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Abstract. The b-parts, b-addition of real numbers and some of their exten-

sions (e.g., f -multiplications) were introduced and studied by the author. In

this paper, we introduce f -representatives groups of a given group (G, ·) which

can be considered as a generalization of the group of the least non-negative

residues (modulo n). Thereafter, we study some of their important properties

and their relations among the ground group (G, ·), a related quotient group,

and f -grouplikes. Finally, many equivalent conditions for f -representatives

groups and several examples in the group of real numbers are given.
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1. Introduction and preliminaries

The term “Grouplike” was introduced and studied in [6]. Grouplike is an alge-

braic structure between semigroup and group and its axioms are generalization of

the four group axioms. A homogroup is a semigroup that contains an ideal sub-

group (see [3,8,10]). It is shown that a homogroup is a grouplike if and only if

the set of its central idempotents is a singleton. Also, decomposer and associative

functions on groups and semigroups were studied in 2007 and their general form

were characterized on arbitrary groups. The topic has many applications for solv-

ing some functional equations on algebraic structures (see [1,7]). The b-decimal

part function is a nice example of associative and strong decomposer functions and

(R,+b) is a semigroup with some additional properties, where +b is b-addition. In

fact +b is a type of f -multiplication and (R,+b) is a class united grouplike, where f

is the b-decimal part function (see [6,7]). In general, if f is an associative function

from a group (G, ·) to itself, then we obtain the semigroup (G, ·f ) that is a type of

grouplikes (namely f -grouplike) where ·f is f -multiplication of the binary operation

“·”.

1.1. Decomposer, associative and canceler functions on groups. Let (G, ·)
be a group with the identity element e and denote by ιG the identity function on G.
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For every functions f, g : G→ G, consider the functions f · g and f− defined by by

f · g(x) = f(x)g(x), f−(x) = f(x)−1. Also, the left (resp. right) ∗-conjugate of f is

given by f∗ = ιG ·f− (resp. f∗ = f− · ιG). Note that G = f∗(G)f(G) = f(G)f∗(G)

and the product is not necessarily direct (it is direct if f is decomposer, see [7] and

the next subsection).

If (G,+) is an additive group, then the notations e, f−, f · g, f · g− should be

replaced by 0, −f , f + g, f − g and we have f∗ = f∗ = ιG − f .

Example 1.1. Here, we recall the b-parts functions from [6] as some important

examples in the topic. Fix a real number b 6= 0 and for every real number a, put

[a]b := b[ab ] (resp. (a)b := b{ab }) that is called b-integer (resp. b-decimal) part of a

(where {t} := (t) = t− [t] is the fractional or decimal part of t). It is interesting to

know that if b > 0, then (a)b is the same remainder of the generalized division of a

by b and this is our first idea for generalization of the least residues group mod n.

Also, if b is a positive integer, then [a]b is the same unique integer of the residue

class {[a]− b+ 1, · · · , [a]} that is divisible by b.

The b-parts (real) functions ( )b and [ ]b have the properties ( )∗b = [ ]b and

[ ]∗b = ( )b, both are idempotent , so their compositions are zero and

Rb := (R)b = {(x)b|x ∈ R} = b[0, 1) = {bd|0 ≤ d < 1},

[R]b = {[x]b|x ∈ R} = bZ = 〈b〉.

For every function from G to G and x, y ∈ G, f(x) = f(y) implies that x =

f∗(x)f(y) = f(y)f∗(x). The converse is valid if f is decomposer and we arrive at

the following definition from [7].

Definition 1.2. A function f from G to G is called

(a) right (resp. left) decomposer if

f(f∗(x)f(y)) = f(y) [resp. f(f(x)f∗(y)) = f(x)] : ∀x, y ∈ G.

(b) right (resp. left) strong decomposer if

f(f∗(x)y) = f(y) [resp. f(xf∗(y)) = f(x)] : ∀x, y ∈ G.

