, zero-rings, finite fields, and especially rings of Gaussian integers. 

The paper begins with simple well-known results of an equation 𝑥2 − 1 = 0 over the finite 

commutative ring 𝑅. It provides a concrete setting to enumerate the involutions of the finite cyclic and 

non-cyclic rings 𝑅, along with the isomorphic relation 𝐼(𝑅) ≅ 𝑍2
𝑘. 
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1. Introduction 

In this paper, 𝑅 denotes a commutative finite ring with unity. We call that a nonzero element 𝑢 in 𝑅 is a unit 

if there is some 𝑥 ∈ 𝑅 such that 𝑢𝑥 = 1. When such an element 𝑥 exists, it is called the multiplicative inverse 

of 𝑢 and denoted by 𝑥 = 𝑢−1. The collection of units of the ring 𝑅 is denoted by 𝑈(𝑅). However, 𝑈(𝑅) is a 

multiplicative group concerning the multiplication defined on the ring 𝑅. If 𝑅 is a finite field, then 𝑈(𝑅) is a 

cyclic group. If the unit group 𝑈(𝑅) of 𝑅 is cyclic, then 𝑈(𝑅) is finite. The order of 𝑅 and the order of its 

group of units will be denoted by |𝑅| and |𝑈(𝑅)| , respectively. In the case when 𝑅 = 𝑍𝑛, |𝑈(𝑅)| = 𝜑(𝑛), 

where 𝜑(𝑛) is Euler’s phi-function, the number of positive integers less than 𝑛 and relatively prime to 𝑛. If 

𝑛 = 𝑝1
𝑎1𝑝2

𝑎2 … 𝑝𝑟
𝑎𝑟 is the decomposition of 𝑛 into product of distinct prime powers, then 𝜑(𝑛) =

𝑛 ∏ (1 − 1/𝑝)𝑝|𝑛 . It is well known that if a finite commutative ring with unity 𝑅 decomposes as a direct product 

𝑅 = 𝑅1 × 𝑅2 × … × 𝑅𝑘, then its group of units decomposes naturally as a direct product of groups. That is, 

𝑈(𝑅) is isomorphic to 𝑈(𝑅1) × 𝑈(𝑅2) × … × 𝑈(𝑅𝑘). The symbol ≅ will be used for both ring and group 

isomorphism. Note that if two rings 𝑅 and 𝑅′are isomorphic, 𝑅 ≅ 𝑅′, then their group of units is isomorphic, 

𝑈(𝑅) ≅ 𝑈(𝑅′). Since the number of units of 𝑍𝑛 is |𝑈(𝑍𝑛)| = 𝜑(𝑛) and the number of units in the ring 

𝑍𝑚 × 𝑍𝑛 is 𝜑(𝑚)𝜑(𝑛), but in general 𝜑(𝑚𝑛) ≠ 𝜑(𝑚)𝜑(𝑛) for some 𝑚, 𝑛 ≥ 1. If 𝑅 is a finite field, then 

𝑈(𝑅) is a cyclic group. Otherwise, 𝑈(𝑅) is an abelian group but not cyclic. If the unit group 𝑈(𝑅) of 𝑅 is 

cyclic, then 𝑈(𝑅) is finite and |𝑈(𝑅)| must be an even number. 

 
1chalapathi.tekuri@gmail.com; 2ssajana.maths@gmail.com (Corresponding Author) 
1Department of Mathematics, Sree Vidyanikethan Eng. College, Tirupathi, India 
2Department of Mathematics, P.R. Government College(A), Kakinada, India  

New Theory
Journal of

ISSN: 2149-1402

New Theory
Journal of

ISSN: 2149-1402

Editor-in-Chief
NaimÇağman

Number 36 Year 2021

www.dergipark.org.tr/en/pub/jnt

https://dergipark.org.tr/en/pub/jnt
https://doi.org/10.53570/jnt.971924
https://orcid.org/0000-0003-3382-0542
https://orcid.org/0000-0003-1385-8842


65 

 

Journal of New Theory 36 (2021) 64-74 / Enumeration of Involutions of Finite Rings 

Up to isomorphism, there is a unique cyclic group 𝐶𝑛 = {1, 𝑎, 𝑎2, … , 𝑎𝑛−1 ∶ 𝑎𝑛 = 1} = ⟨𝑎⟩ of order 𝑛. 

But the fundamental theorem of finite abelian groups states that any finite non cyclic abelian group 𝐺 is 

isomorphic to a direct product of cyclic groups 𝐶𝑛1
, 𝐶𝑛2

, … , 𝐶𝑛𝑘
. That is, 𝐺 ≅ 𝐶𝑛1

× 𝐶𝑛2
× … × 𝐶𝑛𝑘

. Hence, the 

group of units of a finite commutative ring with unity is isomorphic to a direct product of cyclic groups. For 

instance, 𝑈(𝑍𝑚 × 𝑍𝑛) ≅ 𝑈(𝑍𝑚𝑛) if and only if (𝑚, 𝑛) = 1 if and only if 𝜑(𝑚𝑛) = 𝜑(𝑚)𝜑(𝑛). The problem 

of classifying the group of units of an arbitrary finite commutative ring with identity is an open problem. 

However, the problem is solved for certain classes. In the case when 𝑅 = 𝑍𝑛, its group of units 𝑈( 𝑍𝑛) is 

characterized by using the following, see [1]. 

The group of units of the ring 𝑍𝑛 when 𝑛 is a prime power integer is given by 

(1) 𝑈(𝑍2) ≅ 𝐶1,  

(2) 𝑈(𝑍4) ≅ 𝐶2,  

(3) 𝑈(𝑍2𝑘) ≅ 𝑈(𝑍2) × 𝑈(𝑍2𝑘−1), for every 𝑘 > 1. For instance, 𝑈(𝑍8) ≅ 𝑈(𝑍2) × 𝑈(𝑍4).   

For every prime 𝑝, we have 𝑈(𝑍𝑝𝛼) ≅ 𝐶𝑝 × 𝐶𝑝𝛼−1. 

Cross [2] gave a characterization of the group of units of 𝑍[𝑖]/⟨𝛼⟩, where 𝑍[𝑖] is the ring of Gaussian 

integers and 𝛼 is an element in 𝑍[𝑖]. Smith and Gallian [3] solved the problem when 𝑅 = 𝐹[𝑖]/⟨𝑓(𝑥)⟩ where 

𝐹 is a finite field and 𝑓(𝑥) is an irreducible polynomial over 𝐹. The related problem of determining the cyclic 

groups of units for each of the above classes of rings is completely solved. It is well known that 𝑈(𝑍𝑛) is a 

cyclic group if and only if 𝑛 = 2,4, 𝑝𝛼 or 2𝑝𝛼, where 𝑝 is an odd prime integer. In [2], Cross showed that the 

group of units of 𝑍[𝑖]/⟨𝛼⟩ is a cyclic group if and only if (1) 𝛼 = (1 + 𝑖)𝑘, where 𝑘 = 1,2,3 and (2)
 
𝛼 =

𝑝, (1 + 𝑖)𝑝, where 𝑝 is a prime integer of the form 4𝑘 + 3 and 𝛼 is a Gaussian prime such that 𝛼�̄� is a prime 

integer of the form 4𝑘 + 1. The problem of determining all quotient rings of polynomials over a finite field 

with a cyclic group of units was solved by El-Kassar et al., see [4]. For more details about the unit groups and 

their corresponding properties, we refer to the work [5-6]. 

