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ABSTRACT. Let x be a star operation on a ring extension R € S. A ring
extension R € S is called Priifer star-multiplication extension (P+ME) if
(R[m], M[m]) is @ Manis pair in S for every *-maximal ideal m of R. We estab-
lish some results on star operations, and we study PxME in pullback diagrams
of type 0. We show that, for a maximal ideal m of R, the extension R[n S S

is Manis if and only if R[X][mpr[x]] € S[X] is a Manis extension.
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1. Introduction

In this article, all rings are commutative with identity. Let R < S be a ring
extension. In [8, Definition 1, p. 139], M. Knebusch and T. Kaiser define a star
operation on the extension R < S to be a map . J(R,S) — J(R,S), where
J(R,S) is the set of all R-submodules of S, satisfying the following conditions for
all A, Be J(R,S).

(1) A< A~

(c2) If A< B, then A* < B*.

(cs) (A) =A™

(c4) AB* < (AB)*.

A star operation * on a ring extension R < S is said to be strict if R* = R [8,
Definition 1, p. 139]. A star operation * on a ring extension R € S is said to be of
finite type if for each R-submodule A of R, A* = | JK*, where K ranges over all
the finitely generated R-submodules of S contained in A [8, Definition 1, p. 156] .

Remark 1.1. [8, Proposition 6.3, p.156] For a star operation * : J(R,S) —
J(R,S), and each R-submodule A of S, define A*f = |JK*, where K ranges
over all the finitely generated R-submodules of S contained in A. Then the map
*p: J(R,S) — J(R,S) defined by A — A*/ is a star operation of finite type

on the extension R < S.
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Remark 1.2. Let R < S be a ring extension, and * be a star operation on the
extension R < S. If A is an R-submodule of S such A* = R*, then (A™)* = R* for
each positive integer n. In fact, if A* = R*, then by [8, Proposition 4.1(a), p. 146]
we have (A")" = (u)* =(A"- A =(R"---R*)* = R".

n times n times n times
Let I be an ideal of R. The ideal I is said to be a *-ideal if I* = I. Following
the terminology use in [1], we called an ideal I of R a x-prime ideal if I is both a
star-ideal and a prime ideal of R. A maximal element in the set of all x-ideal of R

is called x-mazimal ideal.

Lemma 1.3. [12, Remark 2.4] Let R < S be a ring extension, and let = be a strict
star operation of finite type on R < S. Then each proper x-ideal of R is contained

in a x-prime ideal of R (which is also a *-mazimal ideal of R).

Let R < S be a ring extension, and let A be an R-submodule of S. The R-
submodule A is said to be S-regular if AS = S [7, Definition 1, p. 84]. The
R-submodule A of S is called S-invertible, if there exists an R-submodule B of S
such that AB = R [7, Definition 3, p. 90]. In this case, we write B = A~!, and
A7l =[R:s A] = {z € S:zA < R}[7, Remarks 1.10, p. 90].

For a ring S, and an additive totally ordered abelian group I', let I' U o0 =
Iy {o}, where o +g=g+ow =0 forallgeT v, and g <o forall geT'. A

valuation on S with values in I' is a map v : S — I" U o such that:

(1)
(2) v(z +y) = min {v(z),v(y)} for all z,y € S.
(3) v(1) =0 and v(0) = 0.
The set V = {z € S : v(x) = 0} is called a valuation subring of S. If v(S) = {0, oo},

then v is said to be trivial, otherwise v is called non-trivial. If v(S) =T" U oo, then

zy) = v(z) +v(y) for all z,y € S.

o
o

v is called a Manis valuation on S and V = {z € S :v(x) = 0} is called a Manis
subring of S.

For a subring R of S, if there exists a Manis valuation v : S — I" U o such
that R = {z € S : v(x) > 0}, then the extension R € S is called a Manis extension.
In this case, (R,p) is called a Manis pair in S, where p = {x € S : v(z) > 0}. The
ring S is called a Priifer extension of R if (R[p), p[p)) is @ Manis pair in S for every
maximal ideal p of R. In this case, we say that R is Priifer in S. More on Manis
valuations and Priifer extensions can be found in [7]. The ring extension R < S
is called (weak) Priifer star-multiplication extension (PxME) if (Rpp1,mmy]) is a

Manis pair in S for every (S-regular) *-maximal ideal m of R [10, Defintion 3.1].
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Remark 1.4. If R € S is a Manis extension, then R[X] € S[X] is Manis extension,
where X is an indeterminate over S. In fact, suppose that v : § — I' U {0} is a
valuation map such that v(S) = I' U {0} and R = {a€ S :v(a) = 0}. Denote
by ¥ the extension of v to S[X]. The map ¥ : S[X] — ' U {0} is defined by

¢ .
5(2 aiXZ> = inf {v(a;) : 1 <1i < ¥}, where a; € S for 1 < i < £. Then by [8,
i=1
Remarks(b), p.130], ¥ is a valuation map. Furthermore, by the definition of ¥, we
have U(S[X]) = T u {0} and R[X] = {f € S[X]: v(f) = 0}. It follows that the

extension R[X] < S[X] is Manis.

In this paper, we prove several results on localization (in the ring extension
context), and we discuss associated polynomial ring extensions, Nagata rings, star
invertibility, and Priifer star-multiplication extensions. Many results in this article
have well-known origins in the domain case (see for example [6]). In Section 2, we
discuss some properties of ring extensions. These properties will be needed in the
proofs of results presented in Section 3.

