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Abstract. Let M be a module over a commutative ring R. The annihilating-

submodule graph of M , denoted by AG(M), is a simple undirected graph in

which a non-zero submodule N of M is a vertex if and only if there exists a non-

zero proper submodule K of M such that NK = (0), where NK, the product

of N and K, is denoted by (N : M)(K : M)M and two distinct vertices N and

K are adjacent if and only if NK = (0). This graph is a submodule version of

the annihilating-ideal graph and under some conditions, is isomorphic with an

induced subgraph of the Zariski topology-graph G(τT ) which was introduced in

[H. Ansari-Toroghy and S. Habibi, Comm. Algebra, 42(2014), 3283-3296]. In

this paper, we study the domination number of AG(M) and some connections

between the graph-theoretic properties of AG(M) and algebraic properties of

module M .
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1. Introduction

Throughout this paper R is a commutative ring with a non-zero identity and M

is a unital R-module. By N ≤M (resp. N < M) we mean that N is a submodule

(resp. proper submodule) of M .

Define (N :R M) or simply (N : M) = {r ∈ R| rM ⊆ N} for any N ≤ M .

We denote ((0) : M) by AnnR(M) or simply Ann(M). M is said to be faithful if

Ann(M) = (0). Let N,K ≤M . Then the product of N and K, denoted by NK, is

defined by (N : M)(K : M)M (see [6]). Define ann(N) or simply annN = {m ∈M |
m(N : M) = 0}.

The prime spectrum of M is the set of all prime submodules of M and denoted

by Spec(M), Max(M) is the set of all maximal submodules of M , and J(M), the

jacobson radical of M , is the intersection of all elements of Max(M), respectively.

This research was in part supported by a grant from IPM (No. 96130028).
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There are many papers on assigning graphs to rings or modules (see, for example,

[5,7,13,14]). The annihilating-ideal graph AG(R) was introduced and studied in

[14]. AG(R) is a graph whose vertices are ideals of R with nonzero annihilators

and in which two vertices I and J are adjacent if and only if IJ = (0). Later, it

was modified and further studied by many authors (see [1,2,3,20,22]).

In [7], the present authors introduced and studied the graphG(τT ) (resp. AG(M)),

called the Zariski topology-graph (resp. the annihilating-submodule graph), where

T is a non-empty subset of Spec(M).

AG(M) is an undirected simple graph with vertices V (AG(M))= {N ≤ M |
there exists (0) 6= K < M with NK = (0)}. In this graph, distinct vertices

N,L ∈ V (AG(M)) are adjacent if and only if NL = (0) (see [8,9]). Let AG(M)∗

be the subgraph of AG(M) with vertices V (AG(M)∗) = {N < M with (N : M) 6=
Ann(M)| there exists a submodule K < M with (K : M) 6= Ann(M) and NK =

(0)}. By [7, Theorem 3.4], one conclude that AG(M)∗ is a connected subgraph.

Note that M is a vertex of AG(M) if and only if there exists a nonzero proper

submoduleN ofM with (N : M) = Ann(M) if and only if every nonzero submodule

of M is a vertex of AG(M). Clearly, if M is not a vertex of AG(M), then AG(M) =

AG(M)∗. In [10, Lemma 2.8], we showed that under some conditions, AG(M) is

isomorphic with an induced subgraph of the Zariski topology-graph G(τT ).

In this paper, we study the domination number of AG(M) and some connec-

tions between the graph-theoretic properties of AG(M) and algebraic properties of

module M .

A prime submodule of M is a submodule P 6= M such that whenever re ∈ P for

some r ∈ R and e ∈M , we have r ∈ (P : M) or e ∈ P [18].

The notations Z(R) and Nil(R) will denote the set of all zero-divisors, the set of

all nilpotent elements of R, respectively. Also, ZR(M) or simply Z(M), the set of

zero divisors on M , is the set {r ∈ R| rm = 0 for some 0 6= m ∈M}. If Z(M) = 0,

then we say that M is a domain. An ideal I ≤ R is said to be nil if I consist of

nilpotent elements.