(c) right canceler (resp. left canceler ) if

f(xf(y)) = f(xy) [resp. f(f(x)y) = f(xy)] : ∀x, y ∈ G.

(d) associative if

f(xf(yz)) = f(f(xy)z) : ∀x, y, z ∈ G.
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(e) strongly associative if

f(xf(yz)) = f(f(xy)z) = f(xyz) : ∀x, y, z ∈ G.

Note that f is decomposer (resp. canceler) if it is left and right decomposer

(resp. canceler). In each parts of the above definition if f(e) = e, then we will

add the word standard to the titles. Also, f is standard right (resp. left) weak

decomposer if and only if f∗f = ff∗ = e (resp. f∗f = ff∗ = e).

It is shown (see [7]) that every associative function is decomposer, every associa-

tive function with f(e) = e is standard strong decomposer and strongly associative,

and the following conditions are equivalent:

(i) f is strongly associative,

(ii) f is associative and idempotent,

(iii) f is associative and f2(e) = f(e),

(iv) f is associative and f(e)-periodic (i.e. f(f(e)t) = f(tf(e)) = f(t) for all t),

(v) f is strong decomposer,

(vi) f is decomposer and f∗(G)EG or f∗(G)EG,

(vii) f is decomposer and f∗(G) = f∗(G)EG,

(viii) f is canceler.

Example 1.3. Fix a b 6= 0 in the additive group of real numbers. The b-decimal

part function ( )b satisfies all the above properties (i) till (viii) while the b-integer

part function is only standard decomposer.

1.2. Direct product of subsets and their projections. Let ∆ and Ω be sub-

sets of a group G. By ∆ · Ω we mean G = ∆Ω and the product G = ∆Ω is direct

(i.e., δ1ω1 = δ2ω2 and δ1, δ2 ∈ ∆, ω1, ω2 ∈ Ω imply that δ1 = δ2 and ω1 = ω2).

Also, we let G = ∆ : Ω denotes G = ∆ · Ω and ∆ ∩ Ω = {e}. Note that addi-

tive notations are ∆ u Ω (direct sum of subsets) and ∆+̈Ω (standard direct sum

of subsets). For example R = bZ+̈b[0, 1) = 〈b〉+̈Rb. If ∆ and Ω are nonempty

subsets of G, then ∆Ω = ∆ · Ω if and only if (∆−1∆) ∩ (ΩΩ−1) = {e} (in additive

notation (∆ −∆) ∩ (Ω − Ω) = {0}). Now, let G = ∆ · Ω and define the functions

P∆, PΩ : G → G, by P∆(x) = δ and PΩ(x) = ω where x = δω, δ ∈ ∆ and

ω ∈ Ω. Clearly, they are well-defined and P∆(G) = ∆, PΩ(G) = Ω, P ∗Ω = P∆.

We call PΩ, (resp. P∆) right (resp. left) projection of the direct decomposition

G = ∆ · Ω (see [7]). The b-parts functions are projections of the direct decomposi-

tion R = 〈b〉+̈Rb. One can get more information about factorization of groups by

their subsets from [2,4,5,9,11].
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2. f-Representatives groups

If f : (G, ·) → (G, ·) is associative, then (G, ·f ) is a semigroup with some ad-

ditional properties (namely f -grouplike), where ·f is the f -multiplication defined

by x ·f y = f(xy) for all x, y ∈ G. Also, according [7] one can drive that if f is

associative, then for every x, y ∈ G,

f(f(x)y) = f(xf(y)) = f(f(e)xy) = f(xf(e)y) = f(xyf(e)) = f2(xy) (1)

f(f∗(x)y) = f(f∗(e)y) = f(yf∗(e)) , f(xf∗(y)) = f(xf∗(e)) = f(f∗(e)x). (2)

Now, we arrive at the following fundamental theorem that is the main key of the

topic.