In Section 3, we establish some results on star operations. These properties
are observations made while working on other projects (see for example [9], [10],
[12]). Their proofs are contributions to a better understanding of the structures
of star operations on ring extensions. In Theorem 3.13, we show that for each
maximal ideal m of R, the extension Ry S S is Manis if and only R[X]mpr[x])) S
S[X] is a Manis extension whenever R[X]| € S[X] is integrally closed and X is
an indeterminate over S. In Theorem 3.15, we study Priifer star-multiplicative

extension in pullback diagrams of type o.

2. Preliminaries

For a ring extension R < S and an R-submodule M of S, if 7 is a multiplicatively
closed subset of R, we denote by M, the set of all z € S such that tx € M for some
t € 7. The set M|, is an R-submodule of S. In particular, R[] is a ring satisfying
R < Ry € S (see comment after [7, Definition 10, p. 18]). If p is a prime ideal of
R, and 7 = R\p, then M, denotes the set of all z € S such that tx € M for some

terT.
Remark 2.1. Let R < S be a ring extension, and let N be a multiplicatively closed
subset of R. Let p be a prime ideal of R such that p n N = ¢#. Then

(1) The set pryy is a prime ideal of Rpyy and ppyy 0 N = (.
(2) If I is an ideal of R such that I[x] S p[nq, then I < p.
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Proof. (1) Let x,y € R[yj such that 2y € pryj. Then there exist ¢,%;,t2 € N such
that t1x € R, tay € R and taxy € p. It follows that t(t12)(t2y) = (t1t2)(txy) € p.
But t ¢ p since p n N = . Therefore (t12)(t2y) = (t1t2)(txy) € p. Hence t1z € p
or tay € p. Thus = € pyy) or y € py). This shows that px) is prime ideal of Ry

We show that pjyy n N = ¢J. By contradiction, suppose that ppyy N N # .
Let t; € P[N] N N. Then there exists ¢t € N such that t1t5 € p. Furthermore,
t1ty € N since N is multiplicatively closed. It follows that t1t5 € P n N. Which is
a contradiction since p N N = J. This shows that pjyyn N = .

(2) Let a € I. Then a € I < Ijn7 S prn]. Hence, there exists ¢t € N such that
ta € p. But t ¢ p since pn N = F. It follows that a € p since p is prime. This
shows that I < p. (]

Remark 2.2. Let R € S be a ring extension, and let N be a multiplicatively closed
subset of R. Let J be a proper ideal of the ring R[yj. Then

(1) (J 0 R)vy = Jiwy-

2) If J is prime ideal of Rjyj and J n N = ¢, then J = Jyn.
[N] [N]

3) If J is prime ideal of Rjy7 and J n N # ¢, then Jin1 = Ry
[N] [N] [N]

Proof. (1) We show that (J n R)jny = Jiny- Let w € (J n R)[n]. Then tw €
JnRc J for somete N. Hence w € Jyyy. This shows that (J n R)in1 S Jing-
On the other hand, if u is an element of Jyyj, then there exists ¢ € N such that
tu € J S Rn). So there exists ¢ € N such that ¢'(tu) € R. It follows that
(t't)u e J n R. Thus u € (J n R)[y since tt" € N. Therefore, Jin) S (J N R)[ny-
This shows that (J n R)n] = Jing-

(2) Suppose that J is a prime ideal of Ryyj such that J n N = ¢§. We show that
Jiny € J since the containment J S Jyy is always true. Let « € Jyn). Then tx € J
for some t € N. But t ¢ J since J n N = . It follows that x € J since J is prime.
This shows that J = Jny.

(3) Suppose that J is a prime ideal of Ry} such that JA N # . Lette Jn N.
Then t(1) € J n N. Hence, 1 € (J n N)nj. Therefore, (J n N)inj = Rap- It
follows from (1) that Jjn) = Rynq- O

Lemma 2.3. Let R € S be a ring extension, and let N be a multiplicatively
closed subset of R. Let P = {p : p is a prime ideal of R andp n N = &} and M =
{m:mis a mazimal ideal of R andm n N = (J}.
(1) For each p € P, pyny is a prime ideal of Ry satisfying pjny 0 N = .
(2) For eachm e M, myyy is a mazimal ideal of Ryny satisfying miyjn N = .
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Proof. (1) By Remark 2.1(1), each element of the set {pjn]:p € P} is a prime
ideal of R[nj which does not intercept with N. Let J be a proper prime ideal of
Ryn) such that Jn N = ¢, and let pg = J n R. Then by Remark 2.2(2), J = po[n7-
Hence J € {p{n: p € P}.

(2) Let m be an element of M. By Remark 2.1(1), m[y7 is a prime ideal of
Ry and my; n N = . Suppose that Jp is a maximal ideal of Ry} such that
mpy] € Jo. Then m < Jon R. Tt follows from the maximality of m that m = Jo n R
or JynR = R. If Jyn R = R, then 1 € Jy. Which is a contradiction since Jy & Ry
Thus m = Jo n R. Hence my; = (Jo n R)[n7. Suppose that Jo n N # . Let
teJon N < Jon R. Then t(1) € Jo n R. Hence 1 € (Jo n R)[n] = my]. Which is
a contradiction since m(y) is a proper ideal of R[y). This shows that Jo n N = &.
It follows from Remark 2.2(2) that mix] = (Jo N R)[n] = Jorn] = Jo. This shows

that m[y is a maximal ideal of Ryx;. O

Let R < S and L < T be two ring extensions, and consider the following com-

|

where ker ¥ is an ideal of R, ¥ : S — T is surjective, the restriction o : R — L

mutative diagram

N—

v

of U is also surjective and the vertical mappings are inclusions. When ker ¥ is a
maximal ideal of S, the previous commutative diagram is called a pullback diagram
of type o. Pullback diagrams of type o are studied by S. Gabelli and E. Houston in
[2].

