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Abstract. A ∗-ring R is called a π-Baer ∗-ring, if for any projection invariant

left ideal Y of R, the right annihilator of Y is generated, as a right ideal, by

a projection. In this note, we study some properties of such ∗-rings. We

indicate interrelationships between the π-Baer ∗-rings and related classes of

rings such as π-Baer rings, Baer ∗-rings, and quasi-Baer ∗-rings. We announce

several results on π-Baer ∗-rings. We show that this notion is well-behaved

with respect to polynomial extensions and full matrix rings. Examples are

provided to explain and delimit our results.
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1. Introduction

Throughout this paper R denotes an associative ring with unity. Let us recall

that a ∗-ring (or an involutive ring) R is a ring with an operation ∗ : R → R,

called involution, such that (x + y)∗ = x∗ + y∗, (xy)∗ = y∗x∗, and (x∗)∗ = x, for

all x, y ∈ R. An idempotent p of a ∗-ring R is called a projection if p is self-adjoint

(p∗ = p). An idempotent e ∈ R is called right (resp., left) semicentral if ex = exe

(resp., xe = exe), for all x ∈ R [11]. We denote by Sr(R) (resp., S`(R)) the set

of all right (resp., left) semicentral idempotents of R. If X is a nonempty subset

of R, then rR(X) (resp., `R(X)) is used for the right (resp., left) annihilator of X

over R. We use Mn(R), R[x], and R[[x]] for the n by n full matrix ring over R, the

ring of polynomials, and the ring of formal power series, respectively. The ring of

integers and the ring of integers modulo n are denoted by Z and Zn, respectively.

Recall from [17], a ring R is called a Baer ring if the right annihilator of every

nonempty subset of R is generated, as a right ideal, by an idempotent. If R is a ∗-
ring, then R is called a Baer ∗-ring if the right annihilator of every nonempty subset

is generated, as a right ideal, by a projection. Kaplansky shows in [17] that the

definitions of a Baer ring and a Baer ∗-ring are left-right symmetric. The subject

of Baer ∗-rings is essentially pure algebra, with historic roots in operator algebras
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and lattice theory. Baer ∗-rings are a common generalization of AW*-algebras and

complete ∗-regular rings. The AW*-algebras are precisely the Baer ∗-rings that

happen to be C*-algebras, the complete ∗-regular rings are the Baer ∗-rings that

happen to be regular in the sense of von Neumann.

Various weaker versions of Baer and Baer ∗-rings have been studied. From [15],

a ring R is quasi-Baer if the right annihilator of every right ideal is generated, as a

right ideal, by an idempotent. This is a nontrivial generalization of the class of Baer

rings. For example, prime rings with nonzero right singular ideal are quasi-Baer

and not Baer, since Baer rings are nonsingular. The quasi-Baer ring property is

left-right symmetric.

In [10], Birkenmeier and Park introduced a quasi-Baer ∗-ring as a ∗-ring R in

which the right annihilator of every ideal is generated by a projection. As in the

case of Baer ∗-rings, the involution can be used to show that this notion is left-

right symmetric. If R is a commutative non-Prüfer domain then Mn(R), with the

transpose involution, is a quasi-Baer ∗-ring which is not a Baer ∗-ring.

In [6], Birkenmeier et al. introduced another generalization of Baer rings. Recall

that a ring R is said to be a π-Baer ring if the right annihilator of every projec-

tion invariant left ideal Y (i.e., Y e ⊆ Y for all e = e2 ∈ R) is generated by an

idempotent. Like the Baer and quasi-Baer properties, the π-Baer property is left-

right symmetric. The π-Baer condition is strictly between the Baer and quasi-Baer

conditions.

To transfer the quasi-Baer ∗-condition from a ∗-ring R to various extensions

(e.g., full matrix rings over R or R[x] or R[[x]]) one needs no additional conditions

which is certainly not the case for the Baer ∗-condition (see [8, Example 2.3 and

Theorem 2.5]). So, it is natural to ask: is there a condition strictly between the

Baer ∗ and quasi-Baer ∗-conditions, which is able to combine some of the notable

features of the Baer ∗ and quasi-Baer ∗-conditions?

On the other hand, in the presence of an involution, the projections are vastly

easier to work with than idempotents. In this paper, we introduce a π-Baer ∗-ring
as a ∗-ring R in which the right annihilator of every projection invariant left ideal

of R is generated by a projection. These ∗-rings are generalizations of Baer ∗-rings,

and there are examples distinguishing these classes.