Theorem 2.1. If f : (G, ·) → (G, ·) is associative, then (f(G), ·f ) is a group with

then following properties:

(a) It is the largest subgroup and also the least ideal of the semigroup (G, ·f ).

(b) f∗(G) = f∗(G) and G = f∗(G) · f(G) = f(G) · f∗(G). So f(G) is a factor

subset of (G, ·).
(c) Putting g = f(e)−1 · f , h = f · f(e)−1 we have f, g are standard strongly

associative, strong decomposer and

g∗(G) = g∗(G) = h∗(G) = h∗(G) = f∗(G)f(e) = f(e)f∗(G)E (G, ·),

G

f∗(G)f(e)
∼= (f−(e)f(G), ·g) ∼= (f(G)f−(e), ·h).

Especially, if f(e) = e, then f∗(G)E (G, ·) and

(f(G), ·f ) ∼=
G

f∗(G)
.

(d)

f is associative⇒ (f(G), ·f ) is a group with the identity ef := f(f(e)−2),

f is strongly associative⇒ (f(G), ·f ) is a group with the identity f(e),

f is associative and f(e) = e⇒ (f(G), ·f ) is a group with the identity e.

Proof. Let f : (G, ·)→ (G, ·) be associative.

(a) It is clear that (G, ·f ) is a semigroup with (f(G), ·f ) as a sub-semigroup. The

element δ := f(f(e)−2) is an identity of (f(G), ·f ), because by using the relations

(1) and (2) we have

f(x) ·f δ = f(f(x)f(f(e)−2)) = f(f(x)f(e)−2f(e)) = f(xf(e)−2f(e)−2)

= f(x) = δ ·f f(x) : ∀x ∈ G.
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Putting w = f(f(e)−3f(x)−1) ∈ f(G) we have

f(x) ·f w = f(f(x)f(f(e)−3f(x)−1) = f(f(x)f(e)f(e)−3f(x)−1)

= f(f(x)f(x)−1f(e)−2) = f(f(e)−2) = δ.

Therefore, (f(G), ·f ) is a group. But, if H is a sub-semigroup of (G, ·f ) with a left

(resp. right) identity eH , then h = eH ·f h = f(eHh) ∈ f(G) (resp. h = h ·f eH =

f(heH)), for all h ∈ H, and so (f(G), ·f ) is the largest subgroup of the semigroup

(G, ·f ). In addition, it is clear that (f(G), ·f ) is an ideal of (G, ·f ) and if I is a left

or right ideal and a ∈ I, then

f(f(e)−2) = a ·f f(f(e)−3f(a)−1) = f(f(e)−3f(a)−1) ·f a ∈ I

and so f(x) = f(x) ·f δ = δ ·f f(x) ∈ I, for all x ∈ G. Thus, (f(G), ·f ) is also the

least ideal of the semigroup (G, ·f ).

(b) We claim that

f∗(G) = {δ ∈ G|f(δf(δ)) = f(δ)} = {δ ∈ G|f(f(δ)δ) = f(δ)} = f∗(G).

For if δ = f∗(t), for some t ∈ G, then f(δf(δ)) = f(f∗(t)f(δ)) = f(δ) (because

every associative function is decomposer). Conversely, if f(δf(δ)) = f(δ), then

f∗(δf(δ))f(δf(δ)) = f∗(δf(δ))f(δ)⇒ δf(δ)) = f∗(δf(δ))f(δ),

and so δ = f∗(δf(δ)) ∈ f∗(G). Analogously, the third and last sets are equal and

the identities f(δf(δ)) = f(δf(eδ)) = f(f(δe)δ) = f(f(δ)δ) imply that the second

and third sets also are equal. Therefore, proof of (b) is complete.