Let us introduce some graphical notions and denotations that are used in what

follows: A graph G is an ordered triple (V (G), E(G), ψG) consisting of a nonempty

set of vertices, V (G), a set E(G) of edges, and an incident function ψG that asso-

ciates an unordered pair of distinct vertices with each edge. The edge e joins x and

y if ψG(e) = {x, y}, and we say x and y are adjacent. The number of edges incident

at x in G is called the degree of the vertex x in G and is denoted by dG(x) or simply

d(x). A path in graph G is a finite sequence of vertices {x0, x1, . . . , xn}, where xi−1

and xi are adjacent for each 1 ≤ i ≤ n and we denote xi−1−xi for existing an edge
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between xi−1 and xi. The distance between two vertices x and y, denoted d(x, y),

is the length of the shortest path from x to y. The diameter of a connected graph

G is the maximum distance between two distinct vertices of G. For any vertex x

of a connected graph G, the eccentricity of x, denoted e(x), is the maximum of

the distances from x to the other vertices of G. The set of vertices with minimum

eccentricity is called the center of the graph G, and this minimum eccentricity value

is the radius of G. For some U ⊆ V (G), we denote by N(U), the set of all vertices

of G \ U adjacent to at least one vertex of U and N [U ] = N(U) ∪ {U}.
A graph H is a subgraph of G, if V (H) ⊆ V (G), E(H) ⊆ E(G), and ψH is

the restriction of ψG to E(H). A subgraph H of G is a spanning subgraph of G

if V (H) = V (G). A spanning subgraph H of G is called a perfect matching of

G if every vertex of G has degree 1. A subset S of the vertex set V (G) is called

independent if no two vertices of S are adjacent in G.

A clique of a graph is a complete subgraph and the supremum of the sizes of

cliques inG, denoted by cl(G), is called the clique number ofG. Let χ(G) denote the

chromatic number of the graph G, that is, the minimal number of colors needed

to color the vertices of G so that no two adjacent vertices have the same color.

Obviously χ(G) ≥ cl(G).

A graph G is a split graph if V (G) can be partitioned into two subsets A and B

such that the subgraph induced by A in G is a clique in G, and B is an independent

subset of V (G).

A subset D of V (G) is called a dominating set if every vertex of G is either in D or

adjacent to at least one vertex inD. The domination number ofG, denoted by γ(G),

is the number of vertices in a smallest dominating set of G. A total dominating set

of a graph G is a dominating set S such that every vertex is adjacent to a vertex in S.

The total domination number of G, denoted by γt(G), is the minimum cardinality of

a total dominating set. A dominating set of cardinality γ(G) (γt(G)) is called a γ-set

(γt-set). A dominating set D is a connected dominating set if the subgraph < D >

induced by D is a connected subgraph of G. The connected domination number

of G, denoted by γc(G), is the minimum cardinality of a connected dominating

set of G. A dominating set D is a clique dominating set if the subgraph < D >

induced by D is complete in G. The clique domination number γcl(G) of G equals

the minimum cardinality of a clique dominating set of G. A dominating set D is a

paired-dominating set if the subgraph < D > induced by D has a perfect matching.

The paired-domination number γpr(G) of G equals the minimum cardinality of a

paired-dominating set of G.
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A vertex u is a neighbor of v in G, if uv is an edge of G, and u 6= v. The set

of all neighbors of v is the open neighborhood of v or the neighbor set of v, and is

denoted by N(v); the set N [v] = N(v) ∪ {v} is the closed neighborhood of v in G.

Let S be a dominating set of a graph G, and u ∈ S. The private neighborhood

of u relative to S in G is the set of vertices which are in the closed neighborhood

of u, but not in the closed neighborhood of any vertex in S \ {u}. Thus the

private neighborhood PN (u, S) of u with respect to S is given by PN (u, S) =

N [u] \ (∪v∈S\{u}N [v]). A set S ⊆ V (G) is called irredundant if every vertex v of S

has at least one private neighbor. An irredundant set S is a maximal irredundant

set if for every vertex u ∈ V \S, the set S∪{u} is not irredundant. The irredundance

number ir(G) is the minimum cardinality of maximal irredundant sets. There are

so many domination parameters in the literature and for more details one can refer

[16].