Lemma 2.4. Consider a pullback diagram of type o. Let A be an R-submodule of
S, and let B be an L-submodule of T

(1) If AS = S, then ker U C A.
(2) Suppose that ker U < Jac (R). If A= VU(B) and BT =T, then AS = S.
(3) If AS = BS and Y(A) = ¥(B), then A= B.

Proof. The statement (1) is given by [11, Remark 1.1], and the statement (2) is
given by [11, Lemma 2.8].

For the proof of the statement (3), suppose that AS = BS. Then by (1),
ker ¥ € A and ker ¥ < B. It follows from [9, Remark 2.5] that A € B and B < A.
Thus A = B. O
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Lemma 2.5. Consider a pullback diagram of type o. Then R is integrally closed
in S if and only if L is integrally closed in T.

Proof. Suppose that R is integrally closed in S. Let v € T, and let g(X) =
¢
> b; X" € L[X] with b; € L for 1 < i < £ such that g(v) = 0, where X is an
i=0

indeterminate over S. Since ¥ is surjective and L = W(R), there exist u € S

and ag,...,a; € R such that v = U(u),by = \Il(ao) by = \I/(ag) Let f(X) =
¢

_ZoaiXi. Then f(X) e R[X] and ¥ (f(u)) = Z U(a;)V(u)t = Z bivt = g(v) = 0.
?his shows that f(u) € ker ¥ < R. So there exmts r € R such that flw) =r. Let
hX) = f(X)—r. Then h(X) € R[X], and h(u) = 0. Therefore u € R since R is
integrally closed in S. It follows that v = W(u) € L. This shows that L is integrally
closed in T

Conversely, suppose that L is integrally closed in T. Let u € S, and let f(X) =
‘
> a; X" € R[X] be a polynomial with a; € R for 1 < i < ¢ such that f(u) =
i=0

Let g(X) = U(au') =

M~

O\If(ai)Xi € L[X]. Then g(¥(u)) = é]ollf(ai)\lf(u)i =

M~

% 0

(Z a;u ) = U(f(u)) = 0. Thus ¥(u) € L, since L is integrally closed in T'. Since

L = ¥(R), there exists v € R such that U(u) = ¥(v). Hence u —veker¥ < R. It
follows that w € R since v € R. This proves that R is integrally closed in S. (]

For the rest of the article, if R < S is a ring extension, and X is an indeterminate
over S, then for any multiplicatively closed subset N of R[X], R[X];n] denotes the
set of elements f € S[X] such that hf € R[X] for some h € N.

Lemma 2.6. Let R < S be a ring extension, and let T be a multiplicatively closed
subset of R.
(1) R[X]irixy = B[ X], where X is an indeterminate over S.
(2) If N is a multiplicatively closed subset of R such that N € T, and A is an
R-submodule of S, then Tix) is a multiplicatively closed subset of Ry and

(A1) ry, ) = Ar1-

k
Proof. (1) Let f = >} a;X" € R[X]ip[x]) with a; € S for 1 < i < k. Then

i=1

hf € R[X] for some h € T[X]. Thus cg(hf) < R. Hence cr(hf)cr(h)’ € R for
any positive integer £. It follows from the Dedeking-Merteens formula ([8, Theorem
1.1, p. 126]) that cr(f)cr(h)™ < R for some positive integer n. But cg(h)” <€ T
since T is multiplicatively closed. Let u € cgr(h)™. Then wa; € R for 1 < i < k.
Hence a; € Ryry. It follows that f € Ryp[X]. This shows that R[X]|rx] S Rir[X].
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Let f = i a; X' e Rpp[X] with a; € Ry for 1 < i < k. Then for 1 <i <k,
i=1
there exists t; € T such that t;a; € R. Let t = Hf=1ti. Then t € T < T[X]
and tf € R[X]. This shows that f € R[X]iprx];- Hence Ryp[X] € R[X]irix7)-
Therefore Ryp[X] = R[X]irx7)-

(2) Let u1,ug € Tin). Then syu; € T and spup € T for some s1,52 € N. Thus
s182(uruz) = (s1u1)(s2u2) € T. It follows that ujug € Tyny. This shows that Tjng
is multiplicatively closed. Let = € (A[N]) [Tin]" Then ux € Apyy for some u € Tjyj.
Let s,s" € N such that su € T and s'(ux) € A. Then §'(su)x = (ss')(ux) € A. Tt
follows that x € Appy since s'(su) € T'. This shows that (A[N]) [Tia] < Ay
Let © € Arr). Then tz € A © Apy for some t € T. But T' < Tjn;. Hence

re (A[N])[T[N]]’ and so App) S (A[N])[T I Therefore, Ajr) = (A[N])[T[N]]' 0

[N
3. Some properties of star operations on ring extensions

In this section, we establish some results on star operations. Let x : J(R,S) —
J (R, S) be a star operation on a ring extension R € S. An R-submodule A of R
is said to be *-invertible if (AA~!)* = R*. In the next result, we give a necessary

condition for a finitely generated S-regular R-submodule of S to be *-invertible.