A ring 𝑅 is called cyclic if (𝑅, +) is a cyclic group. In [7], the author Buck proved that every cyclic ring 

is a commutative and commutative finite cyclic ring with unity is isomorphic to the ring 𝑍𝑛. Further, a ring 

(𝑅0, +,⋅) is a zero ring [8], if 𝑎𝑏 = 0 for every, 𝑎, 𝑏 ∈ 𝑅0, where ‘0’ is the additive identity in 𝑅0. For any 

finite commutative cyclic ring 𝑅 without unity, we have 𝑅 ≅ 𝑅0 and hence 𝑈(𝑅0) = 𝜙. Let 𝐵 be a finite 

Boolean ring with unity, then 𝑏2 = 𝑏 for every 𝑏 ∈ 𝐵. If 𝐵 ≅ 𝑍2, then 𝐵 is a Boolean ring with two elements 

0,1 and 𝐵𝑛 = 𝐵 × 𝐵 × … × 𝐵 is a Boolean ring with 2𝑛elements, and clearly |𝑈(𝐵𝑛)| = 1. 

The purpose of this paper is to enumerate the involutions in the group of units of a finite commutative 

ring with unity and to examine the properties of the involutions in a group of units. For this first, we shall 

define involutions in various fields of mathematics and their other related fields. Generally, in mathematics and 

other related fields, involution is a function 𝑓 and it is equal to its inverse. This means that 𝑓(𝑓(𝑥)) = 𝑥 for 

all 𝑥 in the domain of 𝑓. So, the involution is a bijection. For this reason, many fields in modern mathematics 

contain the term involution such as Group theory, Ring theory, and Vector spaces. Moreover, in the Euclidean 

and the Projective geometry, the involution is a reflection through the origin, and an involution is a 

projectivity of period 2, respectively. In mathematical logic, the operation of complement in Boolean algebra 

is called involution, and in classical logic, the negation that satisfies the law of double negation is called 

involution. Finally, in Computer science, the XOR bitwise operation with a given value for one parameter is 

also an involution, and RC4 cryptographic cipher is involution, as encryption and decryption operations use 

the same function. Recently in [9], the authors Fakieh and Nauman studied involutions and their minimalities 

of Reversible Rings. For further representations of involutions of various rings, the reader refers [10-13]. 

2. Properties of Involutions of Rings 

Throughout this section, we are interested in involutions that have a special property in the elements of rings. 

Also, this section provides a useful theory that can be used to help to find solutions of equations of the form 

𝑥2 = 1, where 1 is the multiplicative unity of 𝑅. 
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Definition 2.1. An element 𝑢 in a finite ring 𝑅 with unity 1 is called an involution of 𝑅 if 𝑢2 = 1 where 1 is 

the unity of 𝑅. We denote it with 𝐼(𝑅), the set of all involutions of 𝑅. In particular, 𝐼(𝑅) ⊆ 𝑈(𝑅) ⊂ 𝑅.  

For instance, 4 and 6 are the involutions of the ring 𝑅 = {0,2,4,6,8} with unity 6 modulo 10. When the 

cyclic ring 𝑅 = 𝑍𝑛, for a given positive integer 𝑛, we will use the symbol 𝐼𝑛 to denote the set of all involutions 

of the ring 𝑍𝑛 and we will call it the set of involutions modulo 𝑛. For instance, 𝐼3 = {1,2}, 𝐼8 = {1,3,5,7} and 

𝐼10 = {1,9}. For any finite cyclic ring 𝑅 with unity and finite zero rings 𝑅0, we have 𝐼(𝑅) ≠ 𝜙 and 𝐼(𝑅0) =

𝜙. But we can simply verify that 𝐼𝑛 is a subgroup of 𝑈(𝑍𝑛). This is a basic property for the ring 𝑅 with an 

abelian unit group 𝑈(𝑅). Now we show that 𝐼(𝑅) is a subgroup of 𝑈(𝑅).  

Theorem 2.2. Let 𝑅 be a commutative ring with unity. Then, 𝐼(𝑅) is a subgroup of 𝑈(𝑅). 

PROOF. Since 𝐼(𝑅) is a nonempty subset of 𝑈(𝑅). It is sufficient to prove that if 𝑢, 𝑣 ∈ 𝐼(𝑅), then 𝑢𝑣−1 ∈ 𝐼(𝑅). 

Indeed, if 𝑢2 = 1 and 𝑣2 = 1, then clearly (𝑢𝑣−1)2 = 𝑢2(𝑣−1)2 = 𝑢2(𝑣2)−1 = 1.                                        

Example 2.3. Let us take the ring 𝑅 = 𝑍5. Then, 𝐼(𝑅) = {1,4} and 𝑈(𝑅) = {1,2,3,4}. This clearly shows that 

𝐼(𝑅) is a subgroup of 𝑈(𝑅). 

Here, we recall that the Cartesian product of two rings and the results about these rings. For a complete 

treatment of these rings, see [1]. Let 𝑅 and 𝑆 be any two rings. Then, (𝑅 × 𝑆, +,⋅) is again a ring concerning 

the component-wise addition and component-wise multiplication: (𝑎, 𝑏) + (𝑐, 𝑑) = (𝑎 + 𝑐, 𝑏 + 𝑑) and 

(𝑎, 𝑏)(𝑐, 𝑑) = (𝑎𝑐, 𝑏𝑑), for every (𝑎, 𝑏),(𝑐, 𝑑) ∈ 𝑅 × 𝑆. It is well known that (1𝑅 , 1𝑆) ∈ 𝑅 × 𝑆 if and only if 

1𝑅 ∈ 𝑅 and 1𝑆 ∈ 𝑆. Also, 𝑍𝑚𝑛 is not isomorphic to 𝑍𝑚 × 𝑍𝑛 if and only if 𝑔𝑐𝑑( 𝑚, 𝑛) ≠ 1. In general, the 

following result is well known in the literature for 𝑈(𝑅) and 𝑈(𝑆). 

Theorem 2.4. If 𝑅 and 𝑆 are commutative rings with unity, then 𝑈(𝑅 × 𝑆) = 𝑈(𝑅) × 𝑈(𝑆). 

PROOF. Since (1𝑅 , 1𝑆) ∈ 𝑅 × 𝑆. For (𝑢, 𝑣) ∈ 𝑈(𝑅 × 𝑆), there exists (𝑢−1, 𝑣−1) ∈ 𝑈(𝑅 × 𝑆) such that 

(𝑢, 𝑣)(𝑢−1, 𝑣−1) = (1𝑅 , 1𝑆) ⇔ (𝑢𝑢−1, 𝑣𝑣−1) = (1𝑅 , 1𝑆) 

 ⇔ 𝑢𝑢−1 = 1𝑅 

for some 𝑢−1 ∈ 𝑅 and 𝑣𝑣−1 = 1𝑆 for some 𝑣−1 ∈ 𝑆 ⇔ 𝑢 ∈ 𝑈(𝑅) and 𝑣 ∈ 𝑈(𝑆) ⇔ (𝑢, 𝑣) ∈ 𝑈(𝑅) × 𝑈(𝑆). 

Therefore, 𝑈(𝑅 × 𝑆) = 𝑈(𝑅) × 𝑈(𝑆).                                               

Example 2.5. Let 𝑅 = 𝑍2 and 𝑆 = 𝑍3. Then, 𝑅 × 𝑆 = {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)}, 𝑈(𝑅) = 1, and 

𝑈(𝑆) = {1,2}. Also, 𝑈(𝑅 × 𝑆) = {1} × {1,2} = {(1,1), (1,2)} and  𝑈(𝑅) × 𝑈(𝑆) = {(1,1), (1,2)}. 

By Theorem 2.4, the following remark is obvious.  

Remark 2.6. For any ring 𝑅, we have 𝐼(𝑅) = 𝐼(𝑈(𝑅)). 

The strategy is then to express 𝐼(𝑅 × 𝑆) in terms of 𝐼(𝑅) and 𝐼(𝑆). It is essential for finding the number 

of involutions in a finite commutative ring with unity. 