A bipartite graph is a graph whose vertices can be divided into two disjoint sets

U and V such that every edge connects a vertex in U to one in V ; that is, U and V

are each independent sets and is denoted by Bn,m, where V and U are of size n and

m, respectively. A complete bipartite graph on n and m vertices, denoted by Kn,m,

where V and U are of size n and m, respectively, and E(G) connects every vertex

in V with all vertices in U . Note that a graph K1,m is called a star graph and the

vertex in the singleton partition is called the center of the graph. We denote by Cn

and Pn a cycle and a path of order n, respectively (see [15]).

In Section 2, a dominating set of AG(M) is constructed using elements of the

center when M is an Artinian module. Also we prove that the domination number

of AG(M) is equal to the number of factors in the Artinian decomposition of M

and we also find several domination parameters of AG(M). In Section 3, some

relations between the domination numbers and the total domination numbers of

annihilating-submodule graphs are studied. Also, we study the domination number

of the annihilating-submodule graphs for reduced rings with finitely many minimal

primes and faithful modules.

The following results are useful for further reference in this paper.

Proposition 1.1. Suppose that e is an idempotent element of R. We have the

following statements.

(a) R = R1 ×R2, where R1 = eR and R2 = (1− e)R.

(b) M = M1 ×M2, where M1 = eM and M2 = (1− e)M .

(c) For every submodule N of M , N = N1 × N2 such that N1 is an R1-

submodule M1, N2 is an R2-submodule M2, and (N :R M) = (N1 :R1

M1)× (N2 :R2
M2).
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(d) For submodules N and K of M , NK = N1K1 × N2K2 such that N =

N1 ×N2 and K = K1 ×K2.

(e) Prime submodules of M are P ×M2 and M1×Q, where P and Q are prime

submodules of M1 and M2, respectively.

Proof. This is clear. �

We need the following results.

Lemma 1.2. (See [4, Proposition 7.6].) Let R1, R2, . . . , Rn be non-zero ideals of

R. Then the following statements are equivalent:

(a) R = R1 × . . .×Rn;

(b) As an abelian group R is the direct sum of R1, . . . , Rn;

(c) There exist pairwise orthogonal idempotents e1, . . . , en with 1 = e1+. . .+en,

and Ri = Rei, i = 1, . . . , n.

Lemma 1.3. (See [17, Theorem 21.28].) Let I be a nil ideal in R and u ∈ R be

such that u+ I is an idempotent in R/I. Then there exists an idempotent e in uR

such that e− u ∈ I.

Lemma 1.4. (See [9, Lemma 2.4].) Let N be a minimal submodule of M and let

Ann(M) be a nil ideal. Then we have N2 = (0) or N = eM for some idempotent

e ∈ R.

Proposition 1.5. Let R/Ann(M) be an Artinian ring and let M be a finitely

generated module. Then every nonzero proper submodule N of M is a vertex in

AG(M).

Theorem 1.6. (See [9, Theorem 2.5].) Let Ann(M) be a nil ideal. There exists

a vertex of AG(M) which is adjacent to every other vertex if and only if M =

eM ⊕ (1 − e)M , where eM is a simple module and (1 − e)M is a prime module

for some idempotent e ∈ R, or Z(M) = Ann((N : M)M), where N is a nonzero

proper submodule of M or M is a vertex of AG(M).

Theorem 1.7. (See [9, Theorem 3.3].) Let M be a faithful module. Then the

following statements are equivalent.

(a) χ(AG(M)∗) = 2.

(b) AG(M)∗ is a bipartite graph with two nonempty parts.

(c) AG(M)∗ is a complete bipartite graph with two nonempty parts.

(d) Either R is a reduced ring with exactly two minimal prime ideals, or AG(M)∗

is a star graph with more than one vertex.
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Corollary 1.8. (See [9, Corollary 3.5].) Let R be a reduced ring and assume that

M is a faithful module. Then the following statements are equivalent.

(a) χ(AG(M)∗) = 2.

(b) AG(M)∗ is a bipartite graph with two nonempty parts.

(c) AG(M)∗ is a complete bipartite graph with two nonempty parts.

(d) R has exactly two minimal prime ideals.