Proposition 3.1. Let R € S be a ring extension, and let x : J(R,S) — J(R, S)
be a star operation, and let A be an S-reqular R-submodule of S. If A is x-invertible,

then for each x-mazimal ideal m of R, we have Ay = (a)[m] for some a € A.

Proof. Let A be an S-regular R-submodule of S. Suppose that A is x-invertible,
and let m be a *maximal ideal of R. Then (AAfl)* = R*. Hence AA™! &
m, otherwise R < R* < (AA_l)ik € m. This is a a contradiction. Therefore,
there exists t € AA™" < R such that t ¢ m. Let x € R[m)- Then there exists
s € R\m such that sz € R. Thus (ts)r = t(sz) € AA~!. It follows that z €
(AAfl)[m] since ts ¢ m. This shows that R, S (AAfl) , and so (AAfl)[m] =

[
Rim]- Hence ((AA—l)[m]) = (R[m])m[m]. But by [7, lemma 2.9(b), p.28],

m]

M{m]
we have ((AA*l)[m])m[m] — (AA™)_ and (Rpmy)

(AA™") = Rp. Thus Ay, is a locally principal Ry-submodule of S, [7, Proposition

= Rm. Hence, AnAL! =

Mm]

2.3, p. 97]. In particular, Ay, is a principal Ry-submodule of Sy,. So there exists
a € R and s € R\m such that An = (£)Rn = (a)Rn = (a)m. Now we show that
Apm] = (@)[m] = (a)R[m]- Let y € Apy, and let j : S — Sy be the map defined
by j(x) = £. Then by [7, definition 10, p. 18], Ay = j ' (Am). It follows that

J(y) € Am. Thus ¥ € (a),,. Therefore, ¥ = £ for some r € R, and t € A\m. So,

m’ 1
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(st)y = (sr)a € (a) for some s € A\m. It follows that y € (a)[m] since (st) € A\m.
This shows that Ap,) S (@) On the other hand, let 2 € (a)[m). Then there
exists t1 € R\m such that ¢tz = ra € Ay, for some r € R. Hence there exists ce A
and t2 € R\m such that t1z = ﬁ Thus (t1tet3)z = cty € A for some t3 € R\m.
Thus z € Apy) since tilot3 € R\m. This shows that (a)m)] S Am]. Therefore,

A[m] = (a)[m] |:|

Lemma 3.2. Let * be a strict star operation of finite type on a ring extension
R < S, and let A be an R-submodule of S such that A* = A. Then for any
multiplicatively closed subset T of R, we have (A[T])* = Ai.  In particular,

(Ri)" = Rsy-

Proof. Let A be an R-submodule of S such that A* = A. Let x € (A[T])*. Since
* is of finite type, there exists a finitely generated R-module J contained in A
such that z € J*. Let uy,...,us € Af such that J = (uy,...,u)R. For 1 <i </,

¢
there exists t; € 7 such that t;u; € A. Let ¢t = [[¢t;. Then tJ € A. Hence
i=1

tw € tJ* < (tJ)* € A* = A. Therefore © € Af,1. This shows that (Ap)" € Apy.
Then (A[T])* = A[;) since the containment A} S (A[T])* is always true. O

In the next remark, we give an example of a star operation *; on a ring ex-
tension R € S, and a star operation x2 on the extension R[X] € S[X] satisfying
the condition A**R[X]| = (AR[X])*? for each R-submodule A of S, where X is
an indeterminate over S. This condition will be assumed in many of the results

established in this section.

Remark 3.3. ([12, Remark 3.7]) Let R < S be a ring extension, and let X be an
indeterminate over S. For each R-submodule A of S, write A** = (R :5 (R :s A)),
and for each R[X]-submodule M of S[X], write

M*?* = (R[X] :s1x] (R[X] :spx M)) -

Then *; is a strict star on the extension R < S, and x5 is a strict star opera-
tion on the extension R[X]| < S[X] satisfying A*' R[X]| = (AR[X])™ for each
R-submodule A of S.

Proposition 3.4. Let x; be a star operation of finite type on a ring extension,
and let *2 be a star extension of finite type on R[X] < S[X], where X is an
indeterminate over S . Let T be a multiplicatively closed subset of R[X]. If I is an
ideal of R such that I** R[X] = (IR[X])*2, then (I"'[X])7) = (I[X][T])*z,
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Proof. Let f € (I[X][T])*Q. Since x5 is of finite type, there exist fi,...,f, €
I[X]7) such that f € (fi,..., fn)™. Let t; € T such that t; f; € I[X] for 1 <i < n,
and let t = [ #i. Then tf; € I[X]. Hence tf € £ (fi, ..., fu) ™ C (¢, tfu)"
(I[X)* = ZI_*ll[X]. It follows that f € (I**[X]);z). This shows that (I[X])m) ™ <
(I [XT) -

For the other containment, let f € (I**[X]);y). Then tf € I*'[X] = (I[X])*
(I[X][T])*2 for some t € T. Thus f € ((I[X][T])W)[T]. But by Lemma 3.2,