Theorem 2.7. For any finite cyclic rings 𝑅 and 𝑆 with unity, then we 𝐼(𝑅 × 𝑆) = 𝐼(𝑅) × 𝐼(𝑆). 

PROOF. Let 𝑅 be a commutative ring with unity 1𝑅 and 𝑆 be a commutative ring with unity 1𝑆. Then by the 

Theorem 2.2 and Theorem 2.4, 𝐼(𝑅) ⊆ 𝑈(𝑅), 𝐼(𝑆) ⊆ 𝑈(𝑆) and 𝐼(𝑅 × 𝑆) ⊆ 𝑈(𝑅 × 𝑆). This implies that 

𝐼(𝑅) × 𝐼(𝑆) is a non-empty subset of 𝑈(𝑅) × 𝑈(𝑆).  

First, we have to prove that 𝐼(𝑅 × 𝑆) ⊆ 𝐼(𝑅) × 𝐼(𝑆). For any (𝑟, 𝑠) ∈ 𝑅 × 𝑆, if (𝑟, 𝑠) ∈ 𝐼(𝑅 × 𝑆) then 

(𝑟, 𝑠)2 = (1,1), or  (𝑟2, 𝑠2) = (1,1). This is the same as 𝑟2 = 1 and 𝑠2 = 1. Consequently, 𝑟 ∈ 𝐼(𝑅) and 𝑠 ∈

𝐼(𝑆). Therefore, (𝑟, 𝑠) ∈ 𝐼(𝑅) × 𝐼(𝑆). Thus 𝐼(𝑅 × 𝑆) ⊆ 𝐼(𝑅) × 𝐼(𝑆). Similarly, we can show that 

𝐼(𝑅) × 𝐼(𝑆) ⊆ 𝐼(𝑅 × 𝑆). Hence, by the set inclusions,
 
𝐼(𝑅 × 𝑆) = 𝐼(𝑅) × 𝐼(𝑆).                      

Example 2.8. Let 𝑅 = 𝑍2 and 𝑆 = 𝑍3. Then, 𝑅 × 𝑆 = {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)}, 𝐼(𝑅) = {1}, 

and 𝐼(𝑆) = {1,2}. Therefore, 𝐼(𝑅 × 𝑆) = {(1,1), (1,2)} = 𝐼(𝑅) × 𝐼(𝑆). 
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We will denote with |𝐼(𝑅)|, the number of involutions of 𝑅. Particularly, if the ring 𝑅 = 𝑍𝑛, the number 

|𝐼𝑛| will represent the number of involutions modulo 𝑛. We now state and prove the basic theorem for the 

involutions of 𝑅 that shows that the number |𝐼(𝑅)| > 1 is even.  

Theorem 2.9. For any finite commutative ring 𝑅 with |𝐼(𝑅)| > 1, then |𝐼(𝑅)| is even.  

PROOF. Let 𝑢 ∈ 𝐼(𝑅) and |𝐼(𝑅)| > 1. Then, 𝑢2 = 1, and |𝑢| divides 2. This implies that |𝑢| ∈ {1,2}. By the 

consequence of Lagrange’s theorem [1] for finite groups, |𝑢|||𝐼(𝑅)|. Therefore, for some positive integer 𝑞, 

|𝐼(𝑅)| = |𝑢|𝑞. Suppose |𝑢| = 1. Then, clearly 𝑢 = 1, because 𝑢2 = 1. So, our assumption |𝑢| = 1 is not true. 

Thus, for every unit 𝑢 ≠ 1 in 𝐼(𝑅), we have |𝑢| = 2. Hence, |𝐼(𝑅)| = 2𝑞. This concludes that |𝐼(𝑅)|  must be 

even.                   

We observe that |𝐼(𝑅)| is even except 𝑅 ≅ 𝐵𝑛, as the following remark illustrates how Theorem 2.9 is 

applicable.  

Remark 2.10. If 𝑅 is a finite cyclic ring with unity and |𝐼(𝑅)| is an odd number, then it must be equal to one, 

that is 𝐼(𝑅) = {1}. If |𝑅| > 2 and 𝑅 ≇ 𝑅0, 𝐵𝑛 then either |𝐼(𝑅)| = 1, or |𝐼(𝑅)| must be even. For instance, 

𝑅 =
𝑍2[𝑥]

(𝑥3+1)
 and 𝑅′ =

𝑍2[𝑥]

(𝑥3+𝑥)
 are both commutative rings with unity 1, so 𝐼(𝑅) = {1} and 𝐼(𝑅′) = {1,1 + 𝑥 +

𝑥2}. 

Before we proceed, we need to solve the equation 𝑥2 − 1 = 0 over the ring 𝑅 with unity. Note that if 

𝐶ℎ𝑎𝑟(𝑅) = 2, and then the set of solutions of 𝑥2 − 1 = 0 is the same as the set of solutions of 𝑥2 + 1 = 0 

and vice versa. If 𝐶ℎ𝑎𝑟(𝑅) ≠ 2, then 𝑥2 + 1 = 0 contains either finite or infinite number of solutions over 𝑅. 

In [14], the authors Khanna and Bhambri proved that the equation 𝑥2 + 1 = 0 has an infinite number of 

solutions over the ring of Quaternions. Recently, Suzanne discussed and described the solution of 𝑥2 + 1 = 0 

in [15]. For finite fields, the following result is well known.           

Theorem 2.11. Let 𝐹 be a finite field with unity 1 and 𝑥2 = 1 for some 𝑥 ∈ 𝐹. Then, 𝑥 = ±1, in particular, 

|𝐼(𝐹)| = 2. 

PROOF. Assume 𝐹 is a finite field with unity 1 and 𝑥2 = 1 over 𝐹. Then, algebraically 𝑥2 − 1 = 0 implies that 

(𝑥 − 1)(𝑥 + 1) = 0. If both (𝑥 − 1) ≠ 0 and (𝑥 + 1) ≠ 0, then they are both zero-divisors of 𝐹. But 𝐹 has 

no zero-divisors because every field is an integral domain. So, either 𝑥 − 1 = 0, or 𝑥 + 1 = 0 for some 𝑥 ∈ 𝐹, 

so that either 𝑥 = 1, or 𝑥 = −1. Hence,  |𝐼(𝐹)| = 2.            

Example 2.12. Let 𝐹 = {0,2,4,6,8}. Then, (𝐹, +10,×10) is a field with unity 6 and the set of involutions 𝐼(𝐹) =

{4,6}. 

Now we consider the solutions of the equation 𝑥2 − 1 = 0 over the finite commutative ring 𝑅. For this, 

we need to consider two cases, i.e., (i) 𝑈(𝑅) is a cyclic group and (ii) 𝑈(𝑅) is a non-cyclic group.  

Before getting started for the enumeration of involutions, we need to recall two familiar theorems from 

finite group theory. 

Theorem 2.13 (Fundamental theorem of cyclic groups) [1]. Every subgroup of a cyclic group is cyclic. 

Theorem 2.14 (Fundamental theorem of finite abelian groups) [1]. Every finite abelian group is isomorphic 

to a direct product of cyclic groups of prime power order. 

Theorem 2.15. Let 𝑅 be a finite cyclic ring with unity 1. Then, 𝑈(𝑅) is a cyclic group if and only if |𝐼(𝑅)| =

2. 