Theorem 1.9. (See [8, Theorem 2.7].) If AG(M) is a tree, then either AG(M) is

a star graph or AG(M) ∼= P4. Moreover, AG(M) ∼= P4 if and only if M = F × S,

where F is a simple module and S is a module with a unique non-trivial submodule.

Proposition 1.10. (See [16, Proposition 3.9].) Every minimal dominating set in

a graph G is a maximal irredundant set of G.

2. Domination number in the annihilating-submodule graph for

Artinian modules

The main goal in this section, is to obtain the value certain domination param-

eters of the annihilating-submodule graph for Artinian modules.

Recall that M is a vertex of AG(M) if and only if there exists a nonzero proper

submodule N of M with (N : M) = Ann(M) if and only if every nonzero submod-

ule of M is a vertex of AG(M). In this case, the vertex N is adjacent to every

other vertex. Hence γ(AG(M)) = 1 and γt(AG(M)) = 2. So we assume that

throughout this paper M is not a vertex of AG(M). Clearly, if M is not a

vertex of AG(M), then AG(M) = AG(M)∗.

We start with the following remark which completely characterizes all modules

for which γ(AG(M)) = 1.

Remark 2.1. Let Ann(M) be a nil ideal. By Theorem 1.6, there exists a vertex of

AG(M) which is adjacent to every other vertex if and only if M = eM ⊕ (1− e)M ,

where eM is a simple module and (1−e)M is a prime module for some idempotent

e ∈ R, or Z(M) = Ann((N : M)M), where N is a nonzero proper submodule of M

or M is a vertex of AG(M). Now, let Ann(M) be a nil ideal and M be a domain

module. Then γ(AG(M)) = 1 if and only if M = eM ⊕ (1 − e)M , where eM is a

simple module and (1− e)M is a prime module for some idempotent e ∈ R.

Theorem 2.2. Let M be a finitely generated Artinian local module. Assume that

N is the unique maximal submodule of M . Then the radius of AG(M) is 0 or 1

and the center of AG(M) is {K ⊆ ann(N)| K 6= (0) is a submodule in M}.
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Proof. If N is the only non-zero proper submodule of M , then AG(M) ∼= K1,

e(N) = 0 and the radius of AG(M) is 0. Assume that the number of non-zero

proper submodules of M is greater than 1. Since M is finitely generated Artinian

module, there exists m ∈ N, m > 1 such that Nm = (0) and Nm−1 6= (0). For any

non-zero submodule K of M , KNm−1 ⊆ NNm−1 = (0) and so d(Nm−1,K) = 1.

Hence e(Nm−1) = 1 and so the radius of AG(M) is 1. Suppose K and L are

arbitrary non-zero submodules of M and K ⊆ ann(N). Then KL ⊆ KN = (0)

and hence e(K) = 1. Suppose (0) 6= K ′ * ann(N). Then K ′N 6= (0) and so

e(K ′) > 1. Hence the center of AG(M) is {K ⊆ ann(N)| K 6= (0) is a submodule

in M}. �

Corollary 2.3. Let M be a finitely generated Artinian local module and N is the

unique maximal submodule of M . Then the following hold good.

(a) γ(AG(M)) = 1.

(b) D is a γ-set of AG(M) if and only if D ⊆ ann(N).

Proof. (a) Trivial from Theorem 2.2.

(b) LetD = {K} be a γ-set of AG(M). SupposeK * ann(N). ThenKN 6= (0) and

so N is not dominated by K, a contradiction. Conversely, suppose D ⊆ ann(N).

Let K be an arbitrary vertex in AG(M). Then KL ⊆ NL = (0) for every L ∈ D.

i.e., every vertex K is adjacent to every L ∈ D. If |D| > 1, then D \ {L′} is also a

dominating set of AG(M) for some L′ ∈ D and so D is not minimal. Thus |D| = 1

and so D is a γ-set by (a). �

Theorem 2.4. Let M = ⊕n
i=1Mi, where Mi is a finitely generated Artinian local

module for all 1 ≤ i ≤ n and n ≥ 2. Then the radius of AG(M) is 2 and the center

of AG(M) is {K ⊆ J(M)| K 6= (0) is a submodule in M}.

