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Abstract
Let (R,m) be a commutative Noetherian local ring. There is a variety of nice results about
approximately Cohen-Macaulay rings. These results were done by Goto. In this paper we
prove some these results for modules and generalize the concept of approximately Cohen-
Macaulay rings to approximately Cohen-Macaulay modules. It is seen that when M is
an approximately Cohen-Macaulay module, for any proper ideal I we have grade(I, M) ≥
dimR M − dimR M/IM − 1. Specially when M is R itself, we obtain an interval for
grade(I, R). We also give a definition for these modules in case that R is not necessarily
local and show that approximately Cohen-Macaulay modules are in close relationship with
perfect modules. Finally we consider the behaviour of these modules under faithful flat
extensions.
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1. Introduction
Let R denote a commutative Noetherian ring (with identity) and I be an ideal of R.

The local cohomology modules Hi
I(M), i = 0, 1, 2, · · · , of an R-module M with respect

to I were introduced by Grothendieck, [6]. They arise as the derived functors of the left
exact functor ΓI(−), where for an R-module M , ΓI(M) is the submodule of M consisting
of all elements annihilated by some power of I, i.e., ΓI(M) =

∪∞
n=1(0 :M In). We refer

the reader to [6] or [2], for more details about local cohomology.
For a finitely generated R-module M over a commutative Noetherian local ring (R,m),

let δ be the largest submodule of M with dimR δ < dimR M . Because M is a Noetherian
R-module, δ is well-defined. Suppose that

AsshR M = {p ∈ AssR M | dim R/p = dimR M}
and put

UM (0) =
∩

p∈AsshR M
Q(p),
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where 0 =
∩

p∈AssR M Q(p) denotes a minimal primary decomposition of 0 in M . It is seen
that UM (0) = δ, see 2.2. We denote the common length of maximal regular M -sequence
in ideal I, by grade(I, M) and if (R,m) is local we denote the grade(m, M) by depthR M .
We also denote the height of I by ht(I).

The concept of approximately Cohen-Macaulay rings was introduced first by Goto in
[5]. The local ring (R,m) of dimension d is called an approximately Cohen-Macaulay
ring if either d = 0 or there exists an element a of m such that R/anR is a Cohen-
Macaulay ring of dimension d − 1 for every integer n > 0. Schenzel in [11, Definition
4.4], inspired by Goto’s idea employed [5, Theorem 1.1], (without proof) to introduce
approximately Cohen-Macaulay modules. Then he considered these modules as a subset
of Cohen-Macaulay filtered modules that in their dimension filteration appear only two
modules, Md−1 and Md. As a first part of our investigations we prepare a proof, in modules
mode, for Goto’s Theorem which guarantees the Schenzel’s definition and generalizes the
concept of approximately Cohen-Macaulay, see 2.1 to 2.7. In addition, in case that (R,m)
is the homomorphic image of a local Gorenstein ring (R′, n), we describe a relation between
approximately Cohen-Macaulay R-modules and their canonical and deficiency modules,
see 2.9.

It turns out, see 3.1 and 3.2, that approximately Cohen-Macaulay property is stable
under finite direct sum and specialization.

Pournaki, Tousi and Yassemi in [9], investigated the behaviour of approximately Cohen-
Macaulay rings and algebras under tensor product operations. They showed if R is an
approximately Cohen-Macaulay ring, then so is the ring Rp for any prime ideal p. As
an analogue for modules, we present Theorem 3.4 and show if M is an approximately
Cohen-Macaulay module, then so is Mp for any prime ideal p ∈ SuppR M . Therefore,
approximately Cohen-Macaulay property can be extended from modules over local rings,
to modules over not necessarily local rings.

For every ideal I we study the relation between grade(I, M) and dimR M , whenever
M is an approximately Cohen-Macaulay module. It is seen that if R is an approximately
Cohen-Macaulay ring, grade(I, R) can take only two values ht(I) or ht(I) − 1. In addition
if R is local, ht(I) + dim R/I can take only two values dim R or dim R − 1, see Lemmas
3.3 and 3.7.

A finitely generated R-module M is said to be perfect, if it’s projective dimension is
equal to grade(AnnR M, R). There is an interesting relation between perfect modules and
Cohen-Macaulay modules over Cohen-Macaulay rings presented in [3, Theorem 2.1.5].
Lemmas 3.3 and 3.7, help us to probe this relation between perfect modules and approxi-
mately Cohen-Macaulay modules over approximately Cohen-Macaulay rings, see 3.8.

It is shown in [5, Example 3.5], a local ring R is approximately Cohen-Macaulay if and
only if so is the formal power series ring R[[x]]. This raises the following two natural
questions for approximately Cohen-Macaulay modules over (non)local rings:

1. If R is not necessarily local, is it true that M is an approximately Cohen-Macaulay
R-module if and only if so is M [[x]] as R[[x]]-module?

2. What can we say about M [x]? If R is not necessarily local, is it true that M is an
approximately Cohen-Macaulay R-module if and only if so is M [x] as R[x]-module?

In order to give answers for the above questions we first need to study the behaviour of
approximately Cohen-Macaulay modules, under faithful flat extensions in 4.1. Fortunately
this helps us in 4.3, to find the positive answers for both questions.