(c) It is obvious that g∗ = f∗ · f(e) and h∗ = f(e) · f∗. But g, h are standard

strong decomposer and so g∗(G) = g∗(G) = f∗(G)f(e)E (G, ·) and analogously for

h. Since, g∗(G) = f∗(G)f(e) is a normal subgroup of G, then af∗(G)f(e)a−1 ⊆
f∗(G)f(e), for all a, and we conclude that f∗(G)f(e) = f(e)f∗(G).

Finally, the map g : (G, ·)→ (g(G) = f−(e)f(G), ·g) is an epimorphism with kernel

g∗(G) = f∗(G)f(e), and the map ρ : (f−(e)f(G), ·g)→ (f(G)f−(e), ·h), defined by

ρ(f−(e)f(x)) = f(x)f−(e), is an isomorphism.

(d) This part is concluded from (a) (note that if f is strongly associative, then it

is f(e)-periodic and so f(f(e)−2) = f(e)). �

The above theorem has several interesting algebraic aspects that is our motiva-

tion for the study. First, we arrive at the next definition.

Definition 2.2. Let f : (G, ·) → (G, ·) be associative. Then, we call the group

(f(G), ·f ) reference f -representatives group (because of the above theorem). Also.

every its subgroup is called a f -representatives group (of G).
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We observe that if f is associative and f(e) = e, then every f -representatives

group is the same group of all “representatives” of a quotient group, by Theorem

2.1(c). For example, Zn = {0, 1, 2, 3, 4, . . . , n − 1}, the group of the least non-

negative residues modulo n with the n-addition +n (see the next example), is a

representatives group of the quotient group Zn = {0, 1, 2, . . . , n− 1} = Z/nZ.

Example 2.3. For every fixed real number b 6= 0 and each x, y ∈ R, define the

binary operation +b by x +b y := (x + y)b. Since +b = +( )b and ( )b is standard

strongly associative, then (Rb,+b) is a reference ( )b-representatives group with

the identity element 0 that is the reference b-bounded group discussed in [6]. All

subgroups of the reference b-bounded group (Rb,+b) are f -representatives groups.

If n is an integer, then (Zn,+n) ≤ (Rn,+n) and if n ≥ 1, then it is the least

nonnegative residues group modulo n.

Now, fix α ∈ R and put f(x) = α+ (x)1. Then (R,+f ) is a grouplike and

(f(R),+f ) = (α+ [0, 1),+f ) = ([α, α+ 1),+f )

is a reference f -representatives group with the identity element α+ (−2α)1. Also,

f is strongly associative if and only if α is an integer and

2α is an integer⇔ ([α, α+ 1),+f ) is a group with identity element α,

α = 0⇔ ([α, α+ 1) = [0, 1), ·f ) is a group with the identity 0.

Now, we study some important properties of f -decompositional groups. At first,

we need to introduce many types of subsets of groups.

Definition 2.4. Let ∆, Λ and Ω be subsets of G and f : G→ G. We say Ω is left

(resp. right) ∆-closed with respect to Λ if for every λ ∈ Λ there exists δ ∈ ∆ such

that δλ ∈ Ω (resp. λδ ∈ Ω). Now we call Ω:

(a) ∆-symmetric if Ω is left ∆-closed with respect to Ω−1.

(b) ∆-multiplicative or ∆-additive if Ω is left ∆-closed with respect to Ω2 :=

ΩΩ.

(c) Left ∆-subtractive if Ω is left ∆-closed with respect to Ω−1Ω.

(d) Left f -subtractive if f(Ω−1Ω) ⊆ Ω.

(The right and two-sided cases are defined analogously.)

(e) f -multiplicative (resp. f -symmetric) if f(Ω2) ⊆ Ω (resp. f(Ω−1) ⊆ Ω).

(f) f -invariant (resp. f -subset) if f(Ω) ⊆ Ω (resp. Ω ⊆ f(G)).