Proof. Let M = ⊕n
i=1Mi, where Mi is a finitely generated Artinian local module

for all 1 ≤ i ≤ n and n ≥ 2. Let Ji be the unique maximal submodule in Mi

with nilpotency ni. Note that Max(M) = {N1, . . . , Nn| Ni = M1 ⊕ . . . ⊕Mi−1 ⊕
Ji ⊕ Mi+1 ⊕ . . . ⊕ Mn, 1 ≤ i ≤ n} is the set of all maximal submodules in M .

Consider Di = (0) ⊕ . . . ⊕ (0) ⊕ Jni−1
i ⊕ (0) ⊕ . . . ⊕ (0) for 1 ≤ i ≤ n. Note that

J(M) = J1 ⊕ . . . ⊕ Jn is the Jacobson radical of M and any non-zero submodule

in M is adjacent to Di for some i. Let K be any non-zero submodule of M . Then

K = ⊕n
i=1Ki, where Ki is a submodule of Mi.

Case 1. If K = Ni for some i, then KDj 6= (0) and KNj 6= (0) for all j 6= i. Note

that N(K) = {(0) ⊕ . . . ⊕ (0) ⊕ Li ⊕ (0) ⊕ . . . ⊕ (0)| JiLi = (0), Li is a nonzero

submodule in Mi}. Clearly N(K) ∩ N(Nj) = (0), d(K,Nj) 6= 2 for all j 6= i, and

so K −Di −Dj − Nj is a path in AG(M). Therefore e(K) = 3 and so e(N) = 3
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for all N ∈Max(M).

Case 2. If K 6= Di and Ki ⊆ Ji for all i. Then KDi = (0) for all i. Let L be any

non-zero submodule of M with KL 6= (0). Then LDj = (0) for some j, K−Dj−L
is a path in AG(M) and so e(K) = 2.

Case 3. If Ki = Mi for some i, then KDi 6= (0), KNi 6= (0) and KDj = (0) for

some j 6= i. Thus K − Dj − Di − Ni is a path in AG(M), d(K,Ni) = 3 and so

e(K) = 3. Thus e(K) = 2 for all K ⊆ J(M). Further note that in all the cases

center of AG(M) is {K ⊆ J(M)| K 6= (0) is a submodule in M}. �

In view of Theorems 2.2 and 2.4, we have the following corollary.

Corollary 2.5. Let M = ⊕n
i=1Mi, where Mi is a simple module for all 1 ≤ i ≤ n

and n ≥ 2. Then the radius of AG(M) is 1 or 2 and the center of AG(M) is

∪ni=1Di, where Di = (0)⊕ . . .⊕ (0)⊕Mi ⊕ (0)⊕ . . .⊕ (0) for 1 ≤ i ≤ n.

Proposition 2.6. Let M = ⊕n
i=1Mi, where Mi is a finitely generated Artinian

local module for all 1 ≤ i ≤ n and n ≥ 2 (M 6= M1 ⊕M2, where M1 and M2 are

simple modules). Then

(a) γ(AG(M)) = n.

(b) ir(AG(M)) = n.

(c) γc(AG(M)) = n.

(d) γt(AG(M)) = n.

(e) γcl(AG(M)) = n.

(f) γpr(AG(M)) = n, if n is even and γpr(AG(M)) = n+ 1, if n is odd.

Proof. Let Ji be the unique maximal submodule in Mi with nilpotency ni. Let

Ω = {D1, D2, . . . , Dn}, where Di = (0) ⊕ . . . ⊕ (0) ⊕ Jni−1
i ⊕ (0) ⊕ . . . ⊕ (0)

for 1 ≤ i ≤ n. Note that any non-zero submodule in M is adjacent to Di for

some i. Therefore N [Ω] = V (AG(M)), Ω is a dominating set of AG(M) and so

γ(AG(M)) ≤ n. Suppose S is a dominating set of AG(M) with |S| < n. Then there

exists N ∈ Max(M) such that NK 6= (0) for all K ∈ S, a contradiction. Hence

γ(AG(M)) = n. By Proposition 1.10, Ω is a maximal irredundant set with mini-

mum cardinality and so ir(AG(M)) = n. Clearly < Ω > is a complete subgraph

of AG(M). Hence γc(AG(M)) = γt(AG(M)) = γcl(AG(M)) = n. If n is even,

then < Ω > has a perfect matching and so Ω is a paired-dominating set of AG(M).