2. Approximately Cohen-Macaulay modules
Throughout this section, M is a finitely generated module over a commutative Noe-

therian lacal ring (R,m).
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Lemma 2.1. Let M ̸= 0 be an R-module of dimension d. Then the set
Σ := {N |N is a submodule of M and dimR N < d}

has a unique largest element with respect to inclusion, δ say. Set G := M/δ. Then
(i) dimR G = d;
(ii) G has no non-zero submodule of dimension less than d;
(iii) AssR G = {p ∈ AssR M | dim R/p = d};
(iv) Hd

m(M) ∼= Hd
m(G).

Proof. See [2, Lemma 7.3.1]. �

In the following for an R-module M , we characterize the submodule δ in term of the
minimal primary decomposition of 0 in M . To this end, let

g :=
∩

p∈AssR MrAsshR M
p

and in the case that AssR M = AsshR M assume g = R. As mentioned already in section
1, we set UM (0) :=

∩
p∈AsshR M

Q(p), where 0 =
∩

p∈AssR M
Q(p) denotes a minimal primary de-

composition of 0 in M . It is easy to see that AssR M = AsshR M if and only if UM (0) = 0.

Proposition 2.2. Let M ̸= 0 be an R-module of dimension d. Then
(i) UM (0) = Γg(M);
(ii) UM (0) is the largest element of Σ, introduced in Lemma 2.1.

Proof. (i) The proof is clear in case that AssR M = AsshR M because g = R and
UM (0) = 0. So let AsshR M $ AssR M and put I :=

∩
p∈AssR MrAsshR M

AnnR(M/Q(p))

and K :=
∩

p∈AssR MrAsshR M
Q(p), where the submodules Q(p) are primary compo-

nents of 0 in M . Assume that x ∈ UM (0). Then Ix ⊆ UM (0) ∩ K = 0. This
leads to x ∈ Γg(M) because

√
I = g. Conversely if y ∈ Γg(M), there exists t ∈ N,

such that gty ⊆
∩

p∈AsshR M
Q(p). Therefore gty ⊆ Q(p) for every primary com-

ponent Q(p) which p ∈ AsshR M . Moreover gt *
√

AnnR(M/Q(p)) for all such
components. This guarantees that y ∈ UM (0).

(ii) First note that Σ = {N 6 M | Np = 0 ∀ p ∈ SuppR M with dim R/p = d}. Let
Γg(M) /∈ Σ. Then there exist p∗ ∈ SuppR M with dim R/p∗ = d such that
(Γg(M))p∗ ̸= 0. By Flat Base Change theorem, see [2, Corollary 4.3.2], we can pass
this statement to the ΓgRp∗ (Mp∗) ̸= 0 and get g ⊆ p∗, while it is a contradiction.
Therefore by view of part (i), UM (0) ∈ Σ.

Now suppose that δ is the largest element of Σ with respect to inclusion and that
x ∈ δ is arbitrary. Since for all components Q(p) in the primary decomposition of
0 with dimR M/Q(p) = d we have (AnnR x).x ⊆ Q(p) and AnnR x * p, we must
have x ∈ Q(p). Hence it follows that δ ⊆ UM (0) and the proof is complete.

�

From both the previous lemma and proposition, we immediately get the following corol-
lary.

Corollary 2.3. Let M ̸= 0 be an R-module of dimension d. Then UM (0) is the largest
submodule of M contained in Σ, introduced in Lemma 2.1. Moreover

(i) dimR M/UM (0) = d;
(ii) M/UM (0) has no non-zero submodule of dimension less than d;
(iii) AssR M/UM (0) = {p ∈ AssR M | dim R/p = d};
(iv) Hd

m(M) ∼= Hd
m(M/UM (0)).
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The following lemma which is quite useful in the proof of the main result of this section,
deals with a special element a ∈ m with the property (0 :M a) = (0 :M a2). It should be
mentioned, this property is equivalent to a being a d-sequence of length 1 on the module
M , as defined by Huneke in [7, Definition 1.1 and Remark 4].

Lemma 2.4. Let M ̸= 0 be an R-module of dimension d. Let a ̸= 0 be an element of m and
put N := (0 :M a). Assume that (0 :M a) = (0 :M a2) ̸= 0 and that depthR M/a2M ≥ d−1.
Then

(i) M/N is a Cohen-Macaulay R-module of dimension d;
(ii) depthR M/aM ≥ d − 1;
(iii) depthR N ≥ d − 1;
(iv) depthR M ≥ d − 1.

Proof. (i) We know that depthR M/N ≤ dimR M/N ≤ d. So it is enough to
show that depthR M/N > d − 1. If depthR M/N := t ≤ d − 1, then we get
depthR M/aM + N = depthR M/a2M + N = t − 1 since a is regular on M/N .
Consequently by considering the exact sequences

(a) 0 −→ N −→ M/a2M −→ M/a2M + N −→ 0,

(b) 0 −→ N −→ M/aM −→ M/aM + N −→ 0,

which exist since aM∩N = 0, we conclude that depthR N ≥ t and depthR M/aM ≥
t−1. On the other hand, the natural surjective homomorphism f : M → aM yields
M/N ∼= aM and so aM/a2M ∼= M/aM + N . These lead to the following exact
sequence

(c) 0 −→ M/aM + N −→ M/a2M −→ M/aM −→ 0,

and therefore depthR M/aM +N ≥ t. A contradiction, since depthR M/aM +N =
t − 1.