Remark 2.5. Considering the above definition the property f(Λ) ⊆ Ω is corre-

sponded to the property ”Ω is ∆-closed with respect to Λ” (where ∆ is replaced by

f).
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If ∆ = {e}, then S is ∆-symmetric if and only if Ω = Ω−1, i.e. Ω is symmetric, there-

fore we can write symmetric instance {e}-symmetric. Also Ω is {e}-multiplicative

(resp. {e}-subtractive) if and only if ΩΩ ⊆ Ω (resp. ΩΩ−1 ⊆ Ω or equivalently

Ω−1Ω ⊆ Ω), i.e. Ω≤̇G (resp. Ω ≤ G) if Ω 6= ∅.

Every ∅ 6= Ω ⊆ G is G-closed with respect to every Λ ⊆ G. If e ∈ ∆, then Ω is

∆-closed with respect to every Λ ⊆ Ω. Also if Ω is ∆-closed with respect to Λ and

Ω′ ⊇ Ω, ∆′ ⊇ ∆ and Λ′ ⊆ Λ, then Ω′ is ∆′-closed with respect to Λ′.

Let Ω,∆ be nonempty and e ∈ Λ. If Ω is ∆-closed with respect to Λ, then

∆ ∩ Ω 6= ∅. Hence if Ω is ∆-subtractive, then ∆ ∩ Ω 6= ∅.
If Ω is f -multiplicative and e ∈ Ω, then Ω is f -invariant (because Ω ⊆ ΩΩ). Also

if Ω is f -subtractive and e ∈ Ω, then Ω is f -invariant and f -symmetric (because

Ω ∪ Ω−1 ⊆ ΩΩ−1).

Example 2.6. The set R1 = [0, 1) is Z-closed with respect to R but Qc is not

Z-closed (Q-closed) with respect to R. Fix positive integer n and put Dn =

{0, 1
n , · · · ,

n−1
n }, then Dn is ( )1-symmetric, ( )1-additive and ( )1subtractive. The

set Zn for all n ∈ Z \ {0} is n-subtractive. The reference b-bounded set Rb is 〈b〉-
additive, 〈b〉-symmetric and 〈b〉-subtractive (simply we write b-subtractive). The

decimal set D = [0, 1
3 ) ∪ ( 2

3 , 1) is Z-symmetric but it is not Z-additive and Z-

subtractive. If α is irrational, then {(nα)1|n ∈ N} is Z-additive but it is not Z-

symmetric and Z-subtractive. The set {1} is N-subtractive but it is not N-additive

and N-symmetric.

By ∆≤̇G we mean ∆ is a sub-semigroup of the group G.

Theorem 2.7. Let ∅ 6= Ω ⊆ G.

(a) If e ∈ Ω or ∆≤̇G, then

Ω is left (resp. right) ∆-subtractive⇒ Ω is left (resp. right) ∆-symmetric.

(b) If ∆ĖG (i.e. ∆≤̇G and g∆ = ∆g : for all g ∈ G), then

Ω is ∆-multiplicative and ∆-stmmetric⇒ Ω is ∆-subtractive.

(The converse of this is not valid.)

(c) If ∆ E G, then

Ω is ∆-subtractive⇔ Ω is ∆-multiplicative and ∆-stmmetric.

Proof. (a) Let ∆≤̇G and Ω be left ∆-subtractive. Choose δ0 ∈ ∆ ∩ Ω (note that

∆∩Ω 6= ∅) so for every s ∈ Ω there exists δ ∈ ∆ such that δδ0s
−1 ∈ Ω. Therefore Ω

is left ∆-symmetric, because δδ0 ∈ ∆. In the case e ∈ Ω, left ∆-subtractive implies
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left ∆-symmetric clearly.

(b) Let s1, s2 ∈ Ω. There exists δ2 ∈ ∆ such that δ2s
−1
2 ∈ Ω. So there exists δ1 ∈ ∆

for which δ1s1(δ2s
−1
2 ) = δ1δ

′
2(s1s

−1
2 ) ∈ Ω, for some δ′2 ∈ ∆. Therefore Ω is right

∆-subtractive (because δ1δ
′
2 ∈ ∆). Similarly it is left ∆-subtractive.