The organization of our paper is as follows. In Section 2, we introduce the notion

of π-Baer ∗-rings, and we study its properties and relations with other Baer-type

rings such as π-Baer rings, Baer ∗-rings, and quasi-Baer ∗-rings.
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Section 3 is devoted to the study of extensions of π-Baer ∗-rings. We prove that

the n by n full matrix rings over π-Baer ∗-rings are π-Baer ∗-rings. It is shown that

being a π-Baer ∗-ring is preserved by polynomial extensions. Also, it is proved that

the essential overrings of π-Baer ∗-rings are π-Baer ∗-rings.

2. Basic results

In this section, the π-Baer ∗-rings and and their basic properties are introduced.

Furthermore, the relations between the notion of a π-Baer ∗-ring and other Baer-

type notions are verified.

Definition 2.1. Let R be a ∗-ring. We say that R is a π-Baer ∗-ring if for any

projection invariant left ideal Y of R, the right annihilator of Y is generated, as a

right ideal, by a projection; i.e., there is a projection p ∈ R such that rR(Y ) = pR.

Remark 2.2. Let R be a ∗-ring.

(i) If R is a π-Baer ∗-ring then R has a unity. This follows from Definition 2.1

by taking Y = 0.

(ii) The definition of a π-Baer ∗-ring is left-right symmetric. For this, let R

be a π-Baer ∗-ring and let Y be a projection invariant right ideal of R. It

is not hard to see that Y ∗ is a projection invariant left ideal of R. Then

rR(Y ∗) = pR, for some projection p ∈ R. Hence `R(Y ) = (rR(Y ∗))∗ = Rp.

In the following example we see that there is a ∗-ring which is a π-Baer ring, but

it is not a π-Baer ∗-ring.

Example 2.3. Let R be the free ring Z〈x, y〉. Then by [6, Example 2.1] R is

π-Baer and the only idempotents of R are 0 and 1. Take T = R⊕Rop, where Rop

denotes the opposite ring of R. Let ∗ : T → T be the exchange involution (i.e.,

(a, b)∗ = (b, a)). By [6, Proposition 2.10] the ∗-ring T is π-Baer. We show that T

is not a π-Baer ∗-ring. Note that the only projections of T are (0, 0) and (1, 1).

One can show that rT (R) = (0, 1)T . So that rT (R) does not contain a nonzero

projection of T . Hence T is not a π-Baer ∗-ring.

Lemma 2.4. Let R be a ∗-ring.

(i) If p ∈ R is a projection and pR is a projection invariant right ideal, then

p is central.

(ii) If p ∈ R is a projection and Rp is a projection invariant left ideal, then p

is central.
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Proof. We prove only Part (i). Note that [6, Lemma 2.1] implies that p ∈ S`(R).

Now, by [1, Lemma 2.3(i)] p is central. �

The following result will be used many times in the sequel.

Proposition 2.5. Let R be a ∗-ring. Then the following are equivalent.

(i) R is a π-Baer ∗-ring;
(ii) R is a π-Baer ring in which every left (right) semicentral idempotent is a

central projection;

(iii) For each projection invariant left (right) ideal Y , there exists a central pro-

jection p ∈ R such that rR(Y ) = pR (`R(Y ) = Rp).

Proof. (i)⇒(ii) Let R be a π-Baer ∗-ring. Then R is π-Baer. Let e ∈ S`(R). Since

(1− e)Re = 0, we get eR ⊆ rR(R(1− e)R). But rR(R(1− e)R) ⊆ rR(1− e) = eR.

Thus rR(R(1 − e)R) = eR. Since R is a π-Baer ∗-ring, there exists a projection

p ∈ R such that eR = rR(R(1 − e)R) = pR. Note that p is a central projection

since pR is an ideal and this implies that p is a left semicentral projection and so it

is central by [1, Lemma 2.3(i)]. Thus e = pe = ep = p and e is a central projection.

(ii)⇒(iii) Let Y be a projection invariant left ideal of R. Then there is an

idempotent e ∈ R such that rR(Y ) = eR. By [6, Lemma 2.1(i)] eR is a projection

invariant right ideal. Hence Lemma 2.4(i) implies that e is central.

(iii)⇒(i) It is obvious. �

Proposition 2.6. Let R be a ∗-ring. Then the following are equivalent.