PROOF. Let 𝑥 be a generator of a finite cyclic group 𝑈(𝑅). Then, 𝑈(𝑅) = ⟨𝑥⟩. Because of 𝐼(𝑅) ⊆ 𝑈(𝑅), every 

involution 𝑢 in 𝐼(𝑅) can be written as 𝑢 = 𝑥𝑚 for some positive integer 𝑚, 1 ≤ 𝑚 ≤ |𝑈(𝑅)|. Therefore, 
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𝑢2 = 1 ⇔ (𝑥𝑚)2 = 1 

 ⇔ 𝑥2𝑚 = 1 

 ⇔ 2𝑚 ≡ 0(𝑚𝑜𝑑|𝑈(𝑅)|) 

Because of 𝑔𝑐𝑑( 2, |𝑈(𝑅)|) = 2, this linear congruence has exactly two solutions. Hence, |𝐼(𝑅)| = 2 if and 

only if 𝑈(𝑅) is cyclic.                

Example 2.16. Let us take the ring 𝑅 = 𝑍5. Then, 𝐼(𝑅) = {1,4} and 𝑈(𝑅) = {1,2,3,4}. Clearly, 𝑈(𝑅) =<

2 >=< 3 > is a cyclic group, and |𝐼(𝑅)| = 2.   

Theorem 2.17. Let 𝑈(𝑅) be the unit group of a finite cyclic ring 𝑅 with unity 1. For some 𝑘 > 1, 𝑈(𝑅) is a 

non-cyclic group if and only if |𝐼(𝑅)| = 2𝑘. 

PROOF. By Theorem 2.14, the finite abelian non-cyclic group 𝑈(𝑅) is isomorphic to the direct product of cyclic 

groups of prime power order. Suppose that the prime factorization of |𝑈(𝑅)| is 𝑝1
𝑎1𝑝2

𝑎2 . . . 𝑝𝑘
𝑎𝑘, where each 𝑝𝑖 

is a distinct prime and 𝑘 ≥ 2. Then, clearly there exist cyclic groups 𝑈 (𝑍𝑝1
𝑎1 ) , 𝑈 (𝑍𝑝2

𝑎2 ) , … , 𝑈 (𝑍
𝑝𝑘

𝑎𝑘 ) of 

prime power orders such that 

𝑈(𝑅) ≅ 𝑈 (𝑍𝑝1
𝑎1) × 𝑈 (𝑍𝑝2

𝑎2) × … × 𝑈 (𝑍
𝑝𝑘

𝑎𝑘 ) ⇒ 𝐼(𝑈(𝑅)) ≅ 𝐼 (𝑈 (𝑍𝑝1
𝑎1) × 𝑈 (𝑍𝑝2

𝑎2) × … × 𝑈 (𝑍
𝑝𝑘

𝑎𝑘 )) 

 ⇒ 𝐼(𝑈(𝑅)) ≅ 𝐼 (𝑈 (𝑍𝑝1
𝑎1)) × 𝐼 (𝑈 (𝑍𝑝2

𝑎2)) × … × 𝐼 (𝑈 (𝑍
𝑝𝑘

𝑎𝑘)) 

In view of the Remark 2.6 and the Theorem 2.7, we have 𝐼(𝑅) ≅ 𝐼 (𝑍𝑝1
𝑎1 ) × 𝐼 (𝑍𝑝2

𝑎2 ) × … × 𝐼 (𝑍
𝑝𝑘

𝑎𝑘 ). From 

the Theorem 2.15, 𝑈 (𝑍
𝑝

𝑖

𝑎𝑖 ) is a cyclic group and hence 𝐼 (𝑍
𝑝

𝑖

𝑎𝑖 ) = |𝐼 (𝑈 (𝑍
𝑝

𝑖

𝑎𝑖 ))| = 2. Therefore, the number 

of Involutions of a finite cyclic ring 𝑅 is equal to |𝐼(𝑅)|. Clearly, |𝑈(𝑅)| = 𝑝1
𝑎1𝑝2

𝑎2 … 𝑝𝑘
𝑎𝑘, we have |𝐼(𝑅)| =

|𝐼 (𝑍𝑝1
𝑎1 )| |𝐼 (𝑍𝑝2

𝑎2 )| … |𝐼 (𝑍
𝑝

𝑘

𝑎𝑘 )| = 2.2 … 2 (𝑘 times) = 2𝑘.                                                                                 

Example 2.18. Let the ring 𝑅 = 𝑍8. Then 𝑈(𝑅) = 𝐼(𝑅) = {1,3,5,7} and therefore 𝑈(𝑅) is a non-cyclic and 

|𝐼(𝑅)| = 4. 

3. Properties of Involutions of Rings 

In the previous section, we studied the properties of the set of involutions of finite commutative rings, 

particularly, finite cyclic rings. A specifically appealing of elementary number theory is that many fundamental 

properties of the positive integers relating to their primality, divisibility, and factorization can be carried over 

to the other sets and algebraic structures of numbers. In this section, we study the set of involutions of Gaussian 

integers modulo 𝑛, complex numbers of the form 𝑎 + 𝑖𝑏, where 𝑎 and 𝑏 are integers modulo 𝑛 and 𝑖2 = −1. 

We introduce the concept of Gaussian involution and establish the basic properties of Gaussian involutions 

over addition and multiplication of complex integers over modulo 𝑛. 

For any positive integer 𝑛 ≥ 1, < 𝑛 > be the proper principal ideal generated by 𝑛 in the infinite ring of 

Gaussian integers 𝑍𝑛[𝑖]. So there exists a quotient ring 𝑍𝑛[𝑖]/⟨𝑛⟩. In [16], the authors Dresden and Dymacek 

proved that 𝑍𝑛[𝑖]/⟨𝑛⟩ is isomorphic to 𝑍𝑛[𝑖], the ring of Gaussian integers modulo 𝑛 with unity 1 = 1 + 𝑖0 

where 𝑛 > 1. If 𝑛 = 1, then 𝑍𝑛[𝑖] = {0 + 𝑖 0}. When 𝑅 = 𝑍𝑛[𝑖], for given positive integer 𝑛 > 1, we will use 

the symbols 𝑈𝑛[𝑖], 𝐼𝑛[𝑖] to denote the set of units and involutions of the ring 𝑍𝑛[𝑖], and call it the set of all 

Gaussian units and Gaussian involutions modulo 𝑛, respectively. It is well known that |𝑍𝑛[𝑖]| = 𝑛2 and 𝑍𝑛[𝑖] 

is a field if and only if 𝑛 ≡ 3(𝑚𝑜𝑑 4) and also for more information about 𝑍𝑛[𝑖], see [1]. First, we prove that 
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the basic property of the ring 𝑍𝑛[𝑖], it indicated that 𝑍𝑛[𝑖] is not a cyclic ring. First, we notice that
 
𝑍𝑛[𝑖] = {0} 

if and only if 𝑛 = 1. Consequently, the following theorem is true for 𝑛 > 1. 

Theorem 3.1. The ring 𝑍𝑛[𝑖] of Gaussian integers modulo 𝑛 is not a cyclic ring. 

PROOF. We use proof by contradiction. Suppose 𝑍𝑛[𝑖] is a cyclic ring for some values of 𝑛. Then there exists 

an element 𝛼 = 𝑎 + 𝑏𝑖 ∈ 𝑍𝑛[𝑖] such that 𝑍𝑛[𝑖] =< 𝛼 > with respect to the addition of Gaussian integers 

modulo 𝑛. Now we have reached a contradiction. Note that 𝑐 + 𝑑𝑖 ∈ 𝑍𝑛[𝑖] implies there exists a positive 

integer 𝑚 such that 

𝑐 + 𝑑𝑖 = 𝑚(𝑎 + 𝑏𝑖)(𝑚𝑜𝑑 𝑛) ⇒ 𝑚𝑎 ≡ 𝑐(𝑚𝑜𝑑 𝑛)and 𝑚𝑏 ≡ 𝑑(𝑚𝑜𝑑 𝑛) 

 ⇒ 𝑍𝑛 = ⟨𝑎⟩ and 𝑍𝑛 = ⟨𝑏⟩ 

 ⇒ 𝑍𝑛 × 𝑍𝑛 = ⟨𝑎⟩ × ⟨𝑏⟩ 

 ⇒ 𝑍𝑛 × 𝑍𝑛 = ⟨(𝑎, 𝑏)⟩ 

This implies that the ring 𝑍𝑛 × 𝑍𝑛 is generated by the element (𝑎, 𝑏) and thus 𝑍𝑛 × 𝑍𝑛 is a cyclic group with 

a generator (𝑎, 𝑏) under addition modulo 𝑛, which is a contradiction to the fact that 𝑍𝑛 × 𝑍𝑛 is not a cyclic 

group for addition modulo 𝑛. This completes the proof.                       