The converse of this proposition is not valid, because {1} is N-subtractive but it

is not N-additive.

(c) Let Ω be ∆-subtractive. Then Ω is ∆-symmetric, by (a). Now if s1, s2 ∈
Ω, then δ2s

−1
2 ∈ Ω for some δ2 ∈ ∆. Therefore there exists δ1 ∈ ∆ such that

δ1s1(δ2s
−1
2 )−1 = δ1s1s2δ

−1
2 = (δ1δ

′
2)(s1s2) ∈ Ω, for some δ′2 ∈ ∆. Considering

∆ ≤ G and (b) this proof is complete. �

Lemma 2.8. Let f be right (resp. left) strong decomposer, Ω be f -set, Λ ⊆ G and

put ∆∗ := f∗(G) (resp. ∆∗ := f∗(G)). Then

Ω is left ∆∗-closed (resp. right ∆∗-closed) with respect to Λ⇔ f(Λ) ⊆ Ω.

Especially, Ω is left f -subtractive (resp. f -multiplicative ; f -symmetric) if and only

if it is left ∆∗-subtractive (resp. ∆∗-multiplicative ; ∆∗-symmetric) (analogously

for the right case).

Proof. Let Ω be left ∆-closed with respect to Λ and λ ∈ Λ, then δλ ∈ Ω, for some

δ ∈ ∆, so f(λ) = f(δλ) ∈ f(Ω) = Ω. Therefore f(Λ) ⊆ Ω. Conversely, if f(Λ) ⊆ Ω

and λ ∈ Λ, then putting δ = f∗(λ)−1 we have δ ∈ ∆ and f(λ) = δλ ∈ Ω. �

Now, we are ready to proof some important equivalent conditions for a f -set to

be an f -representatives group whenever f is strongly associative.

Theorem 2.9. Let f be strongly associative and put Ωf := f(G), ∆f := f∗(G) =

f∗(G). Then, for every Ω ⊆ Ωf the following statements are equivalent.

(a) (Ω, .
f
) ≤ (Ωf , .f ),

(b) Ω is f -subtractive,

(b’) Ω is ∆f -subtractive,

(c) Ω is f -multiplicative and f -symmetric,

(c’) Ω is ∆f -multiplicative and ∆f -symmetric,

(d) (∆fΩ, ·) ≤ (G, ·).

Proof. Since f be strongly associative, then for every ω1, ω2 ∈ G ⊇ Ω we have

ω1.fω
−1
2 = ω1.f f(ω−1

2 ) = f(ω1ω
−1
2 ).

By using the above identities, Theorem 2.7 and Lemma 2.8 the parts (a), (b),

(b’), (c), (c’) are equivalent. Now let (d) holds and ∆ = ∆f . If s1, s2 ∈ Ω, then
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s1, s2 ∈ ∆Ω so s1s
−1
2 ∈ ∆Ω and so s1.f f(s−1

2 ) = f(s1s
−1
2 ) ∈ f(∆Ω) = f(Ω) = Ω,

therefore Ω ≤ Ωf . Also if (a) holds and g1, g2 ∈ ∆Ω, then g1 = δ1s1, g2 = δ2s2, for

some δi ∈ ∆ and si ∈ Ω. So g1g
−1
2 = δ1δ

′f∗(s1s
−1
2 )f(s1s

−1
2 ), for some δ′ ∈ ∆, thus

g1g
−1
2 ∈ ∆Ω (because ∆ ≤ G and f(s1s

−1
2 ) = s1.f f(s−1

2 ) ∈ Ω). �

Example 2.10. Theorem 2.9 and Example 2.6 imply that (Dn,+1) is an

f -representatives (( )1-representatives) group that we call it n-decimal group.