N

(I[X][T])*2 - (R[X][T])*2 = R[X]ir). Furthermore, R[X]r) is an overring of
R[X] in S[X] (see comment after [7, Definition, p. 18]). It follows from [8, Propo-
sition 4.2, p. 146] that (I[X][T])*2 € J ((Ri[X])*2, S[X]). But by Lemma 3.2
we have (Rrj[X])*> = Rip[X]. Therefore, (I[X][T])*2 € J ((Rym[X]), S[X]).
Hence (I[X][T])*2 is an ideal of R[X]iz). Therefore, from Remark 2.2 we have

((I[X][T])*Q)[T] = (I[X)iz7)™. Hence f € (I[X]pry)™, and so (I'[X])7y <
O

(I[X]ry) ™. Thus (I [XT) iy = (I1XTpmy)

For the rest of this article, if * is a star operation on a ring extension R < S and

*2

X is an indeterminate over S, then we denote by Max(x) the set of all x-maximal
ideals of R, and N(x) = {f € R[X]: cr(f)* = R*}.

Lemma 3.5. Let x be a star operation on a ring extension R < S, and let X be

an indeterminate over S. The set N(*) is multiplicatively closed subset of R[X].

Proof. Let f,g € N(x). Then cg(f)* = R* and cg(g)* = R*. By the Dedekind-
Mertens formula [8, Theorem 1.1, p. 126], we have cr(fg)cr(g)™ = cr(f)cr(g)" ™
for some positive integer n. Thus (cgr(fg)cr(9)™)" = (CR(f)cR(g)"“)*. Fur-
thermore, for any positive integer £, we have (R*)’ = R* since R* is a ring [8,
Propisition 4.2 (b), p. 146]. But by [8, Proposition 4.1 (a), p. 146] and Remark
1.2 that (cr(fg)cr(9)™)" = (cr(f9)*(cr(9)")")" = (cr(f9)*R*)" = cr(fg)" and
(er(F)er(o)™ )" = (el (enle)™)")" = (R*R")" = B*. Hence cq(fg)" = B
This shows that fg e N(x). O

For the rest of the article, we denote by d : J(R,S) — J(R,S) the identity
and N(d) = {f € R[X] : cr(f) = R}, where X is an indeterminate over the ring

extension R < S.

Proposition 3.6. Let R < S be a ring extension, and let X be an indeterminate

over S. Then the set N(d) contains no zero divisors of R[X].

Proof. By contradiction, suppose that there exists f € N(d) which is a zero divisor
of R[X]. Then cg(f) = R and there exists a nonzero g € R[X] such that fg = 0.
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Hence cg(fg) = 0. Furthermore, by the Dedekind-Mertens formula ([8, Theorem
1.1, p. 126]), we have cg(g)cr(f)" ! = cr(fg)cr(f)™ = 0. It follows that cgr(g)R =
cr(g) = 0. This is a contradiction since g # 0. This shows that N(d) has no zero
divisors. O

The following remark is an analog of [6, Proposition 2.1]; which itself originates
from [3, Proposition 33.1, p. 410].

Proposition 3.7. Let x be a strict star operation of finite type on a ring extension
R < S, and let X be an indeterminate over S. Then
(1) N() = RIXT\UpeMaxe (XD
(2) For each x-mazximal ideal m of R, m[X ][y (.)] is @ mazimal ideal of R[X [ (x)]-
Furthermore, miy ) N N(*) = &.

Proof. (1) Let f € N(*). Then cg(f)* = R. Thus for each m € Max(x), we
have cr(f) € m. Otherwise, we will get R € R* = cr(f) € m* = m; which
is a contradiction. This shows that f ¢ m[X] for each m € Max(x). Hence f €
RIX\UneMax(x) m[X]. This shows that N(x) = RIX]\U neMax() (m[X])-

On the other hand, let f € R[X\ U cMax(s) (M[X]). By contradiction, suppose
that cr(f)* € R. Then cgr(f)* is a proper ideal of R. Furthermore, by [8, Propo-
sition 4.6, p. 149], (cr(f)* " R)" = cr(f)* n R* = cr(f)* " R. So cr(f)* n R
is a proper *-ideal of R. It follows from Lemma 1.3 that cg(f)* n R is contained
in a *maximal ideal my. Therefore, cg(f) € cr(f)* " R < mg of R. Tt follows
that f € mo[X]. This is a contradiction since f € R[X\ U cMax(s)(m[X]). Thus
cr(f)* = R.

(2) The proof follows from part (1) and Lemma 2.3(2). O

Corollary 3.8. Let R < S be a ring extension, and let x1 be a strict star operation
of finite type on a ring extension R < S, and let x3 be a star operation on R[X] <
S[X] such that A**R[X] = (AR[X])*2 for each R-submodule A of S, where X is
an indeterminate over S. Then for each xi-mazimal ideal m of R, m[X][n (s, i5

a *y-mazimal ideal of R[X|(n(x,)]-

Proof. By Proposition 3.7(2), m[X][n(4,)] is a maximal ideal of R[X ][y (x,)]- Fur-

thermore, by Proposition 3.4, we have
(X)) ™ = XD [F ) = 0 X ) = mX v ))-
This shows that m[X][y(.,)] is a *2-maximal ideal of R[X |y (x,)]- O

Proposition 3.9. Let x1 be a star operation on a ring extension R < S, and let xo

be a star operation on R[X] < S[X], where X is an indeterminate over S. Let A
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be an R-submodule of S such that A**R[X]| = (AR[X])*2. Then A is x1-invertible
if and only if AR[X] is *o-invertible.