It is well known that a Diophantine equation is a polynomial equation for which you seek integer solutions, 

see [17]. For example, the Pythagorean triples (𝑎, 𝑏, 𝑐) are positive integer solutions to the equation 𝑎2 + 𝑏2 =

𝑐2. Here is another Diophantine equation 𝑎2 − 𝑏2 = 1 over the infinite ring of integers ℤ to the usual addition 

and multiplication of integers. According to the literature survey of algebraic equations, there are no positive 

integer solutions to the Diophantine equation 𝑎2 − 𝑏2 = 1 over the ring 𝑍. But we observe that there exist 

integer solutions over the finite ring 𝑍𝑛. For instance, the pair (3, 4) satisfies the equation 𝑎2 − 𝑏2 = 1 over 

the ring 𝑍8. The identity (𝑎 + 𝑏𝑖)2 = 1 is true over the ring 𝑍𝑛[𝑖] if and only if 𝑎2 − 𝑏2 = 1 and 2𝑎𝑏 = 0 

over modulo 𝑛. 

Now we are going to study basic properties of Gaussian involutions 𝐼𝑛[𝑖] and next investigate the 

cardinality of 𝐼𝑛[𝑖] for various values of 𝑛.  

Definition 3.2. A Gaussian integer 𝑎 + 𝑖𝑏 in 𝑍𝑛[𝑖] is called a Gaussian unit if 𝑎2 + 𝑏2 ∈ 𝑈𝑛 and the set of 

Gaussian units 𝑍𝑛[𝑖] is 𝑈𝑛[𝑖]. For example, 𝑈2[𝑖] = {1, 𝑖}.  

Properties 3.3. The set 𝑈𝑛[𝑖], the collection of Gaussian units in 𝑍𝑛[𝑖] has the following basic properties.  

i. 𝑈𝑛 ⊂ 𝑈𝑛[𝑖] for every 𝑛 > 1. 

ii. If 𝑎 + 𝑖𝑏 is a Gaussian unit in, then 𝑍𝑛[𝑖] then 𝑏 + 𝑖𝑎 is also a Gaussian unit in 𝑍𝑛[𝑖]. 

iii. If 𝑢, 𝑣 ∈ 𝑈𝑛, then 𝑢 + 𝑖𝑣 may not be in 𝑈𝑛[𝑖]. 

iv. For any odd prime 𝑝, 𝑝 ≢ 3(𝑚𝑜𝑑 4), the unit group 𝑈𝑝 is cyclic but 𝑈𝑝[𝑖] may not be cyclic. 

Example 3.4.  

i. For the rings 𝑍2 and 𝑍2[𝑖], the corresponding sets of units are 𝑈2 = {1} and 𝑈2[𝑖] = {1, 𝑖}. So that clearly 

𝑈2 ⊂ 𝑈2[𝑖].   

ii. In the ring 𝑍3[𝑖], 1 + 2𝑖 and 2 + 𝑖 are both Gaussian units. 

iii. 1 is a unit in 𝑈4, but 1 + 𝑖 is not a unit in 𝑈4[𝑖]. 

iv. For the prime 𝑝 = 5, the unit group 𝑈5 is cyclic but 𝑈5[𝑖] may not be cyclic. 

Definition 3.5. A Gaussian unit 𝛼 = 𝑎 + 𝑖𝑏 is called a Gaussian involution modulo 𝑛 if 𝛼2 = 1. The set of all 

Gaussian involutions modulo 𝑛 is denoted by 𝐼𝑛[𝑖], with cardinality |𝐼𝑛[𝑖]|. For example, |𝐼2[𝑖]| = |{𝑖, 1}| =

2, |𝐼3[𝑖]| = |{1,2}| = 2, and |𝐼4[𝑖]| = |{1,1 + 2𝑖, 3,3 + 2𝑖}| = 4.  
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To determine the structure of the group 𝐼𝑛[𝑖], we must first derive a relation for determining when an 

element of 𝐼𝑛[𝑖] is a Gaussian involution. Recall that in a finite commutative ring 𝑅, a nonzero element is a 

unit if and only if it is not a zero divisor. Particularly, this is true for the rings 𝑍𝑛, 𝑍𝑛 × 𝑍𝑛, 𝑍𝑛[𝑖], and 

𝑍𝑛[𝑖] × 𝑍𝑛[𝑖]. Since,
 
𝐼𝑛 ⊆ 𝑈𝑛 and 𝐼𝑛[𝑖] ⊆ 𝑈𝑛[ 𝑖]. It is clear that 𝐼𝑛 ⊆ 𝐼𝑛[𝑖], it is not surprising that there is an 

interrelationship between the elements in the groups 𝐼𝑛 and 𝐼𝑛[𝑖]. 

Theorem 3.6. Let 𝛼 = 𝑎 + 𝑖𝑏 be a nonzero element in the ring 𝑍𝑛[𝑖]. Then  𝑎 + 𝑏𝑖 ∈ 𝐼𝑛[𝑖] if and only if 𝑎2 −

𝑏2 = 1 and 2𝑎𝑏 = 0 over modulo 𝑛. 

PROOF. Suppose that 𝛼 = 𝑎 + 𝑖𝑏 ∈ 𝑍𝑛[𝑖] and 𝛼 ≠ 0. By the definition of involution, 

𝛼 ∈ 𝐼𝑛[𝑖] ⇔  𝛼2 = 1 under modulo 𝑛 

 ⇔ (𝑎 + 𝑏𝑖)(𝑎 + 𝑏𝑖) = 1 

 ⇔ 𝑎2 − 𝑏2 + 𝑖2𝑎𝑏 = 1 + 𝑖0 

 ⇔ 𝑎2 − 𝑏2 = 1 and 2𝑎𝑏 = 0 

                  

Remark 3.7.  

i. Every Gaussian involution is a Gaussian unit, but the converse is not true. For instance, 2 + 3𝑖 is a 

Gaussian unit in 𝑍4[𝑖] but not a Gaussian involution, since 22 − 32 = 3 ≠ 1.  

ii. If  𝑎 + 𝑏𝑖 is a Gaussian involution, then 𝑏 + 𝑎𝑖 may not be a Gaussian involution. For example, 3 + 2𝑖 

is a Gaussian involution in 𝑍4[𝑖], but 2 + 3𝑖 is not a Gaussian involution. 

In general, it is not clear to satisfy finite groups and their subgroups by resolving the orders of each of its 

members. According to the Chinese remainder’s theorem [18] of numbers, a standard method is to resolve the 

finite groups to its orders like primes and prime powers as recommended in the following theorems. 