(ii) We employ the exact sequences of part (i) and by using a same argument as
above prove the statement. To this end assume that depthR M/aM := t < d − 1.
Therefore depthR M/a2M ≥ t+1 and it follows that depthR M/N ≥ t+2 because
by the exact sequence (c) we get depthR M/aM + N ≥ t + 1.

Thus regularity of a on M/N implies that depthR M/a2M + N ≥ t + 1. Now
by using the exact sequence (a) we see that depthR N ≥ t + 1 and hence by (b) we
must have depthR M/aM ≥ t + 1. This is a contradiction.

(iii) We have by (i) that depthR M/a2M + N = d − 1. Thus the assertion follows from
the exact sequence (a).

(iv) This immediately follows from the exact sequence
0 −→ N −→ M −→ M/N −→ 0.

�

Lemma 2.5. Let N be a submodule of d-dimensional R-module M . Assume that N is
Cohen-Macaulay of dimension d−1 and that M/N is Cohen-Macaulay of dimension d. Let
a be an element of m such that dimR M/aM = d − 1. Then M/aM is a Cohen-Macaulay
R-module of dimension d − 1, provided aN = 0.

Proof. Since AssR M/N ⊆ AsshR M we find that a is M/N -regular. Therefore aM ∩N =
0 provides the following exact sequence

0 −→ N −→ M/aM −→ M/aM + N −→ 0,

which implies depthR M/aM ≥ d − 1. Thus M/aM is a Cohen-Macaulay R-module of
dimension d − 1. �
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In the following we define the notion of approximately Cohen-Macaulay modules in-
spired by definition of approximately Cohen-Macaulay rings. It should be mentioned
that, this is a generalization of the definition provided with N. T. Cuong and D. T. Cuong
in [4, Definition 4.4].

Definition 2.6. A finitely generated module M over a Noetherian local ring (R,m) is
called an approximately Cohen-Macaulay module if either dimR M = 0 or there exists an
element a of m such that M/anM is Cohen-Macaulay of dimension d − 1 for every integer
n > 0.

Note that every Cohen-Macaulay module is approximately Cohen-Macaulay module.
So we may consider the zero module to be approximately Cohen-Macaulay.

We are now in the position to present the main result of this section. The following
theorem gives us some equivalent conditions for the approximately Cohen-Macaulay con-
cept. In case that M is a non Cohen-Macaulay R-module, the equivalence of (i) and (ii)
is shown in [4, Proposition 4.5]. Moreover, in [11, Definition 4.4], Schenzel considered the
equivalence condition (iv), as the definition of approximately Cohen-Macaulay modules.
In addition to prove the equivalence of these conditions in a more general case, we also
mention another equivalent condition for approximately Cohen-Macaulay modules.

Theorem 2.7. Let M be an R-module of dimension d > 0. Then the following are
equivalent:

(i) M is an approximately Cohen-Macaulay module;
(ii) There is an element a ∈ m such that (0 :M a) = (0 :M a2) and M/a2M is a

Cohen-Macaulay module of dimension d − 1;
(iii) M contains a submodule N such that M/N is Cohen-Macaulay of dimension d

and N is either zero or Cohen-Macaulay of dimension d − 1;
(iv) M/UM (0) is Cohen-Macaulay of dimension d and depthR M > d − 1.

Proof. (i)⇒(ii): Since M is Noetherian, there exists an integer n > 0 such that (0 :M
an) = (0 :M a2n). It is enough to replace a with an. Then the assertion (ii) follows
immediately.

(ii)⇒(iii): We put N = (0 :M a). In case that M is not Cohen-Macaulay, N ̸= 0.
Thus by Lemma 2.4, we have that M/N is a Cohen-Macaulay R-module of dimension d
and that depthR N ≥ d − 1. Moreover it follows that dimR N ̸= d because aN = 0 and
dimR M/aM = d − 1. So we get that N is a Cohen-Macaulay R-module of dimension
d − 1, as required. In the case in which M is Cohen-Macaulay, N = 0 and the assertion
follows immediately.

(iii)⇒(iv): If N = 0, M is a Cohen-Macaulay module and therefore UM (0) = 0 as
AssR M = AsshR M . Hence there is nothing to prove in this case. When N ̸= 0, by using
the exact sequence

0 −→ N −→ M −→ M/N −→ 0;

we get depthR M ≥ d − 1. So it remains to prove that UM (0) = N .
First note that because of dimR N < d, from the Corollary 2.3, we find N as a

submodule of UM (0). Also from the above exact sequence we have AsshR M ⊆ AssR N ∪
AssR M/N . This implies that AsshR M ⊆ AssR M/N since AsshR M ∩ AssR N = Φ. On
the other hand because M/N is a Cohen-Macaulay R-module of dimension d, it is well
known that AssR M/N = AsshR M/N ⊆ AsshR M . Hence we get that AssR M/N =
AsshR M . So by view of definition of UM (0), this yields that UM (0)/N = 0.