Remark 2.11. If f is strongly associative and Ω is a f -subtractive set, then Ω can

be considered as the followings cases:

(i) An f -subset of G with the properties f -symmetric and f -additive (Ω ⊆
Ωf ⊆ G).

(ii) A subgroup of Ωf ((Ω, ·f ) ≤ (Ωf , ·f )).

(iii) A factor of a subgroup of G (∆f · Ω = ∆fΩ ≤ (G, ·)).

Hence, we have the groups (∆f , ·) E (∆fΩ, ·) ≤ (G, ·) and (Ω, ·f ) ≤ (Ωf , ·f ). We

show some other their relations in this section.

Now we want to see that when a strong decomposer function f is endomorphism

and what is the relation between f∗(G) · f(G) and f∗(G)× f(G)? Answering this

question we state the following theorem.

Theorem 2.12. Let f : (G, ·)→ (G, ·) and Ωf = f(G), ∆f = f∗(G).

(a) If all elements of Ωf commutes with all elements of ∆f , then f is endo-

morphism if and only if f∗ is endomorphism.

(b) If f is right strong decomposer and Ωf ≤̇(G, ·) and ω∆f ⊆ ∆fω, for every

ω ∈ Ωf , then f is endomorphism and strongly associative, Ωf ≤ (G, ·),
∆f E G. Moreover, if Ωfδ ⊆ δΩf , for every δ ∈ ∆f , then f∗ is also an

endomorphism, Ωf EG and G = ∆f ·Ωf = ∆f ×̇Ωf
∼= ∆f ×Ωf (×̇ is inner

direct product of subgroups).

Proof. The property ω∆f ⊆ ∆fω implies for every x, y ∈ G, there exists y′ ∈ G
such that f(x)f∗(y) = f∗(y′)f(x) so

f(xy) = f(f∗(x)f(x)f∗(y)f(y)) = f(f∗(x)f∗(y′)f(x)f(y))

= f(f∗(z)f(w)) = f(w) = f(x)f(y).

Thus Ωf ≤ G. On the other hand ∆f ≤ G and

g∆f = δω∆f ⊆ δ∆fω = ∆fδω = ∆fg,

for every g ∈ G, thus ∆fEG. Now if Ωfδ ⊆ δΩf , for every δ ∈ ∆f , then Ωfg ⊆ gΩf

similarly, for every g ∈ G, and so Ωf EG. So every element of ∆f commutes with



f-REPRESENTATIVES GROUPS 75

every elements of Ωf (because ∆fEG, ΩfEG and G = ∆f .Ωf and so G = ∆f ×̇Ωf ).

Finally

f∗(xy) = xyf−(xy) = xf∗(y)f−(x) = xf−(x)f∗(y) = f∗(x)f∗(y). �

Now we remember some basic properties that we need for the next theorems. For

every function f : S → S (S is an arbitrary nonempty set) the following statements

are equivalent:

(a) f is idempotent,

(b) There exists a nonempty set Ω ⊆ S such that f : S → Ω is onto and

f(ω) = ω for all ω ∈ Ω,

(c) f(S) ∩A ⊆ f(A), for all A ⊆ S.

Clearly A is f -set if and only if A = f(B) for some B ⊆ S. If A is invariant under

f , then f |A is a function from A to A. Now if f is idempotent, then

i) A is f -set if and only if f(A) = A.

ii) A is invariant under f if and only if f(S) ∩A = f(A).

In addition if S = G is a group and H ≤ G, then

i) H is invariant under f if and only if it is invariant under f∗ (resp. f∗).

ii) If H is invariant under f , then H = f∗(H)f(H).

The above explanations imply the following lemma.

Lemma 2.13. Let f : (G, ·)→ (G, ·) and A ⊆ G.

(a) If f is standard right weak decomposer and A is invariant under f and f∗

and f∗(A)f(A) ⊆ A, then A = (f∗(G) ∩A)(f(G) ∩A).