Theorem 3.8. [17] If 𝑙 and 𝑚 are both relatively prime, then 

i. 𝑍𝑙𝑚 ≅ 𝑍𝑙 × 𝑍𝑚 and 𝑍𝑙𝑚[𝑖] ≅ 𝑍𝑙[𝑖] × 𝑍𝑚[𝑖] 

ii. 𝑈𝑙𝑚 ≅ 𝑈𝑙 × 𝑈𝑚 and 𝑈𝑙𝑚[𝑖] ≅ 𝑈𝑙[𝑖] × 𝑈𝑚[𝑖] 

Theorem 3.9. [17] If 𝑛 > 1 is a positive integer with the canonical form 𝑛 = 𝑝1
𝑎1𝑝2

𝑎2 … 𝑝𝑟
𝑎𝑟. Then, 

i. 𝑈𝑛 ≅ 𝑈𝑝1
𝑎1 × 𝑈𝑝2

𝑎2 × … × 𝑈𝑝𝑟
𝑎𝑟  

ii. 𝑈𝑛[𝑖] ≅ 𝑈𝑝1
𝑎1 [𝑖] × 𝑈𝑝2

𝑎2 [𝑖] × … × 𝑈𝑝𝑟
𝑎𝑟 [𝑖] 

We observe the previous results do hold good for the collection of Gaussian involutions modulo 𝑛. We 

know that the collection of positive integers is partitioned into the sets of positive integers 𝑛 such that 𝑛 ≡

3(𝑚𝑜𝑑 4), 𝑛 ≡ 2(𝑚𝑜𝑑 4), 𝑛 ≡ 1(𝑚𝑜𝑑 4), and 𝑛 ≡ 0(𝑚𝑜𝑑 4). Also, every odd prime can be written as 𝑛 ≡

3(𝑚𝑜𝑑 4) and 𝑛 ≡ 1(𝑚𝑜𝑑 4). We observe that, for the even prime 2, 𝐼2[𝑖] = {1, 𝑖} and thus |𝐼2[𝑖]| = 2. But, 

for the collection of Gaussian involutions, we accomplish many results. 

Theorem 3.10. If 𝑝 is a prime of the form 𝑝 ≡ 3(𝑚𝑜𝑑 4), then |𝐼𝑝[𝑖]| = 2. 

PROOF. Because of the prime 𝑝 of the form 𝑝 ≡ 3(𝑚𝑜𝑑 4), the ring 𝑍𝑝[𝑖] is a field, and this 𝑈𝑝[ 𝑖] is a cyclic 

group. Hence, by the Theorem [2.11], it is well known that every finite field contains exactly two involutions, 

so
 
|𝐼𝑝[𝑖]| = 2.                             

Example 3.11.  

i. For 𝑝 = 3, 𝐼3[𝑖] = {1,3} and |𝐼3[𝑖]| = 2. 

ii. For 𝑝 = 7, 𝐼7[𝑖] = {1,6} and |𝐼7[𝑖]| = 2. 
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Theorem 3.12. For every prime𝑝, 𝑝 ≡ 3(𝑚𝑜𝑑 4) and 𝑘 ≥ 1 then |𝐼𝑝𝑘[𝑖]| = |𝐼𝑝𝑘| = 2. 

PROOF. By the definition of Gaussian involutions,  

𝐼𝑝𝑘[𝑖] = {𝑎 + 𝑖𝑏 ∈ 𝑍𝑝𝑘[𝑖] ∶ (𝑎 + 𝑖𝑏)2 = 1} = {𝑎 + 𝑖𝑏 ∈ 𝑍𝑝𝑘[𝑖] ∶ 𝑎2 − 𝑏2 ≡ 1(𝑚𝑜𝑑 𝑝𝑘), 2𝑎𝑏 ≡ 0(𝑚𝑜𝑑 𝑝𝑘)} 

For the condition 2𝑎𝑏 ≡ 0(𝑚𝑜𝑑 𝑝𝑘), there are the following possibilities exist. First suppose 𝑎 = 0 and 𝑏 =

0, then 𝑎2 − 𝑏2 = 0. This is a contradiction to the fact that 𝑎2 − 𝑏2 ≡ 1(𝑚𝑜𝑑 𝑝𝑘). So at least one of 𝑎 and 𝑏 

must be not equal to zero. Suppose the elements 𝑎 and 𝑏 are both not equal to 0. Without loss of generality we 

may assume that 𝑎 = 𝑝𝑞 and 𝑏 = 𝑝𝑘−𝑞 (𝑞 > 0), 𝑎2 − 𝑏2 = (𝑝𝑞)2 − (𝑝𝑘−𝑞)2 = 𝑝2𝑞 − 𝑝2(𝑘−𝑞) ≢

1(𝑚𝑜𝑑 𝑝𝑘), a contradiction. Hence, we conclude that the condition 𝑏 = 0 holds good because Gaussian 

involution is not purely imaginary over modulo 𝑝𝑘. This clears that 𝐼𝑝𝑘[𝑖] = 𝐼𝑝𝑘. 

Now enumerate the total number of Gaussian involutions in 𝐼𝑝𝑘[𝑖]. For this let 𝑥 ∈ 𝐼𝑝𝑘[𝑖], we have 𝛼 = 𝑎 +

𝑏𝑖 = 𝑎 + 0𝑖 = 𝑎 and 𝑎2 = 1. This implies that 

𝑎2 − 1 ≡ 0(𝑚𝑜𝑑 𝑝𝑘) ⇒ ((𝑎 − 1) + 1)((𝑎 − 1) + 1) − 1 ≡ 0(𝑚𝑜𝑑 𝑝𝑘) 

 ⇒ ((𝑎 − 1) + 1)2 − 1 ≡ 0(𝑚𝑜𝑑 𝑝𝑘) 

 ⇒ (𝑎 − 1)2 + 2(𝑎 − 1) ≡ 0(𝑚𝑜𝑑 𝑝𝑘) 

 ⇒ (𝑎 − 1)(𝑎 + 1) ≡ 0(𝑚𝑜𝑑 𝑝𝑘) 

 ⇒ 𝑝𝑘|(𝑎 − 1)(𝑎 + 1) 

This shows that 𝑝𝑘|(𝑎 − 1), or 𝑝𝑘|(𝑎 + 1). Now suppose 𝑝𝑘|(𝑎 − 1), then 𝑎 − 1 ≡ 0(𝑚𝑜𝑑 𝑝𝑘).
 
Therefore, 

𝑎 ≡ 1(𝑚𝑜𝑑 𝑝𝑘) implies that 𝛼 = 1. Again suppose 𝑝𝑘|(𝑎 + 1), then there exists a positive integer 𝑟 such that 

𝑎 + 1 = 𝑝𝑘𝑟. Now we claim that 𝑟 = 1. Suppose 𝑟 > 1. Then, 𝑎 = 𝑝𝑘𝑟 − 1 and 𝑎2 = 1. This implies that 

(𝑝𝑘𝑟 − 1)2 = 1. It follows that, either 𝑟 = 0, or 𝑟 = 2(𝑝−𝑘), this is again a contradiction. So, our assumption 

that 𝑟 > 1 is not true, and hence 𝑟 = 1. Therefore, 𝑎 + 1 = 𝑝𝑘, and thus 𝑎 = 𝛼 = 𝑝𝑘 − 1. This shows that 

𝛼 = 1 and 𝛼 = 𝑝𝑘 − 1 are the only two elements in 𝐼𝑝𝑘[𝑖]. So, for every prime 𝑝 ≡ 3(𝑚𝑜𝑑 4) there is a cyclic 

subgroup ⟨1, 𝑝𝑘 − 1 ∶ (𝑝𝑘 − 1)2 ≡ 1(𝑚𝑜𝑑 𝑝𝑘)⟩ in the group 𝑈𝑝𝑘[𝑖] such that 𝐼𝑝𝑘[𝑖] ≅ ⟨1, 𝑝𝑘 − 1 ∶ (𝑝𝑘 −

1)2 ≡ 1(𝑚𝑜𝑑 𝑝𝑘)⟩ ≅ 𝐼𝑝𝑘. Hence, |𝐼𝑝𝑘[𝑖]| = |𝐼𝑝𝑘| = 2.            