(iv)⇒(i): If M is a Cohen-Macaulay module, UM (0) = 0. Therefore we immediately
have the assertion (i) by [3, Theorem 2.1.2 (c)]. In case that M is not Cohen-Macaulay
module, let us apply Lemma 2.5, to the situation N = UM (0).
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From which the fact that UM (0) ̸= 0, we can consider the exact sequence

0 −→ UM (0) −→ M −→ M/UM (0) −→ 0 ,

which implies depthR UM (0) ≥ d − 1. Hence by Corollary 2.3, we find UM (0) as a Cohen-
Macaulay R-module of dimension d−1. Let 0 =

∩
p∈AssR M

Q(p) denotes a minimal primary

decomposition of 0 in M . Then with the notations K and g were introduced in Proposition
2.2, we have K ̸= 0 since AssR M ̸= AsshR M . Moreover it follows that g ̸= 0 immediately.
So we can take an element b ̸= 0 of g not contained in

∪
p∈AsshR M

p. It is straightforward to

see that there exists an integer t > 0 such that btM ⊆ K. Now we can put a = bt and get
aUM (0) = 0, because K ∩ UM (0) = 0. Finally by Lemma 2.5, the proof is completed. �

As we saw above, the submodule N in assertion (iii) is uniquely determined and is
exactly equal to UM (0).

Definition 2.8. [10, Section 1.2 ] Suppose that the local ring (R,m) is the homomorphic
image of a local Gorenstein ring (R′, n). Let M be a finitely generated R-module of
dimension d. For an integer i ∈ Z, define

Ki(M) := Extn′−i
R′ (M, R′),

where n′ = dim R′. Then the module K(M) := Kd(M) is called the canonical module of
M and for i ̸= d the modules Ki(M) are called the modules of deficiency of M .

Theorem 2.9. Let (R,m) denote a complete local ring and suppose that M is a d-
dimensional R-module which is not Cohen-Macaulay. Then the following are equivalent:

(i) M is approximately Cohen-Macaulay;
(ii) Kd(M), Kd−1(M) are Cohen-Macaulay R-modules of dimension d, d − 1 respec-

tively and Ki(M) = 0 for all i ̸= d, d − 1.

Proof. (i)⇒(ii): Applying the fact that M/UM (0) is a Cohen-Macaulay R-module of
dimension d together with

depthR M = depthR UM (0) = dimR UM (0) = d − 1,

to the following induced exact sequence

· · · −→ Hd−2
m (M/UM (0)) −→ Hd−1

m (UM (0)) −→ Hd−1
m (M)) −→ Hd−1

m (M/UM (0)) −→

Hd
m(UM (0)) −→ Hd

m(M) −→ Hd
m(M/UM (0)) −→ Hd+1

m (UM (0)) −→ · · · ;

leads us to obtain Hi
m(M) = 0 for all i ̸= d, d − 1 and

Hd−1
m (M) ∼= Hd−1

m (UM (0)), Hd
m(M) ∼= Hd

m(M/UM (0)).

Note that we may express R as a homomorphic image of a local Gorenstein ring R′

with dim R′ = n′, see [8, Theorem 29.4]. Hence by view of Matlis Duality theorem [3,
Theorem 3.2.13], and Local Duality theorem [2, Theorem 11.2.6], we have the following
isomorphisms

Ki(M) = Extn′−i
R′ (M, R′) ∼= HomR

(
HomR(Extn′−i

R′ (M, R′), E(R/m)), E(R/m)
)

∼= HomR(Hi
m(M), E(R/m)),

which imply Ki(M) = 0 for all i ̸= d, d − 1. (Here E(R/m) denotes the injective hull of
R/m). However, by putting i = d in above, we find that
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Kd(M) ∼= HomR(Hd
m(M), E(R/m)) ∼= HomR(Hd

m(M/UM (0)), E(R/m))
∼= HomR

(
HomR(Extn′−d

R′ (M/UM (0), R′), E(R/m)), E(R/m)
)

∼= Extn′−d
R′ (M/UM (0), R′) = Kd(M/UM (0)).

Similarly in case i = d − 1 it is straightforward to obtain Kd−1(M) ∼= Kd−1(UM (0)).
So by [11, Proposition 3.2], the proof is complete.

(ii)⇒(i): Since for all 0 ≤ i ≤ d the R-modules Ki(M) are either zero or i-dimensional
Cohen-Macaulay modules, we find by [11, Theorem 5.5], that M is a Cohen-Macaulay
filtered module (in the sense of [11, Definition 4.1]). We claim that depthR M = d − 1. To
this end first note, it is well known that for every R-module M , HomR(M, E(R/m)) ̸= 0
if and only if M ̸= 0. So it follows from Local Duality theorem [2, Theorem 11.2.6], and
Matlis Duality theorem [3, Theorem 3.2.13], that Hi

m(M) = 0 for all i ̸= d, d−1. Moreover
Hd−1

m (M) ̸= 0 because Kd−1(M) ̸= 0. This guarantees depthR M = d − 1.
Now it follows immediately from [11, Proposition 4.5], that M is an approximately

Cohen-Macaulay module. �
Let R̂ and M̂ denote the m-adic completions of R and M respectively. At the end

of this section we collect some preliminary properties of approximately Cohen-Macaulay
modules.
Corollary 2.10. Suppose that M is an approximately Cohen-Macaulay R-module of di-
mension d. Then

(i) dim R/p ≥ dimR M − 1 for all p ∈ AssR M ;
Moreover if M is not Cohen-Macaulay

(ii) Hi
m(M) ̸= 0 for i = d, d − 1 and it is zero for all 0 ≤ i < d − 1;

(iii) Kd(M̂), Kd−1(M̂) are Cohen-Macaulay R̂-modules of dimension d, d − 1 respec-
tively and Ki(M̂) = 0 for all i ̸= d, d − 1.