Proof. Let A be an R-submodule of S such that A** R[X] = (AR[X])*2. Suppose
that A is ;-invertible. Then (A[R :s A])** = R. Thus (A[R :g A])**R[X] = R[X].
It follows from the hypothesis that

(AR[X][R :s AJR[X])™ = (A[R :s A]R[X])** = (A[R :s A])" R[X] = R[X].

This shows that AR[X] is o-invertible.

Conversely, suppose that the R[X]-submodule AR[X] is *o-invertible, and let
E = |R[X] :s(x] AR[X]]. Then (AR[X]E)*> = R[X]. But by [12, Lemma 2.5(3)],
we have E = [R[X] :5;x] AR[X]]| = [R :5 A] R[X]. Hence R[X] = (AR[X]E)*2 =
(AR[X][R :s5 A]R[X])™ = (A[R :s A]R[X])™ = (A[R :s A])**R[X]. Therefore,
(A[R :s A])*'R[X] = R[X]. Hence (A[R :s A])** = R. This shows that A is

*1-invertible. O

Lemma 3.10. Let * be a strict star operation on a ring extension R < S, and let
X be an indeterminate over S. Let T be a multiplicatively closed subset of N(x).
For each R-submodule A of S, we have

[R[X]ir) :spx1 (AR[X]) ] = [RIX] sspey ARIX]] gy = ([R 25 A]R[X]) -

Proof. The equality [R[X] :5x] AR[X]][T] = ([R :s A]R[X]) 7, follows directly
from [12, Lemma 2.5(3)]. It remains to prove that [R[X]i7 :six] (AR[X])r] =
[RIX] :s1x) AR[X]][T]. Let f € [R[X] :5x] AR[X]][T]. Then there exists hy €
such that hif € [R[X]:spx] AR[X]]|. Hence (hif)AR[X] = R[X]. Let g
(AR[X])[r7- Then there exists hy € T such that hog € AR[X]. So (hih2)fg =
(h1f)(hag) € R[X]. Therefore, fg € R[X][rsince hihy € T'. Hence f(AR[X])[m <
R[X][r) since g was arbitrary in (AR[X])[r). So f € [R[X]z) :six] (AR[X])[11]-
This shows that [R[X] :spx AR[X]][T] < [R[X]ry :six) (AR[X])[11]-

Conversely, let f € [R[X]ir) :six] (AR[X])i71]. Then f(AR[X])r) € R[X]ir). It
follows that fA © R[X]ir) since A € (AR[X])[). Let a € A. Then af € R[X](1).
So there exists h € T such that h(af) € R[X]. Hence cr(haf) < R. It follows that
cr(haf)cr(h)® S R for each positive integer £ since h € R[X]. But by the Dedekind-
Mertens formula ([8, Theorem 1.1,p. 126]), we have cr(h)®*'cr(af) = cr(haf)cr(h)® <

R for some positive integer ¢y. Hence

en(W)* cn(af)” & (ca(h)* cn(af))” = (cnlhaf)en(n))" B = R

m = |

It follows from [8, Proposition 4.1 (a), p. 146] that ((cR(h)e"“)*cR(af)*)* C R =
R. But by Remark 1.2 we have (cr(h)*')" = R* = R since cr(h)* = R. It fol-
lows that (cr(af)*R)* < R. Thus cg(af)* < R. This shows that af € R[X]. So
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fA < R[X] since a was arbitrary chosen in A. Hence f(AR[X]) < R[X]. Thus
f € [R[X] :six] AR[X]]. Therefore |R[X]i7] :s1x] (AR[X])1] € [R[X] :s1x) AR[X]].
Hence [R[X][T S[X] (AR[ ]) ] = [R[X] ZS[X] AR[X]] O

Lemma 3.11. ([12, Lemma 3.9]) Let R < S be a ring extension, and Q be a
mazimal ideal of R[X] satisfying (R[X] :s(x] Q) # R[X]. Then @ " R = 0 or
QN R)[X] = Q.

The next result is a generalization of [6, Corollary 2.5] which states that in a

domain R, a nonzero ideal I is t-invertible if and only if I[X |y, is invertible.

Theorem 3.12. Let R € S be a ring extension, and let X be an indeterminate
over S. A nonzero ideal I of R is S-invertible if and only if IR[X ][Ny is an
S[X]-invertible ideal of R[X ][ (a)-

Proof. Let I be a nonzero ideal of R. Suppose that I is S-invertible. Then
II7' = R. We show that IR[X][N(d)]I’lR[X][N(d)] = R[X]{n(4)]- By contra-
diction, suppose that IR[X |yl ' R[X][n(a) is a proper ideal of R[X]y ()
Then, IR[X]in@yl 'R[X]nw@y) S J for some maximal ideal J of R[X]y(ay-
So, IT"'[X] € I[X|T"'[X] € IR[X]n(ayl ' RIX ] S J. Hence IT-1[X] <
Q = J n R[X]. Furthermore, @ n R # 0 since R = 117! < II7'[X] < Q.
Thus Q@ n R # 0. Let @' be a maximal ideal of R[X] such that @ < @’. Then
m=C@Q NnR#0since Q n R # 0. It follows from the previous lemma that m is a
maximal ideal of R satisfying m[X] = @Q’. We show that Q' n N(d) = &. By con-
tradiction, @' " N(d) = m[X] n N(d) # . Then there exists f = é a; X" e m[X]
with ag...ay € m such that R = cg(f). It follows that R = Z(ZL(())7...,CL¢)R c
m. This is a contradiction since m is a proper ideal of R. This shows that
Q' n N(d) = m[X] n N(d) = &. Therefore, by Proposition 3.7(2), we have
Qn(a)] = M[X][n(a)) is @ maximal ideal of R[X][n(q4);. Furthermore, by Remark
22(1), J € Jiny) = (J 0 R X)) vy = Qv = m[X] vy It follows from the
maximality of J that J = m[X];n(a)-