Example 3.13.  

i. For 𝑝 = 3 and 𝑘 = 2, 𝐼32[𝑖] = 𝐼9[𝑖] = {1,8} and |𝐼32[𝑖]| = 2. 

ii. For 𝑝 = 7 and 𝑘 = 2, 𝐼72[𝑖] = 𝐼49[𝑖] = {1,48} and |𝐼72[𝑖]| = 2.  

Theorem 3.14. If 𝑝 is a prime of the form 𝑝 ≡ 1(𝑚𝑜𝑑 4) and 𝑘 ≥ 1, then |𝐼𝑝𝑘[𝑖]| = 4. 

PROOF. For the prime 𝑝 of the form 𝑝 ≡ 1(𝑚𝑜𝑑 4), the set of Gaussian involutions of the ring 𝑍𝑝𝑘[𝑖] is 𝐼𝑝𝑘[𝑖] =

{𝑎 + 𝑖𝑏 ∈ 𝑍𝑝𝑘[𝑖] ∶ (𝑎 + 𝑖𝑏)2 ≡ 1(𝑚𝑜𝑑 𝑝𝑘)}. Let 𝑎 + 𝑖𝑏 ∈ 𝐼𝑝𝑘[𝑖], then    

(𝑎 + 𝑖𝑏)2 ≡ 1(𝑚𝑜𝑑 𝑝𝑘) ⇒ 𝑎2 − 𝑏2 ≡ 1(𝑚𝑜𝑑 𝑝𝑘) and 2𝑎𝑏 ≡ 0(𝑚𝑜𝑑 𝑝𝑘) 

First, 2𝑎𝑏 ≡ 0(𝑚𝑜𝑑 𝑝𝑘) means 𝑎 = 0 or 𝑏 = 0. From this condition, the group 𝐼𝑝𝑘[𝑖] reduces to 𝐼𝑝𝑘[𝑖] =

{𝑎, 𝑖𝑏 ∈ 𝑍𝑝𝑘[𝑖] ∶ 𝑎2 ≡ 1(𝑚𝑜𝑑 𝑝𝑘)}, (𝑖𝑏)2 ≡ 1(𝑚𝑜𝑑 𝑝𝑘)}. This shows that for 𝑎, 𝑖𝑏 ∈ 𝐼𝑝𝑘[𝑖], we have 

𝑝𝑘|(𝑎2 − 1) and 𝑝𝑘|(𝑏2 + 1) ⇒ 𝑎2 − 1 ≡ 0(𝑚𝑜𝑑 𝑝𝑘) and 𝑏2 + 1 ≡ 0(𝑚𝑜𝑑 𝑝𝑘).  

These two quadratic congruences give two distinct values for 𝑎 and two distinct values for 𝑏 over modulo 𝑝𝑘. 

Consequently, for 𝛼 and 𝛽 in 𝑈𝑝𝑘[𝑖], there is a non-cyclic subgroup 𝐼𝑝𝑘[𝑖] of the group 𝑈𝑝𝑘[𝑖] such that 

𝐼𝑝𝑘[𝑖] = ⟨𝛼, 𝛽 ∶ 𝛼2 − 1 ≡ 0(𝑚𝑜𝑑 𝑝𝑘), 𝛽2 + 1 ≡ 0(𝑚𝑜𝑑 𝑝𝑘)⟩ whenever the prime 𝑝 ≡ 1(𝑚𝑜𝑑 4). 

Therefore, |𝐼𝑝𝑘[𝑖]| = 4.                                                                    
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Example 3.15.  

1. Let 𝑝 = 5.   

i. If 𝛼 = 1, then 𝐼5[𝑖] = {1,4,2𝑖, 3𝑖} and |𝐼5[𝑖]| = 4. 

ii. If 𝛼 = 2, then 𝐼52[𝑖] = 𝐼25[𝑖] = {1,24,7𝑖, 18𝑖} and |𝐼52[𝑖]| = 4. 

2. Let 𝑝 = 13.   

i. If 𝛼 = 1, then 𝐼13[𝑖] = {1,12,5𝑖, 8𝑖} and |𝐼13[𝑖]| = 4.  

ii. If 𝛼 = 2, then 𝐼132[𝑖] = 𝐼169[𝑖] = {1,168,70𝑖, 99𝑖} and |𝐼132[𝑖]| = 4. 

Theorem 3.16. For even prime 2 and 𝑘 > 1 then 𝐼2𝑘[𝑖] ≅ 𝐼2[𝑖] × 𝐼2[𝑖] × … × 𝐼2[𝑖](𝑘times) and |𝐼2𝑘[𝑖]| =

2𝑘. 

PROOF. Since 𝐼2[𝑖] is a cyclic group of order 2, and thus 𝐼2𝑘[𝑖] is a finite abelian but not cyclic. Accordingly, 

by the fundamental theorem of finite abelian groups, the group 𝐼2𝑘[𝑖] can be written as 𝐼2𝑘[𝑖] ≅

𝐼2[𝑖] × 𝐼2𝑘−1[𝑖] ≅ 𝐼2[𝑖] × 𝐼2[𝑖] × 𝐼2𝑘−2[𝑖] ≅ ⋯ ≅ 𝐼2[𝑖] × 𝐼2[𝑖] × … × 𝐼2[𝑖](𝑘 times) and hence 

|𝐼2𝑘[𝑖]| = |𝐼2[𝑖] × 𝐼2[𝑖] × … × 𝐼2[𝑖](𝑘times)| 

 = |𝐼2[𝑖]| ⋅ |𝐼2[𝑖]| ⋅ … ⋅ |𝐼2[𝑖]| (k times) 

 = 2 ⋅ 2 ⋅ … ⋅ 2(𝑘 times) 

 = 2𝑘 

                  

Example 3.17. For 𝑘 = 2, 𝐼22[𝑖] = 𝐼4[𝑖] = {1,3,1 + 2 𝑖, 3 + 2𝑖} and |𝐼22[𝑖]| = 4 = 22. 

If the prime 𝑝 > 2 then Theorem 3.16 is not true, that is |𝐼𝑝𝑘[𝑖]| ≠ 𝑝𝑘 because 𝐼𝑝𝑘[𝑖] ≇ 𝐼𝑝[𝑖] × 𝐼𝑝𝑘−1[𝑖] . 

For example, 𝐼52[𝑖] ≇ 𝐼5[𝑖] × 𝐼5[𝑖] . In particular, the following results are well cleared. For any 𝑘 > 1, 

i. 𝑍2𝑘 ≇ 𝑍2 × 𝑍2𝑘−1 and 𝑍2𝑘[𝑖] ≇ 𝑍2[𝑖] × 𝑍2𝑘−1[𝑖] 

ii. 𝑈2𝑘 ≇ 𝑈2 × 𝑈2𝑘−1 and 𝑈2𝑘[𝑖] ≇ 𝑈2[𝑖] × 𝑈2𝑘−1[𝑖] 

iii. 𝐼2𝑘 ≅ 𝐼2 × 𝐼2𝑘−1 and 𝐼2𝑘[𝑖] ≅ 𝐼2[𝑖] × 𝐼2𝑘−1[𝑖] 

Theorem 3.18. If 𝑝 and 𝑞 are relatively prime, then 𝐼𝑝𝑞[𝑖] ≅ 𝐼𝑝[𝑖] × 𝐼𝑞[𝑖].  