Proof. (i) This is an immediately consequence of [3, Proposition 1.2.13], because of
depthR M ≥ d − 1.

(ii) This is trivial by view of [2, Corollary 6.2.8]
(iii) Note that R̂ is a complete ring, Hd−1

mR̂
(M̂) ∼= Hd−1

mR̂
(ÛM (0)) and Hd

mR̂
(M̂) ∼=

Hd
mR̂

(M̂/ÛM (0)). Thus with a similar argument presented for Theorem 2.9, we

find Kd−1(M̂) ∼= Kd−1(ÛM (0)) and Kd(M̂) ∼= Kd(M̂/ÛM (0)). Moreover it fol-
lows that Ki(M̂) = 0 for all i ̸= d, d − 1 because H i

mR̂
(M̂) = 0 for all i ̸= d, d − 1.

Now we invoke [11, Proposition 3.2] and complete the proof.
�

3. Some results
In this section we shall investigate some properties of approximately Cohen-Macaulay

modules. Throughout this section unless we say otherwise, the Noetherian ring R is local
with maximal ideal m and M is a finitely generated R-module.
Proposition 3.1. A direct sum of finitely many approximately Cohen-Macaulay R-modules
with equal dimension d is approximately Cohen-Macaulay.
Proof. By induction, it is enough to prove for a direct sum of two approximately Cohen-
Macaulay R-modules. Let M = M1 ⊕ M2, where M1 and M2 are approximately Cohen-
Macaulay modules of dimension d. Then by Theorem 2.7, there exist Cohen-Macaulay
submodules N1 ≤ M1 and N2 ≤ M2 such that M1/N1 and M2/N2 are Cohen-Macualay of
dimension d. We may assume that N1 and N2 are not zero. Thus, it follows easily from
the exact sequence
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0 −→ N1 −→ N1 ⊕ N2 −→ N2 −→ 0,

that N1 ⊕ N2 is Cohen-Macaulay of dimension d − 1. Moreover (M1 ⊕ M2)/(N1 ⊕ N2) is
Cohen-Macaulay of dimension d because it is isomorphic to (M1/N1) ⊕ (M2/N2). Hence
M is approximately Cohen-Macaulay. �

Lemma 3.2. Let M be an approximately Cohen-Macaulay R-module. Suppose that x =
x1, x2, · · · , xn is an M -sequence in m. Then M/xM is also approximately Cohen-Macaulay
(over both R and R/(x)).

Proof. We may assume that M is not Cohen-Macaulay and dimR M = d. By the hy-
pothesis, there exists a submodule N of M such that N is a Cohen-Macaulay R-module of
dimension d − 1 and M/N is a Cohen-Macaulay R-module of dimension d. Let n = 1 be
considered, that is x = x1 is an M-sequence of length one. Therefore N/x1N is a (d − 2)-
dimensional Cohen-Macaulay submodule of M/x1M (over both R and R/(x1)). So by

view of Theorem 2.7, it is enough to show that M/x1M

N/x1N
is a Cohen-Macaulay module of

dimension d − 1 (over both R and R/(x1)).
Obviously x1 is regular over M/N because AssR M/N = AsshR M . Thus M/x1M + N

is a Cohen-Macaulay module of dimension d − 1. On the other hand, from which the fact
that the submodule N is exactly UM (0) itself, we get N ∩ x1M = x1N . This implies the

isomorphism M/x1M

N/x1N
∼= M/x1M + N and completes the proof in case n = 1. Now we

can get the sentence by induction on n. �

In the following lemma for an ideal I in R, we prepare a relation between grade(I, M)
and dimR M .

Lemma 3.3. Suppose that M is an approximately Cohen-Macaulay R-module and that
I ⊆ m is an ideal of R. Then

grade(I, M) ≥ dimR M − dimR M/IM − 1.

Proof. If dimR M ≤ 0, there is nothing to prove. So we put dimR M > 0 and prove the
assertion by induction on grade(I, M). In the first step suppose that grade(I, M) = 0.
Then there exists a prime p ∈ AssR M with I + AnnR M ⊆ p. Therefore it follows from
Corollary 2.10 part (i)

dimR M − 1 ≤ dim R/p ≤ dim R/(I + AnnR M) = dimR M/IM ,

which proves the first step.
Now let grade(I, M) > 0. Then we can choose an M -regular element x ∈ I. It should

be pointed grade(I, M/xM) = grade(I, M)−1 and dimR M/xM = dimR M −1. Moreover
M/xM is an approximately Cohen-Macaulay R-module by Lemma 3.2. Hence in view of
the inductive hypothesis

grade(I, M/xM) ≥ dimR M/xM − dimR M/IM − 1.