Conversely, suppose that IR[X][n(q)] is an S[X]-invertible ideal of R[X]n(q)]-
Then TR[X]in(ay) (IR[X]ny) b o R[X][n(a)y)- Therefore, by Lemma 3.10, we

have TR[X]n(a)] (I_lR[X])[N(d)] = R[X][n(ay)- Furthermore,

- -1
IR[X]iwan (I RIXT) [y S TRIXITRIXT) (v -
Thus (II‘lR[X])[N(d)] (IR[X]I'R[X ])[N(d)] = R[X][n(a))- By contradiction,
suppose that /771 is contained in a maximal ideal m of R. Then (I 'R[X])[n(a) S
mR[X][n(a)], and we have R[X ][y S mE[X][n(a))- This is a contradiction since
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by Corollary 3.8, mR[X][n(a) is a maximal ideal of R[X][n(qy. This shows that
IT7! is not contained in any maximal ideal of R. It follows from Lemma 1.3 that
II7' = R. O

Theorem 3.13. Let R € S be a ring extension, and let X be an indeterminate
over S such that R[X] € S[X] is integrally closed. Let m be a mazimal ideal of R.
Then Rpm) S S is a Manis extension if and only if R[X |imrrx]) € S[X] is a Manis

extension.

Proof. Suppose that the extension R, < S is Manis. Then by Remark 1.4,

the extension Rpy[X] < S[X] is also Manis. But by Lemma 2.6(1), we have

Rpn1[X] = R[X]mrrx7)- Thus the extension R[X|pmprxy S S[X] is Manis.
Conversely, suppose that the extension R[X |imp[x)) € S[X] is Manis. Let o be

an element of S. Then a € S[X]. Therefore, by [7, Theorem 2.12, p. 29], there

exists a polynomial F(Y) € (S[X])[YI\(mR[X])[Y] such that F(a) = 0, where Y’

is an indeterminate over S[X]. Write F'(Y) = i fi(X)Yi. Then 'io fi(X)a' = 0.

i=0 i=

£ .
Write fi(X) = ) a;; X7 for a fixed positive integer ¢, with possibly some of the a;;’s
=
n Y4 . X 4 n . .
equal zero. Then > | > ai; X7 | o' = 3 ( aijoﬂ) X7 = 0. It follows that
i=0 \j=0 j=0 \i=0
Zaijai =0foreachl <j </ (©).
i=0

Since F(Y) ¢ (mR[X])[Y], there exists 1 < k < n such that fi(X) ¢ mR[X]. Thus
fe(X) € S[X]\mR[X]. So there exists 1 < jo < £ such that axj, ¢ m. Let g(X) =
i aijoX*. Then by (©), we have g(a) = 0. Furthermore, g(X) € S[X]\m[X] since
ZL:];;O ¢ m. By [7, Theorem 2.12, p. 29], the extension R, < S is Manis. O

Corollary 3.14. Let R < S be a ring extension. If the extension R[X]iy@y S
S[X] is Priifer, then the extension R € S is Priifer.

Proof. Suppose that R[X ][y ) S S[X] is a Priifer extension, and let m be a max-
imal ideal of R. By Proposition 3.7(2), m[X ][y (a)] is a maximal ideal of R[X [ (a)]-
It follows from the hypothesis that (R[X][x(a)) [m[X] x| c S[X] is a Manis ex-
tension. But by Lemma 2.6(2), we have (R[X][N(d)])[m[X][N(d)]] = R[X]m[x7]-
Furthermore, by Lemma 2.6(1) we have R[X]|m[x]] = R[m][X]. This shows that
Rim)[X] € S[X] is a Manis extension. It follows from Proposition 3.13 that the

extension Rjy,) S is Manis. This shows that R < S is a Priifer. (]

Before proving the next result, we recall the definition of a Priifer star multipli-

cation extension, and the definition of a weak Priifer star multiplication extension.
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These notions are introduced and studied in [10]. Let R < S be a ring exten-
sion, and let x : J(R,S) — J(R,S) be a star operation. The ring extension
R < S is called weak Priifer star-multiplication extension (weak PxME) if the pair
(R[m], M[w]) is Manis in S for every S-regular x-maximal ideal m of R. When the
pair (Rpm], My,)) is Manis in S for every x-maximal ideal m of R, the extension
R < S is called Priifer star-multiplication extension (PxME) [10, Definition 3.1].

Theorem 3.15. Consider the following pullback diagram of type o with ker ¥ <
Jac (R).

Let x1 be a star operation on R < S, and let x5 be a star operation on the extension
L < T such that W(A*) = U(A)*2 for each A € J(R,S). Then R < S is weak
Px1 ME if and only if L < T is weak Pxo ME.