Thus γpr(AG(M)) = n. If n is odd, then < Ω ∪ K > has a perfect matching for

some K ∈ V (AG(M)) \ Ω. and so Ω ∪ K is a paired-dominating set of AG(M).

Thus γpr(AG(M)) = n if n even and γpr(AG(M)) = n+ 1 if n is odd. �
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Let M = ⊕n
i=1Mi, where Mi is a finitely generated Artinian local module for all

1 ≤ i ≤ n and n ≥ 2. Then by Theorem 2.4, radius of AG(M) is 2. Further, by

Proposition 2.6, the domination number of AG(M) is equal to n, where n is the

number of distinct maximal submodules of M . However, this need not be true if

the radius of AG(M) is 1. For, consider the ring M = M1⊕M2, where M1 and M2

are simple modules. Then AG(M) is a star graph and so has radius 1, whereas M

has two distinct maximal submodules. The following corollary shows that a more

precise relationship between the domination number of AG(M) and the number of

maximal submodules in M , when M is finite.

Corollary 2.7. Let M be a finitely generated Artinian module, M is a faithful

module, and γ(AG(M)) = n. Then either M = M1 ⊕M2, where M1 and M2 are

simple modules or M has n maximal submodules.

Proof. When γ(AG(M)) = 1, the proof follows from [9, Corollary 2.12]. If

γ(AG(M)) = n, where n ≥ 2, then M can not be M = M1 ⊕ M2, where M1

and M2 are simple modules. Hence M = ⊕m
i=1Mi, where Mi is a finitely gener-

ated Artinian local module for all 1 ≤ i ≤ m and m ≥ 2. By Proposition 2.6,

γ(AG(M)) = m. Hence by assumption m = n, i.e., M = ⊕n
i=1Mi, where Mi is a

finitely generated Artinian local module for all 1 ≤ i ≤ n and n ≥ 2. One can see

now that M has n maximal submodules. �

3. The relationship between γt(AG(M)) and γ(AG(M))

The main goal in this section is to study the relation between γt(AG(M)) and

γ(AG(M)).

Theorem 3.1. Let M be a module. Then

γt(AG(M)) = γ(AG(M)) or γt(AG(M)) = γ(AG(M)) + 1.

Proof. Assume that γt(AG(M)) 6= γ(AG(M)) and D is a γ-set of AG(M). If

γ(AG(M)) = 1, then it is clear that γt(AG(M)) = 2. So let γ(AG(M)) > 1

and put k = Max{n| there exist L1, . . . , Ln ∈ D such that uni=1Li 6= 0}. Since

γt(AG(M)) 6= γ(AG(M)), we have k ≥ 2. Let L1, . . . , Lk ∈ D be such that

uki=1Li 6= 0. Then S = {uki=1Li, annL1, . . . , annLk} ∪D \ {L1, . . . , Lk} is a γt-set.

Hence γt(AG(M)) = γ(AG(M)) + 1. �

Example 3.2. Let Cn and Pn be a cycle and a path with n vertices, respectively.

(a) Clearly, γ(Cn) = γ(Pn) = [n/3] (see [19, Example 1]).

(b) Let Z2 × Z3 as Z12-module. It is easy to see that AG(Z2 × Z3) = P2 and

γt(P2) = 2 = γ(P2) + 1.
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(c) By [12, Lemma 10.9.5], for any split graph G, γt(G) = γ(G). Let Z3×Z4 as

Z24-module. The split graph AG(Z3 × Z4) = P4 and γt(P4) = γ(P4) = 2.

In the following result we find the total domination number of AG(M).

Theorem 3.3. Let S be the set of all maximal elements of the set V (AG(M)). If

|S| > 1, then γt(AG(M)) = |S|.

Proof. Suppose that S is the set of all maximal elements of the set V (AG(M)).

Let K ∈ S. First we show that K = ann(annK) and there exists m ∈ M

such that K = ann(Rm). Since annK 6= 0, there exists 0 6= m ∈ annK.