This completes the proof. �

Theorem 3.4. Let M be an approximately Cohen-Macaulay R-module. Then
(i) dimRp Mp − depthRp

Mp ≤ 1 for any p ∈ Spec R.
(ii) Suppose that M is not Cohen-Macaulay. Then the following hold for any p ∈

SuppR M such that Mp is not Cohen-Macaulay:
(a) dimRp Mp + dimR M/pM = dimR M ;
(b) grade(p, M) = dimR M − dimR M/pM − 1 = depthR M − dimR M/pM ;
(c) grade(p, M) = depthRp

Mp.
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(iii) Suppose that M is not Cohen-Macaulay. Then (UM (0))p = UMp(0), for any p ∈
SuppR M such that Mp is not Cohen-Macaulay.

(iv) Mp is an approximately Cohen-Macaulay Rp-module, for any p ∈ SuppR M .

Proof. (i) It is straightforward to see that depthR M ≤ grade(p, M) + dimR M/pM ,
for every p ∈ Spec R. Applying this together with the fact that dimRp Mp +
dimR M/pM ≤ dimR M for every p ∈ Spec R, we can write

1 ≥ dimR M − depthR M ≥ dimR M − grade(p, M) − dimR M/pM

≥ dimRp Mp − grade(p, M)
≥ dimRp Mp − depthRp

Mp.

(ii) Let p be a prime in SuppR(M) such that Mp is not Cohen-Macaulay. Then by (i),
depthRp

Mp = dimRp Mp − 1. Now in view of Lemma 3.3, we have

depthRp
Mp + dimR M/pM = dimRp Mp − 1 + dimR M/pM

= ht(p/ AnnR M) − 1 + dim R/p

≤ dim R/ AnnR M − 1
= dimR M − 1
≤ grade(p, M) + dimR M/pM

≤ depthRp
Mp + dimR M/pM.

This implies all equations (a), (b) and (c) immediately.
(iii) Let p ∈ SuppR M such that Mp is not Cohen-Macaulay Rp-module. Suppose that

0 =
∩

q∈AssR M
Q(q) denotes a minimal primary decomposition of 0 in M . Then

(Q(q))p is a qRp-primary submodule of Mp for any q ∈ AssR M such that q ⊆ p.
Moreover it is obvious that (Q(q))p = Mp for all q ∈ AssR M such that q * p.
Therefore

0 =
∩

q∈AssR M
q⊆p

(Q(q))p

is a minimal primary decomposition for the zero submodule of Mp. Thus by
definition of UM (0), it is enough to show that

AsshRp Mp = {qRp | q ∈ AsshR M, q ⊆ p}.
Let q ∈ SuppR M . Then by view of (ii), we have

qRp ∈ AsshRp Mp ⇐⇒ q ⊆ p and dim Rp/qRp = dimRp Mp

⇐⇒ q ⊆ p and ht(p/q) = dimRp Mp

⇐⇒ q ⊆ p and ht(p/q) + dim R/p = dimR M.

Let qRp ∈ AsshRp Mp. Since
dimR M = ht(p/q) + dim R/p ≤ dim R/q ≤ dimR M ,

dim R/q = dimR M and hence q ∈ AsshR M .
Conversely, let q ⊆ p and q ∈ AsshR M . Since M is approximately Cohen-

Macaulay, by view of [11, Propositions 4.5 and 4.6], SuppR M is a catenary subset
of Spec R. Consequently R/q is a catenary integral domain, because SuppR R/q ⊆
SuppR M . Now by [8, Theorem 31.4], we have ht(p/q)+dim R/p = dim R/q. Thus
ht(p/q) + dim R/p = dimR M and we conclude that qRp ∈ AsshRp Mp.

(iv) Let p ∈ SuppR M . If Mp is a Cohen-Macaulay Rp-module, then it is an approx-
imately Cohen-Macaulay module. If Mp is not a Cohen-Macaulay module, then
M is not Cohen-Macaulay. On the other hand, M/UM (0) is a Cohen-Macaulay
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R-module by Theorem 2.7. Hence by (iii), Mp/UMp(0) is a Cohen-Macaulay Rp-
module. Now the assertion follows from Theorem 2.7, because depthRp

Mp ≥
dimRp Mp − 1, by (i).

�

In the following by using Theorem 3.4, we can extend the concept of approximately
Cohen-Macaulay modules over a local ring R, to those finitely generated R-modules that
R is not necessarily local.

Definition 3.5. Let R be a ring which is not necessarily local. A finitely generated
module M over R is said to be an approximately Cohen-Macaulay R-module if for every
prime ideal p ∈ SuppR M , Mp is an approximately Cohen-Macaulay Rp-module. In the
same way, if R itself is an approximately Cohen-Macaulay module, then it is called an
approximately Cohen-Macaulay ring.

Remark 3.6. Let Max R denotes the set of all maximal ideals in R. Since for every
p ∈ SuppR M there exists m ∈ Max R with p ⊆ m and hence Mp

∼= (Mm)pRm
, therefore in

case that R is not necessarily local, can be asserted M is approximately Cohen-Macaulay
if and only if so is Mm for all m ∈ Max R.

Now assume that M is an approximately Cohen-Macaulay R-module and that x =
x1, x2, · · · , xn is an M -sequence in R. Then M/xM is an approximately Cohen-Macaulay
module (over both R and R/(x)). In fact, it is well known that xRm is an Mm-sequence
for all m ∈ Max R with xR ⊆ m, see [3, Corollary 1.1.3]. So by Lemma 3.2, Mm/xRmMm

is an approximately Cohen-Macaulay module for every m ∈ Max R.