(i) R is a π-Baer ∗-ring.
(ii) For any nonempty subset S of R, if Se ⊆ S for each idempotent e ∈ R,

then there exists a central projection p ∈ R such that rR(S) = pR.

(iii) Every projection invariant right annihilator is generated, as a right ideal,

by a central projection of R.

Proof. (i)⇒(ii) Let R be a π-Baer ∗-ring and ∅ 6= S ⊆ R such that Se ⊆ S for

each idempotent e ∈ R. Then RS is a left ideal of R. Moreover, RS is a projection

invariant left ideal of R since (RS)e = R(Se) ⊆ RS, for each idempotent e ∈ R.

Thus, there exists a central projection p ∈ R such that rR(RS) = pR by Proposition

2.5. Hence, rR(S) = rR(RS) = pR.

(ii)⇒(iii) Let Y = rR(S), for some ∅ 6= S ⊆ R, be a projection invariant right an-

nihilator. Then for each idempotent e ∈ R, (`R(Y )e)Y = `R(Y )(eY ) ⊆ `R(Y )Y =
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0. Thus, X = `R(Y ) is a projection invariant left ideal of R. Hence there ex-

ists a central projection p ∈ R such that rR(X) = pR by Condition (ii). Then

rR(S) = rR(`R(rR(S))) = rR(X) = pR.

(iii)⇒(i) Let Y be a projection invariant left ideal of R. By [6, Lemma 2.1(i)]

rR(Y ) is a projection invariant right annihilator. From Condition (iii), rR(Y ) = pR

for some central projection p ∈ R. Hence, R is a π-Baer ∗-ring. �

Proposition 2.7. Let R be a ∗-ring. Consider the following conditions.

(i) R is a Baer ∗-ring;
(ii) R is a π-Baer ∗-ring;

(iii) R is a quasi-Baer ∗-ring.

Then (i)⇒(ii)⇒(iii).

Proof. The fact that every projection invariant left ideal is a subset yields the

implication (i)⇒(ii). The implication (ii) ⇒(iii) follows from the fact that every

two-sided ideal is a projection invariant left ideal. �

We remark that when R is commutative, conditions (i), (ii), and (iii) of Propo-

sition 2.7 are equivalent. The next example shows that the converse of each of the

implications in Proposition 2.7 does not hold.

Example 2.8. (i) Let R = Mn(Z[x]). Consider R with the ∗-transpose involution.

By [19, Theorem 7.7], the ring Z[x] is not a Prüfer domain. Thus [16, Theorem 2.3]

implies that R is not a Baer ∗-ring. On the other hand, by [6, Theorem 4.1], Z[x]

is a π-Baer ring. Then Z[x], with the identity map as the involution, is a π-Baer

∗-ring. Now Proposition 3.4 below implies that R is a π-Baer ∗-ring.

(ii) Let R be a prime ring with trivial idempotents which is not domain. For

example, let R = KG, where K is a field of characteristic p > 0, and G = Cp o A
be the restricted wreath product of Cp, the cyclic group of order p, and an infinite

elementary abelian p-group (see [14, Example 3.4]). Let ∗ be the involution on the

group ring R defined by (
∑
agg)∗ =

∑
a∗gg
−1. Then R is a quasi-Baer ∗-ring that

is not a π-Baer ∗-ring because R is not nonsingular.

Let R be a ring with an involution ∗. Recall that, ∗ is called a proper involution if

for every x ∈ R, xx∗ = 0 implies x = 0 [4]. Also, ∗ is called a semiproper involution

if xRx∗ = 0 implies x = 0 [12].

Proposition 2.9. Let R be a π-Baer ∗-ring. Then ∗ is a semiproper involution,

so R is semiprime.
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Proof. The proof follows from Proposition 2.7 and [12, Proposition 4.3] or [13,

Lemma 10.2.13]. �

Corollary 2.10. A ∗-ring R is a π-Baer ∗-ring if and only if R is a semiprime

π-Baer ring in which every central idempotent is a projection.

Proof. This result follows from Propositions 2.7 and 2.9 and the fact that in any

semiprime ring all semicentral idempotents are central [13, Proposition 1.2.6]. �

The following example illustrates that there is an involutive semiprime π-Baer

ring which is not a π-Baer ∗-ring.