Hence K ⊆ ann(annK) ⊆ ann(Rm). Thus by the maximality of K, we have

K = ann(annK) = ann(Rm). For any K ∈ S, choose mK ∈ M such that

K = ann(RmK). We assert that D = {RmK | K ∈ S} is a total dominating

set of AG(M). Since for every L ∈ V (AG(M)) there exists K ∈ S such that

L ⊆ K = ann(RmK), L and RmK are adjacent. Also for each pair K,K ′ ∈ S,

we have (RmK)(RmK′) = 0. Namely, if there exists m ∈ (RmK)(RmK′) \ {0},
then K = K ′ = ann(Rm). Thus γt(AG(M)) ≤ |S|. To complete the proof, we

show that each element of an arbitrary γt-set of AG(M) is adjacent to exactly one

element of S. Assume to the contrary, that a vertex L′ of a γt-set of AG(M) is

adjacent to K and K ′, for K,K ′ ∈ S. Thus K = K ′ = annL′, which is impossible.

Therefore γt(AG(M)) = |S|. �

The following corollary is a connection between Sections 2 and 3.

Corollary 3.4. Let M = ⊕n
i=1Mi, where Mi is a finitely generated Artinian local

module for all 1 ≤ i ≤ n, n ≥ 2 (M 6= M1 ⊕M2, where M1 and M2 are simple

modules). Then γt(AG(M)) = γ(AG(M)) = |Max(M)|.

Proof. Let M = ⊕n
i=1Mi, where (Mi, Ji) is a finitely generated Artinian local

module for all 1 ≤ i ≤ n and n ≥ 2. Recall that Max(M) = {N1, . . . , Nn|
Ni = M1 ⊕ . . . ⊕ Mi−1 ⊕ Ji ⊕ Mi+1 ⊕ . . . ⊕ Mn, 1 ≤ i ≤ n}. By Proposition

1.5, every nonzero proper submodule of M is a vertex in AG(M). So the set of

maximal elements of V (AG(M)) and Max(M) are equal and hence by Theorem

3.3, γt(AG(M)) = |Max(M)|. Finally, the result follows from Proposition 2.6. �

Example 3.5. Let Z3 × Z4 as Z24-module. S = {(0)× Z4,Z3 × 2̄Z4} is the set of

all maximal elements of AG(Z3 × Z4) and γt(AG(Z3 × Z4)) = γt(P4) = 2 = |S|.

Theorem 3.6. Let R be a reduced ring, M is a faithful module, and |Min(R)| <∞.

If γ(AG(M)) > 1, then γt(AG(M)) = γ(AG(M)) = |Min(R)|.
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Proof. Since R is reduced, M is a faithful module, and γ(AG(M)) > 1, we have

|Min(R)| > 1. Suppose that Min(R) = {p1, . . . , pn}. If n = 2, the result fol-

lows from Corollary 1.8. Therefore, suppose that n ≥ 3. We define p̂iM =

p1 . . . pi−1pi+1 . . . pnM , for every i = 1, . . . , n. Clearly, p̂iM 6= 0, for every i =

1, . . . , n. Since R is reduced, we deduce that p̂iMpiM = 0. Therefore, every piM

is a vertex of AG(M). If K is a vertex of AG(M), then by [11, Corollary 3.5],

(K : M) ⊆ Z(R) = ∪ni=1pi. It follows from the Prime Avoidance Theorem that

(K : M) ⊆ pi, for some i, 1 ≤ i ≤ n. Thus piM is a maximal element of V (AG(M)),

for every i = 1, . . . , n. From Theorem 3.3, γt(AG(M)) = |Min(R)|. Now, we

show that γ(AG(M)) = n. Assume to the contrary, that B = {J1, . . . , Jn−1}
is a dominating set for AG(M). Since n ≥ 3, the submodules piM and pjM ,

for i 6= j are not adjacent (from pipj = 0 ⊆ pk it would follow that pi ⊆ pk

or pj ⊆ pk which is not true). Because of that, we may assume that for some

k < n − 1, Ji = piM for i = 1, . . . , k, but none of the other of submodules

from B are equal to some psM (if B = {p1M, . . . , pn−1M}, then pnM would

be adjacent to some piM , for i 6= n). So every submodule in {pk+1M, ..., pnM}
is adjacent to a submodule in {Jk+1, ..., Jn−1}. It follows that for some s 6= t,

there is an l such that (psM)Jl = 0 = (ptM)Jl. Since ps * pt, it follows that

Jl ⊆ ptM , so J2
l = 0, which is impossible, since the ring R is reduced. So

γt(AG(M)) = γ(AG(M)) = |Min(R)|. �

Theorem 3.3 leads to the following corollary.