Lemma 3.7. Let R be an approximately Cohen-Macaulay ring which is not necessarily
local and I ̸= R an ideal. Then

ht(I) − 1 ≤ grade(I, R) ≤ ht(I)
and if R is local, then

dim R − dim R/I − 1 ≤ grade(I, R) ≤ dim R − dim R/I ;

dim R − 1 ≤ ht(I) + dim R/I ≤ dim R .

Proof. For an ideal I ̸= R one has grade(I, R) = min{depth Rp|p ∈ Spec R , I ⊆ p} and
furthermore ht(I) = min{dim Rp|p ∈ Spec R , I ⊆ p}. On the other hand, Theorem 2.7
yields depth Rp ≥ dim Rp − 1 because Rp is an approximately Cohen-Macaulay local ring
for any p ∈ Spec R. This proves the first two inequalities.

Now suppose that R is local. As was shown, grade(I, R) either equals to ht(I) or
ht(I) − 1. Moreover, it is well known that ht(I) + dim R/I ≤ dim R. Both these facts
together with Lemma 3.3, imply that

dim R − dim R/I − 1 ≤ grade(I, R) ≤ dim R − dim R/I.

Also by a similar argument and puting ht(I) or ht(I) − 1 instead of grade(I, R) in Lemma
3.3, we can conclude immediately

dim R − 1 ≤ ht(I) + dim R/I ≤ dim R.

�

One says that a finitely generated R-module M is perfect if pdRM = grade M . Here
pdRM denotes the projective dimension of M and grade M is grade(AnnR M, R), the
length of all maximal R-sequences in AnnR M . For more details see [3, Definition 1.2.11].
In the following we compare the perfect modules with approximately Cohen-Macaulay
modules.
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Proposition 3.8. Let R be an approximately Cohen-Macaulay ring which is not neces-
sarily local and M ̸= 0 a finitely generated R-module with pdRM < ∞.

(i) If M is perfect, Mp is Cohen-Macaulay (so is approximately Cohen-Macaulay) or
depthRp

Mp = dimRp Mp − 1, for every p ∈ SuppR M .
(ii) If M is approximately Cohen-Macaulay, Mp is perfect or pdRp

Mp = grade Mp +
1, for every p ∈ SuppR M . In particular, when M is an approximately Cohen-
Macaulay module over a local ring R, then M is perfect or pdRM = grade M + 1.

Proof. (i) Let p be a prime in SuppR M . Then Mp is a module over the local ring Rp.
For simplicity of writing, we would rather replace Rp and Mp with R and M . In this
way we should prove M is a Cohen-Macaulay R-module or depthR M = dimR M −
1. Note that with these notations M is a finitely generated perfect module over the
approximately Cohen-Macaulay local ring R and pdRM < ∞. Hence Auslander-
Buchsbaum formula [3, Theoreme 1.3.3], gives grade M + depthR M = depth R
and follows frome Theorem 2.7, that grade M + depthR M ≥ dim R − 1. Therefore

depthR M ≥ dim R − 1 − grade(AnnR M, R).
According to Lemma 3.7, there are two possible values for grade(AnnR M, R).

In case that grade(AnnR M, R) = ht(AnnR M) − 1 we have depthR M ≥ dim R −
ht(AnnR M). Thus depthR M ≥ dim R/ AnnR M = dimR M due to ht(AnnR M)+
dim R/ AnnR M ≤ dim R. This yields that M is Cohen-Macaulay.

On the other hand in case that grade(AnnR M, R) = ht(AnnR M) we obtain
depthR M ≥ dim R − 1 − ht(AnnR M) ≥ dim R/ AnnR M − 1 = dimR M − 1,
which leads depthR M = dimR M − 1 provided that M is not Cohen-Macaulay.

(ii) It is enough to show that grade M ≤ pdRM ≤ grade M + 1 whenever R is local.
To this end we consider the following cases:

First, it follows from [3, Theorem 2.1.5], that pdRM = grade M provided that
both of R and M are Cohen-Macaulay.

Second, in case that R is Cohen-Macaulay and M is not, Auslander-Buchsbaum
formula [3, Theorem 1.3.3] and the fact that depthR M = dimR M − 1, give
pdRM = dim R − dimR M + 1. Therefore pdRM = dim R − dim R/ AnnR M + 1
and by [3, Corollary 2.1.4], we have

pdRM = ht(AnnR M) + 1 = grade(AnnR M, R) + 1 = grade M + 1.
Finally, suppose that R is not Cohen-Macaulay (and M is Cohen-Macaulay or

not). Because depth R = dim R − 1 and depthR M ≥ dimR M − 1, by a similar
argument as above we find

(a) pdRM ≤ dim R − dim R/ AnnR M .
It is easy to see that we always have grade M ≤ pdRM . Moreover follows from

Lemma 3.7, that dim R−dim R/ AnnR M is equal to ht(AnnR M) or ht(AnnR M)+
1. Thus we have the following two possible inequalities:

(b) grade(AnnR M, R) ≤ pdRM ≤ ht(AnnR M);
(c) grade(AnnR M, R) ≤ pdRM ≤ ht(AnnR M) + 1.