Example 2.11. Let S be a prime ring and take R = Mn(S) ⊕Mn(S). From [6,

Corollary 2.2(iii), and Proposition 2.10] R is a π-Baer ring. Define ∗ : R → R by

(A,B)∗ = (B∗, A∗) for all A,B ∈ Mn(S), where A∗ (resp., B∗) is the ∗-transpose of

A (resp., B). Then (1, 0) is a central idempotent, but it is not a projection. Thus

R is not a π-Baer ∗-ring by Corollary 2.10.

Proposition 2.12. Let R be a ∗-ring. Then the following are equivalent.

(i) R is a π-Baer ∗-ring.
(ii) For each projection invariant left (right) ideal Y of R, there exists a central

projection p ∈ R such that Y ⊆ Rp and rR(Y )∩Rp = 0 (`R(Y )∩pR = 0).

Proof. (i)⇒(ii) This implication follows from [6, Proposition 2.3], [13, Proposition

1.2.6], and Proposition 2.9.

(ii)⇒(i) Let Y be a projection invariant left ideal of R. Choose a central pro-

jection p ∈ R such that Y ⊆ Rp and rR(Y ) ∩ Rp = 0. Then (1− p)R = rR(Rp) ⊆
rR(Y ). Let a ∈ rR(Y ), then a = ap + a(1 − p). Since ap ∈ rR(Y ) ∩ Rp, ap = 0.

Thus a = a(1− p) = (1− p)a ∈ (1− p)R. Hence, rR(Y ) ⊆ (1− p)R. Therefore, R

is a π-Baer ∗-ring. �

Let MR be a right R-module. A submodule NR of MR is called essential in MR

if for any x ∈M \ {0}, there exists r ∈ R such that 0 6= xr ∈ N . Also recall a right

essential overring T of R is an overring of R such that RR is essential in TR.

Recall that for a ring R, the left socle of R, Soc(RR), is defined as the sum of all

minimal left ideals of R. Equivalently, Soc(RR) is the intersection of all essential left

ideals of R (see [18, Exercise 6.12]). The right socle, Soc(RR), is defined similarly.

It is easy to check that both socles are ideals of R.

Recall from [9], that a ring R is called a right FI-extending ring if every ideal

is right essential in an idempotent generated right ideal of R. A left FI-extending
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ring is defined similarly. A ring is called FI-extending if it is both right and left

FI-extending.

Proposition 2.13. If R is a π-Baer ∗-ring, then R is right and left FI-extending.

Proof. This result follows from Propositions 2.7 and 2.9 and [9, Theorem 4.7] or

[13, Theorem 3.2.37]. �

Corollary 2.14. Let R be a π-Baer ∗-ring and X denotes the right socle of R, the

prime radical of R, the Jacobson radical of R, or the right (or left) singular ideal

of R. Then R = A⊕B (ring direct sum), where X is right and left essential in A

and B has zero right socle, zero prime radical, zero Jacobson radical, or zero right

(or left) singular ideal, respectively.

Proof. This corollary is an immediate consequence of Proposition 2.13. �

Note that the rings A and B in Corollary 2.14 are π-Baer ∗-rings from Proposi-

tion 2.17 below. Thus, the class of π-Baer ∗-rings can be split into the subclasses

of π-Baer ∗-rings with essential right socle and those with zero right socle, or those

with essential prime radical and those with zero prime radical, or those with essen-

tial Jacobson radical and those with zero Jacobson radical, or those with essential

right (left) singular ideal and those with zero right (left) singular ideal.

Proposition 2.15. Let R be a ∗-ring and e a central projection of R. If R is a

π-Baer ∗-ring, then eRe is also a π-Baer ∗-ring.

Proof. The proof is straightforward. �

Proposition 2.16. The center of a π-Baer ∗-ring is a Baer ∗-ring (and hence

π-Baer ∗-ring).

Proof. The proof follows from [13, Proposition 10.2.14] and Proposition 2.7. �

Proposition 2.17. Let Λ be a nonempty set and let Rλ be a ∗-ring for each λ ∈ Λ.

Then R =
∏
λ∈ΛRλ is a π-Baer ∗-ring if and only if Rλ is a π-Baer ∗-ring for

each λ ∈ Λ.

Proof. Assume that R is a π-Baer ∗-ring and λ ∈ Λ. Then Proposition 2.15 implies

that Rλ is a π-Baer ∗-ring.