PROOF. Without loss of generality, assume that 𝑝 ≡ 2(𝑚𝑜𝑑 4) and 𝑞 ≡ 3(𝑚𝑜𝑑 4). Now we define a map 

𝑓: 𝐼𝑝[𝑖] × 𝐼𝑞[𝑖] → 𝐼𝑝𝑞[𝑖] by the relation 𝑓((𝑎, 𝑏)) = 𝑖𝑞𝑎 + 𝑝𝑏 for every (𝑎, 𝑏) ∈ 𝐼𝑝[𝑖] × 𝐼𝑞[𝑖] and the element 

𝑖𝑞𝑎 + 𝑝𝑏 ∈ 𝐼𝑝𝑞[𝑖] for all 𝑎 and 𝑏. One can easily verify that𝑓 is a well-defined group homomorphism. Now to 

show that 𝑓 is an injection. For (𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝐼𝑝[𝑖] × 𝐼𝑞[𝑖], we have 𝑓((𝑎, 𝑏)) = 𝑓((𝑐, 𝑑)). This implies that 

𝑖𝑞𝑎 + 𝑝𝑏 = 𝑖𝑞𝑐 + 𝑝𝑑 ⇒ 𝑎 = 𝑐 and 𝑏 = 𝑑 

 ⇒ (𝑎, 𝑏) = (𝑐, 𝑑) 

Thus 𝑓 is injective. Since the finite groups 𝐼𝑝[𝑖] × 𝐼𝑞[𝑖] and 𝐼𝑝𝑞[𝑖] have the same cardinality, so that 𝑓 is 

surjective and hence 𝑓 is a group isomorphism.                                                                                                                            

For example, take 𝑝 ≡ 2 and 𝑞 ≡ 3, 𝐼6[𝑖] ≅ 𝐼2[𝑖] × 𝐼3[𝑖]. We have 𝐼2[𝑖] = {1, 𝑖}, 𝐼3[𝑖] = {1,2} and 

𝐼6[𝑖] = {1,5,2 + 3𝑖, 4 + 3𝑖}. Clearly, (1,1) → 2 + 3𝑖, (1,2) → 4 + 3𝑖, (𝑖, 1) → 5, and (𝑖, 2) → 1.   
 
 

Theorem 3.19. Let 𝑛 > 1 be a positive integer with the canonical form 𝑛 = 𝑝1
𝑎1𝑝2

𝑎2 … 𝑝𝑟
𝑎𝑟. Then, 

𝐼𝑛[𝑖] ≅ 𝐼𝑝1
𝑎1 [𝑖] × 𝐼𝑝2

𝑎2 [𝑖] × … × 𝐼𝑝𝑟
𝑎𝑟 [𝑖] and |𝐼𝑛[𝑖]| ≅ |𝐼𝑝1

𝑎1 [𝑖]| × |𝐼𝑝2
𝑎2 [𝑖]| × … × |𝐼𝑝𝑟

𝑎𝑟 [𝑖]| 

PROOF. It is clear from the Chinese remainder theorem [18].           
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Generally, now establish a formula for enumerating the total number of Gaussian involutions in the 

Gaussian ring for various values of 𝑛. Remember that the cardinality of the Gaussian involutions of the non-

cyclic ring 𝑍𝑛[𝑖] is |𝐼𝑛[𝑖]| and 𝐼 (𝑍𝑛[𝑖]) = 𝐼  (𝑈𝑛[ 𝑖]), and the representation theory of the finite cyclic group 

is a critical base case for the representation theory of more general finite groups. For any integer 𝑛 ≥ 1, there 

exists a finite cyclic group 𝐶𝑛 with representation 𝐶𝑛 = ⟨𝑎 ∶ 𝑎𝑛 = 1⟩ for multiplication. For instance,
 
a group 

𝐶2 = {1, 𝑎 ∶ 𝑎2 = 1} is a cyclic group of order 2, and it is also isomorphic to the cyclic group 𝑍2 = {0,1} for 

addition modulo 2. 

Theorem 3.20. If 𝑛 is a positive integer, then |𝐼𝑛[𝑖]| = 2𝑘 for some positive integer 𝑘. 

PROOF. The result is clear if 𝑛 = 2. If 𝑛 = 2 so that |𝑍𝑛[𝑖]| = 4, then there is only one subgroup, namely {1, 𝑖} 

in 𝑍𝑛[𝑖] with the property that 𝑎2 = 1, and so |𝐼𝑛[𝑖]| = 2 = 21. Assume that 𝑛 > 2. We now prove this by the 

two cases, namely, 𝐼𝑛[𝑖] is either cyclic or not. First, suppose 𝐼𝑛[𝑖] is cyclic. Then, there is nothing to prove. 

Now suppose 𝐼𝑛[𝑖] is a non-cyclic abelian group, then we have to prove that |𝐼𝑛[𝑖]| = 2𝑘 for some positive 

integer 𝑘. For this, we define a map 𝑓 ∶ 𝑍2 × 𝑍2 × … × 𝑍2 → 𝐼𝑛[𝑖] by the relation 𝑓(𝑎1, 𝑎2, … , 𝑎𝑘) =

𝛼1
𝑎1𝛼2

𝑎2 … 𝛼𝑘
𝑎𝑘 for every element 𝑎1, 𝑎2, … , 𝑎𝑘 in the non-cyclic group 𝑍2 × 𝑍2 × … × 𝑍2 ≅ 𝑍2

𝑘, where 

𝛼1
𝑎1 , 𝛼2

𝑎2 , … , 𝛼𝑘
𝑎𝑘 are distinct 𝑘 involutions of 𝐼𝑛[𝑖]. By Theorem 3.18, 𝐼𝑛[𝑖] ≅ 𝑍2

𝑘, and hence |𝐼𝑛[𝑖]| = |𝑍2
𝑘| =

2𝑘.                            

For verification of the above results, we obtain the following set of Gaussian involutions of the Gaussian 

ring 𝑍𝑛[𝑖] with fixed values of 𝑛 = 2,3,4, … ,13, respectively. 

𝐼2[𝑖] = {1, 𝑖} ≅ 𝐶2, 

𝐼3[𝑖] = {1,2} ≅ 𝐶2, 

𝐼4[𝑖] = {1,3,1 + 2 𝑖, 3 + 2𝑖} ≅ 𝐶2 × 𝐶2, 

𝐼5[𝑖] = {1,4,2 𝑖, 3 𝑖} ≅ 𝐶2 × 𝐶2, 

𝐼6[𝑖] = {1,5,2 + 3𝑖, 4 + 3𝑖} ≅ 𝐶2 × 𝐶2, 

𝐼7[𝑖] = {1,6} ≅ 𝐶2, 

𝐼8[𝑖] = {1,3,5,7,1 + 4𝑖, 3 + 4𝑖, 5 + 4 𝑖, 7 + 4𝑖} ≅ 𝐶2 × 𝐶2 × 𝐶2, 

𝐼9[𝑖] = {1,8} ≅ 𝐶2, 

𝐼10[𝑖] = {1,9,3𝑖, 7𝑖, 4 + 5𝑖, 5 + 2𝑖, 6 + 5𝑖, 5 + 8𝑖}} ≅ 𝐶2 × 𝐶2 × 𝐶2, 

𝐼11[𝑖] = {1,10} ≅ 𝐶2,
  

𝐼12[𝑖] = {1,5,7,11,1 + 6𝑖, 5 + 6𝑖, 7 + 6𝑖, 11 + 6𝑖} ≅ 𝐶2 × 𝐶2 × 𝐶2, 

 𝐼13[𝑖] = {1,12,5𝑖, 8𝑖} ≅ 𝐶2 × 𝐶2 

4. Conclusion 

Owing to the involution theory, involutions over finite commutative rings have been widely used in 

applications such as algebraic cryptography, network security, and coding theory. Further, quadratic 

polynomials like 𝑥2 − 1 = 0 over finite rings and fields have been extensively studied due to their wide 

applications in block cipher designs, algebraic coding theory, and combinatorial design theory. Following these 

applications of involutions to characterize the involutory behaviour of the digital control systems, digital logic 

systems, modern algebraic systems, and generalized cyclotomic systems and this paper gives more concise 

criterion analytical methods for enumerating Involutions over the finite cyclic and non-cyclic rings.  
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