On the other hand by Lemma 3.7 again, ht(AnnR M) can be equal to
grade(AnnR M, R) or grade(AnnR M, R) + 1. Hence we find by (b) and (c) in
general that

grade(AnnR M, R) ≤ pdRM ≤ grade(AnnR M, R) + 2.
We claim that pdRM ̸= grade(AnnR M, R) + 2. Otherwise, by Lemma 3.3,

pdRM = grade(AnnR M, R) + 2 ≥ dim R − dim R/ AnnR M + 1.
This means pdRM > dim R − dim R/ AnnR M which contradicts (a). Therefore
in all cases we have grade(AnnR M, R) ≤ pdRM ≤ grade(AnnR M, R) + 1.

�
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4. Faithful flat extensions
In the following we investigate how approximately Cohen-Macaulay modules behave

under faithful flat local extensions. It is seen that they behave somehow similar to Cohen-
Macaulay modules (see [3, Theorem 2.1.7]).

Theorem 4.1. Let (R,m) −→ (S, n) be a homomorphism of Noetherian local rings. Sup-
pose M is a finitely generated R-module and N is a finitely generated S-module which is
faithfully flat over R. Then the following are equivalent:

(i) M is an approximately Cohen-Macaulay R-module and N/mN is a Cohen-Macaulay
S-module;

(ii) M ⊗R N is an approximately Cohen-Macaulay S-module and UM (0) ⊗R N =
UM⊗RN (0).

Proof. (i)⇒(ii): In case that M is a Cohen-Macaulay R-module, the assertion follows
immediately from [3, Theorem 2.1.7]. Suppose that M is not Cohen-Macaulay. It fol-
lows again that UM (0) ⊗R N is a Cohen-Macaulay S-module because UM (0) is a Cohen-
Macaulay R-module of dimension dimR M − 1. Also we have

dimS(UM (0) ⊗R N) = dimR(UM (0)) + dimS N/mN

= dimR M − 1 + dimS N/mN

= dimS(M ⊗R N) − 1.

On the other hand, M/UM (0) is Cohen-Macaulay. Thus (M ⊗R N)/(UM (0) ⊗R N) is a
Cohen-Macaulay S-module because

(M ⊗R N)/(UM (0) ⊗R N) ∼= (M/UM (0)) ⊗R N .

Moreover by view of Corollary 2.3,

dimS(M ⊗R N) ≥ dimS(M ⊗R N)/(UM (0) ⊗R N)
≥ dimS ((M ⊗R N)/(UM⊗RN (0)))
= dimS(M ⊗R N).

Therefore by Theorem 2.7 part (iii), M ⊗R N is an approximately Cohen-Macaulay
S-module. Hence the paragraph before Definition 2.8, implies that UM (0) ⊗R N =
UM⊗RN (0).

(ii)⇒(i): We may assume that dimS(M ⊗R N) > 0, because M ⊗R N is Cohen-
Macaulay in case that dimS(M ⊗R N) = 0.

Since (M ⊗R N)/(UM⊗RN (0)) is a Cohen-Macaulay S-module, therefore it is also
(M/UM (0)) ⊗R N . This leads to M/UM (0) and N/mN are Cohen-Macaulay modules
over R and S respectively. Moreover we have

dimR M = dimS(M ⊗R N) − dimS N/mN

≤ depthS(M ⊗R N) + 1 − depthS N/mN

= depthR M + 1.

Hence by Theorem 2.7 part (iv), we find that M is an approximately Cohen-Macaulay
module. �
Corollary 4.2. Let M be a finitely generated module over a local ring (R,m). Then M

is approximately Cohen-Macaulay if and only if its m-adic completion M̂ is approximately
Cohen-Macaulay and U

M̂
(0) = ÛM (0).

Proof. The extension R −→ R̂ is local and faithfully flat. So we can invoke Theorem 4.1
and conclude the proof. �
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It should be mentioned that in general M is not approximately Cohen-Macaulay in case
that M̂ is an approximately Cohen-Macaulay R̂-module. For this fact see [11, Example
6.1].

Theorem 4.3. Let R be a ring which is not necessarily local, M a finitely generated
R-module, and S = R[X1, · · · , Xn] or S = R[[X1, · · · , Xn]]. Then M ⊗R S is an approxi-
mately Cohen-Macaulay S-module if and only if M is an approximately Cohen-Macaulay
R-module

Proof. We may assume n = 1, X = X1 because the indeterminates can be adjoined
successively. Suppose M ⊗R S is approximately Cohen-Macaulay. In both cases X is
regular on M ⊗R S, and R ∼= S/(X), M ∼=

R
(M ⊗R S)/X(M ⊗R S). Therefore it follows

from Remark 3.6, that M is an approximately Cohen-Macaulay module.
Conversely, let m be a maximal ideal of S and set p := m∩R. Then Sm is an Rp-module

by canonical homomorphism φ : (Rp, pRp) −→ (Sm,mSm). This leads to the following
isomorphism

(M ⊗R S)m ∼=
Sm

Mp ⊗Rp Sm.

So we may prove Mp ⊗Rp Sm is an approximately Cohen-Macaulay Sm-module. Since
in both cases, S is a flat R-algebra, therefore Sm is faithfully flat over Rp by [1, Exercises
3.16 and 3.18]. Moreover the fiber Sm/pSm is a discrete valuation ring, and thus is Cohen-
Macaulay (see outlined below [3, Theorem A.12]). Theorem 4.1, completes the proof. �
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