Conversely, assume that Rλ is a π-Baer ∗-ring, for each λ ∈ Λ. Let Y be a

projection invariant left ideal of R. It is easy to see that Y =
∏
λ∈Λ Yλ for some

projection invariant left ideals Yλ of Rλ. As Rλ is a π-Baer ∗-ring, rRλ
(Yλ) =
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eλRλ, for some central projections eλ ∈ Rλ. Then rR(Y ) =
∏
λ∈Λ eλRλ. Put

e = (e1, e2, . . .) ∈ R, it is not hard to see that e is a projection of R. Hence

rR(Y ) = eR and that R is a π-Baer ∗-ring. �

Let R be a ∗-ring. An ideal I of R is said to be ∗-essential in R if I 6= 0 and

I ∩ J 6= 0 for any nonzero self-adjoint ideal J of R. An ideal P of R is said to be

a ∗-prime ideal of R if IJ ⊆ P implies that I ⊆ P or J ⊆ P , where I and J are

self-adjoint ideals of R (see [5]).

Proposition 2.18. Every ∗-prime (prime) ideal of a π-Baer ∗-ring R is either

generated by a central projection or it is a ∗-essential (essential) ideal.

Proof. We prove the case of ∗-prime ideal, the other one can be proved similarly.

Let P be a ∗-prime ideal of R. If P is not ∗-essential in R, then there is a nonzero

self-adjoint ideal I of R such that P ∩ I = 0. Since R is a π-Baer ∗-ring, there

exists a central projection e ∈ R such that rR(I) = eR. One can show that

P ⊆ rR(I) = eR. On the other hand, I and eR are self-adjoint and I(eR) = 0.

Then I ⊆ P or eR ⊆ P , since P is ∗-prime. If I ⊆ P then I ∩ P = I = 0 which

leads a contradiction. Hence e ∈ P and that P = eR. �

Proposition 2.19. Let R be a π-Baer ∗-ring. Then there is no nonzero ideal I of

R such that rR(I) is ∗-essential in R.

Proof. Let I be a nonzero ideal of R such that rR(I) is ∗-essential in R. Since R

is a π-Baer ∗-ring, there exists a central projection e ∈ R such that rR(I) = eR. As

I 6= 0, e 6= 1. Then (1− e)R is a nonzero self-adjoint ideal and rR(I) ∩ (1− e)R =

eR∩ (1−e)R = 0, a contradiction since rR(I) is ∗-essential in R. Hence, I = 0. �

Recall from [3] that, a ring R is said to satisfy the IFP (insertion of factors

property) if rR(x) is an ideal of R for all x ∈ R. A ring R is called abelian if every

idempotent in it is central. It is evident that any reduced ring satisfies IFP and

any ring with IFP is abelian.

Proposition 2.20. Let R be a ∗-ring. Then the following conditions are equivalent.

(i) R is an Abelian π-Baer ∗-ring;
(ii) R is an Abelian Baer ∗-ring;

(iii) R is a reduced quasi-Baer ∗-ring;
(iv) R is quasi-Baer ∗-ring with IFP ;

(v) R is a reduced Baer ∗-ring;
(vi) R is a Baer ∗-ring with IFP ;
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(vii) R is a reduced π-Baer ∗-ring;
(viii) R is a π-Baer ∗-ring with IFP .

Proof. (i)⇒(ii) This implication follows from [6, Lemma 2.3].

(ii)⇒(iii) This implication follows from [7, proposition 1.5] and the fact that

every Baer ∗-ring is a quasi-Baer ∗-ring.

(iii)⇒(iv) It is trivial.

(iv)⇒(v) If quasi-Baer ∗-ring R satisfies IFP , then it is immediate that R is a

Baer ∗-ring. Since every ring with IFP is abelian, the implication (ii)⇒(iii) implies

that R is reduced.

(v)⇒(vi) It is trivial.

(vi)⇒(vii) By Proposition 2.7, R is a π-Baer ∗-ring. Since every ring with IFP

is abelian, the implication (ii)⇒(iii) yields that R is reduced.

(vii)⇒(viii) It is trivial.

(viii)⇒(i) It is trivial. �

3. Extensions

Theorem 3.1. Let R be a π-Baer ∗-ring, T a right (or left) essential overring of

R, and the involution of R extends to T . Then T is a π-Baer ∗-ring and R contains

all central projections of T .