Corollary 3.7. Let R be a reduced ring, M is a faithful module, and |Min(R)| <
∞. If γ(AG(M)) > 1, then the following are equivalent.

(a) γ(AG(M)) = 2.

(b) AG(M) = Bn,m such that n,m ≥ 2.

(c) AG(M) = Kn,m such that n,m ≥ 2.

(d) R has exactly two minimal primes.

Proof. Follows from Theorem 3.3 and Corollary 1.8. �

In the following theorem the domination number of bipartite annihilating-submodule

graphs is given.

Theorem 3.8. Let M be a faithful module. If AG(M) is a bipartite graph, then

γ(AG(M)) ≤ 2.

Proof. Let M be a faithful module. If AG(M) is a bipartite graph, then from

Theorem 1.7, either R is a reduced ring with exactly two minimal prime ideals, or

AG(M) is a star graph with more than one vertex. If R is a reduced ring with
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exactly two minimal prime ideals and γ(AG(M)) = 1, then we are done. If R is

a reduced ring with exactly two minimal prime ideals and γ(AG(M)) > 1, then

the result follows by Corollary 3.7. If AG(M) is a star graph with more than one

vertex, then we are done. �

Theorem 3.9. If R is a Notherian ring and M a finitely generated module, then

γ(AG(M)) ≤ |Ass(M)| <∞.

Proof. By [21], Since R is a Notherian ring and M a finitely generated module,

|Ass(M)| < ∞. Let Ass(M) = {p1, ..., pn}, where pi = ann(mi) for some mi ∈
M for every i = 1, . . . , n. Set A = {Rmi|1 ≤ i ≤ n}. We show that A is a

dominating set of AG(M). Clearly, every Rmi is a vertex of AG(M), for i = 1, . . . , n

((piM)(miR) = 0). If K is a vertex of AG(M), then [21, Corollary 9.36] implies

that (K : M) ⊆ Z(M) = ∪ni=1pi. It follows from the Prime Avoidance Theorem

that (K : M) ⊆ pi, for some i, 1 ≤ i ≤ n. Thus K(Rmi) = 0, as desired. �

The remaining result of this paper provides the domination number of the

annihilating-submodule graph of a finite direct product of modules.

Theorem 3.10. For a module M , which is a product of two (nonzero) modules,

one of the following holds.

(a) If M ∼= F ×D, where F is a simple module and D is a prime module, then

γ(AG(M)) = 1.

(b) If M ∼= D1×D2, where D1 and D2 are prime modules which are not simple,

then γ(AG(M)) = 2.

(c) If M ∼= M1 × D, where M1 is a module which is not prime and D is a

prime module, then γ(AG(M)) = γ(AG(M1)) + 1.

(d) If M ∼= M1×M2, where M1 and M2 are two modules which are not prime,

then γ(AG(M)) = γ(AG(M1)) + γ(AG(M2)).

Proof. Parts (a) and (b) are trivial.

(c) Without loss of generality, one can assume that γ(AG(M1)) < ∞. Suppose

that γ(AG(M1)) = n and {K1, . . . ,Kn} is a minimal dominating set of AG(M1).

It is not hard to see that {K1 × 0, . . . ,Kn × 0, 0 ×D} is the smallest dominating

set of AG(M).

(d) We may assume that γ(AG(M1)) = m and γ(AG(M2)) = n, for some positive

integers m and n. Let {K1, . . . ,Km} and {L1, . . . , Ln} be two minimal dominating

sets in AG(M1) and AG(M2), respectively. It is easy to see that {K1×0, . . . ,Km×
0, 0× L1 . . . 0× Ln} is the smallest dominating set in AG(M). �
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