Proof. Suppose that R < S is a weak Px;ME. Let n be a T-regular *xo-maximal
ideal of L, and let m = ¥~!(n). Then by Lemma 2.4(1), m is an ideal of R satisfying
mS = S. But ¥(m) = n=n*2 = ¥(m)*> = ¥(m*). It follows from Lemma 2.4(3)
that m = m*'. This shows that m is a *-ideal. Let I be a x;-ideal of R such
that m < I. Then IS = S since mS = S. Furthermore, ¥(I) is a o-ideal of
L since U(I)*2 = ¥(I*') = U(I). Hence U(I) is a *xo-maximal ideal of L. But
n = ¥(m) € U(I). It follows from the maximality of n that ¥(m) = ¥(I) or
¥(m) = ¥(R). Therefore, by Lemma 2.4(3), we have m = I or m = R. This shows
that m is an S-regular *;-maximal ideal of R. It follows from the hypothesis that
(R[m],m[m]) is a Manis pair of S. Let v be an element of T. There exists u € S
such that v = ¥(u). Then by [7, Theorem 2.12, p. 29], there exists a polynomial

F(X) = éaiXi € R[X]\m[X] such that F(u) = 0. Let G(X) = Ze: U(a;) X
i=1

i=1
Then G(v) = é U (a;)vt = i U(a;)¥(u)! = U(F(u)) = 0. Furthermore, since
F(X)e R[X]\:{[lX], there ex?i;‘és j, 1 < j < £ such that a; € R\m. We show that
U(aj) ¢ n. By contradiction, suppose that ¥(a;) € n. Then there exists a € m such
that U(a;) = ¥(a). Hence a; — a € ker U. But by Lemma 2.4(1), ker U < m. It
follows that a; € m. This is a contradiction since a; € R\m. We have shown that
G(X) e LIX\n[X] and G(v) = 0. It follows from [7, Theorem 2.12, p. 29] that
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(L{n]s na)) is @ Manis pair in T', since v was arbitrary chosen in 7. This shows that
the extension L € T is a weak PxoME.
Conversely, suppose that the extension L € T is a weak PxoME. Let m be an

S-regular *;-maximal ideal of R, and let n = ¥(m). Since mS = S, there exist

r1,...,75 € m and s1,...,8; € S such that i r;s; = 1. Hence i U(r;)V(s;) =
¥(1) = 1. This shows that nS = S since \1}(77”11) enforl<i <17kl Also, n*2 =
PU(m)*2 = U(m*') = U(m) = n. Thus n is a xo-ideal of L. Suppose that J is a
*5-ideal of L such that n < J. Then JS = S since nS = S. Let I = ¥=1(J). Then
by Lemma 2.4(2), IS = S. Furthermore, ¥(m) € ¥(I). It follows from [9, Remark
2.5] that m < I. Therefore, by the maximality of m, we have m = I or I = R. Hence
n=J or J = L. This shows that n is a T-regular *o-maximal ideal of L. It follows
from the hypothesis that (L[n], n[n]) is a Manis pair of T. Let u be an element of

S. Then v = ¥(u) is an element of T. By [7, Theorem 2.12, p. 29], there exists a
polynomial G(X) = ZZZO b; X" € L[X]\n[X] such that G(v) = 0. Since L = ¥(R),
there exist ag,...,ar € R such that b; = ¥(a;) for 1 <i < (. Let FI(X) = é a; X
Then ¥(F(u)) = G(v) = 0. Hence F(u) € ker U < R. Therefore F(u)z;o r for
some r € R. Let H(X) = F(X) —r € R[X]. Then H(u) = 0. We show that
H(X) ¢ m[X]. Since G(X) ¢ n[X], there exists jo such that b;, ¢ n, 1 < jo < ¢.
By contradiction, suppose that a;, € m. Then b;, = ¥(a;,) € ¥(m) = n. Thisis a
contradiction. Hence a;, ¢ m. This shows that F'(X) € R[X|\m[X]. It follows that
H(X) e R[X]\m[X]. We have shown that H(X) € R[X|\m[X] and H(u) = 0. It
follows from [7, Theorem 2.12, p. 29] that (R[m],m[m]) is a Manis pair in S. Thus
the extension R € S is a weak Px;ME. O

Remark 3.16. The notion of »-multiplication domain is introduced and studied [5].
A domain D is called *-multiplication domain if for each nonzero finitely generated
ideal I of D, there exists a finitely generated fractional ideal J of D satisfying
(IJ)* = D, where « is a star operation on D. The name Priifer v-multiplication
domain (PVMD) has been used for v-multiplication domain, where the v-operation
is defined by I, = (I _1) _1; see for example [4]. Several equivalent conditions to the
notion of x-multiplication domains are given in [5, |. In particular, it is shown that
a domain D is a x»-multiplication domain if and only if D, is a valuation domain
for each ideal M maximal in the set of x-ideals, where * is a star operation of finite
type on D [5, Theorem 1.1]. In this paper, the definition of Priifer »-multiplication
extension involves Manis extensions. This yields the following open question: Is it

possible to characterize Priifer x-multiplication extension with x-invertibility? In
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[10, Proposition 2.4}, it is shown that for a ring extension R € S with Q(R) € S
(where Q(R) is the total ring of fractions of R), and  : J(R,S) — J(R, S) a star
operation of finite type, if R € S is a (weak) PxME, then each finitely generated

S-regular R-submodule A of S is x-invertible.
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