Proof. Let Y be a projection invariant left ideal of T and X = Y ∩R. It is easily

seen that X is a projection invariant left ideal of R. So there is a central projection

p ∈ R such that rR(X) = pT . We claim that rT (Y ) = pT . Let a ∈ rT (Y )

and assume that 0 6= (1 − p)a. Since RR ≤ess TR, there exists r ∈ R such that

0 6= (1 − p)ar ∈ R. Then 0 6= (1 − p)ar ∈ rR(Y ) ⊆ rR(X), a contradiction. Thus,

rT (Y ) ⊆ pT . Now, suppose pT 6⊆ rT (Y ). Then there is y ∈ Y such that 0 6= yp.

Since RR ≤ess RT by [1, Lemma 2.26], there is s ∈ R such that 0 6= syp ∈ R.

Hence syp ∈ Y ∩R = X. Then syp = (syp)p ∈ Xp = 0, a contradiction. Therefore,

rT (Y ) = pT , and consequently T is a π-Baer ∗-ring.

To prove the last part of the statement, let p ∈ T be a central projection. Set

Y = T (1 − p) and X = Y ∩ R. Then there exists a central projection q ∈ R such

that rR(X) = qR. It follows that rT (Y ) = qT . On the other hand, rT (Y ) = pT .

So pT = qT and p = q. Hence R contains all central projections of T . �

We need the following Lemma will be useful.
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Lemma 3.2 ([11], Theorem 2.3). For a ring R, let T be R[X], or R[[X]], where X

is a nonempty set of not necessarily commuting indeterminates. If e(x) ∈ S`(T ),

then e0 ∈ S`(R), where e0 is the constant term of e(x). Moreover, e(x)T = e0T .

It was shown in [2] that a reduced ring R is a Baer ring if and only if R[x] is a

Baer ring. In the next theorem, we show that being a π-Baer ∗-ring is preserved

by various polynomial extensions. Note that the involution of a ∗-ring R can be

naturally extended to an involution on R[x], and R[[x]].

Theorem 3.3. Let R be a ∗-ring. Then the following conditions are equivalent:

(i) R is a π-Baer ∗-ring;
(ii) R[x] is a π-Baer ∗-ring;
(iii) R[[x]] is a π-Baer ∗-ring.

Proof. We will prove the equivalence (i)⇔(iii). The other one can be proved

similarly. Assume that R is a π-Baer ∗-ring. Let Y be a projection invariant right

ideal of T := R[[x]]. By [6, Theorem 4.1], T is a π-Baer ring. Thus, `T (Y ) = Te(x)

for some idempotent e(x) ∈ S`(T ). By Lemma 3.2, e0 ∈ S`(R) where e0 is the

constant term of e(x). By Proposition 2.5, e0 is a central projection, since R is a

π-Baer ∗-ring. By Lemma 3.2, e(x)T = e0T . Then T (e(x))∗ = Te∗0 = e0T = e(x)T ,

and hence e(x) = e(x)(e(x))∗ = (e(x))∗. So e(x) is a projection of T . Thus T is a

π-Baer ∗-ring.

Conversely, suppose that T is a π-Baer ∗-ring. Let Y be a projection invariant

right ideal of R. By [6, Lemma 4.1(iv)], Y [[x]] is a projection invariant right ideal of

T . Then `T (Y [[x]]) = Te(x) for some central projection e(x) of T . Since e(x) ∈ T is

a projection, it follows that e0 is a projection of R. We claim that `R(Y ) = Re0. As

e(x)Y = 0, then c0Y = 0. So Re0 ⊆ `R(Y ). Let a ∈ `R(Y ). Then a ∈ `T (Y [[x]]).

Hence a = ae(x) = ae0 + ae1x + · · · . Thus, ae0 = a and ae1 = ae2 = · · · = 0.

Therefore, `R(Y ) = Re0, and consequently R is a π-Baer ∗-ring. �

Proposition 3.4. Let R be a π-Baer ∗-ring. Then Mn(R), with the ∗-transpose
involution, is a π-Baer ∗-ring for each positive integer n.

Proof. Let R be a π-Baer ∗-ring. Then by Proposition 2.7, R is quasi-Baer ∗-ring.

Now [8, Proposition 2.6] implies that Mn(R) is a quasi-Baer ∗-ring. Since Mn(R) is

generated by its idempotents, every projection invariant one-sided ideal of Mn(R)

is an ideal of Mn(R) by [6, Corollary 2.2(iii)]. Hence, Mn(R) is a π-Baer ∗-ring.

Moreover, this assertion follows from [6, Proposition 3.2] and Proposition 2.5. �
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