(b) If f is standard right decomposer and H ≤ G is invariant under f or f∗,

then H is standard f∗-decomposable (i.e. H = f∗(H) : f(H)) and

H = (∆f ∩H) : (Ωf ∩H) = ∆H : ΩH

(where ∆H := ∆f ∩H and ΩH := Ωf ∩H).

(c) If f is standard right decomposer and ∆f ⊆ H ≤ G (resp. Ωf ⊆ H ≤ G),

then H = ∆f : ΩH (resp. H = ∆H : Ωf ).

Corollary 2.14. (Unique representation of subgroups by decomposer functions)

(a) If G = ∆f : Ωf , then every subgroup H containing ∆f (resp. Ωf ) has the

unique representation H = ∆f : Ω′ (resp.H = ∆′ : Ωf ), where Ω′ is f -set

and ∆′ is f∗-set.

(b) If G = 〈g〉 : Ωg (Ωg = Ωf ) then every subgroup H containing (the fix

element) g has the unique representation H = 〈g〉 : Ω′, where Ω′ is f -set.
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Corollary 2.15. Let G be an arbitrary group with the factorization G = A ·B. If

H is a subgroup of G containing A, then H = A · (B ∩H). Therefore, A is also a

left factor of H.

Example 2.16. Every 1-periodic real set A (i.e. 1 +A = A) has the unique direct

representation A = D u Z, where D ⊆ [0, 1). Moreover, A ≤ R if and only if D is

subtractive ( Z-subtractive). Also if D runs over 2[0,1), then every 1-periodic real

set is gotten, exactly one time, from the above equation.

Theorem 2.17. If f is associative and f(e) = e, then

(i) Every subgroup H containing ∆f has the unique representation H = ∆f :

Ω′, where Ω′ is an f -representatives group.

(ii) All subgroups of G containing ∆f and all f -representatives groups (∆f -

subtractive sets) can be put in 1− 1 correspondence.

(iii) If ∆f ⊆ H ≤ G, then (∆f E H)

H

∆f
=

H

f∗(H)
u f(H) = ΩH = Ωf ∩H.

Proof. (i) and (ii): Let ∆f ≤ H ≤ G, then H = ∆f : Ω′, by Corollary 2.14. So

Ω′ ≤ Ωf is the unique f -representatives group in the representation. Conversely, if

Ω′ ≤ Ωf , then ∆f ⊆ ∆fΩ′ ≤ G.

(iii): Since H is invariant under f∗, then H = ∆f : ΩH and f |H is right strong

decomposer function on the group H dependent to this representation (i.e. f |H =

PΩH
). �

Corollary 2.18. If 〈g〉 E G, G = 〈g〉 : Ωg, then

(i) Every subgroup H containing g has the unique representation H = 〈g〉 : Ω′,

where Ω′ is a g-decompositional group, that means it is the f -representatives

group and ∆f = 〈g〉.
(ii) All subgroups of G containing the fixed element g and all g-decompositional

groups (〈g〉-subtractive sets) can be put in 1− 1 correspondence.

(iii) If g ∈ H ≤ G, then

H

〈g〉
u Ωg

H = Ωg ∩H.

Example 2.19. For every subset R of real numbers, put (R)b := {(r)b|r ∈ R} and

[R]b := {[r]b|r ∈ R}. If R is a sub-group of (R,+) containing b, then (R)b = R∩Rb,
R
〈b〉
∼= 1

b (R)b = Db and

R

〈b〉
=

R

[R]b
∼= (R)b = R ∩ Rb

∼= Db.



f-REPRESENTATIVES GROUPS 77

Specially if 1 ∈ R, then R
Z
∼= (R)1 = R ∩ [0, 1) and so R

Z
∼= ([0, 1),+1).

Also, if D is a decimal group, then bZ+bD
bZ

∼= D.
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