

RESEARCH ARTICLE

Approximately Cohen-Macaulay modules

Saeed Yazdani^(b), Jafar A'zami^{*}^(b), Yasin Sadegh^(b)

Department of Mathematics, Faculty of Basic Sciences, University of Mohaghegh Ardabili, 56199-11367, Ardabil, Iran

Abstract

Let (R, \mathfrak{m}) be a commutative Noetherian local ring. There is a variety of nice results about approximately Cohen-Macaulay rings. These results were done by Goto. In this paper we prove some these results for modules and generalize the concept of approximately Cohen-Macaulay rings to approximately Cohen-Macaulay modules. It is seen that when M is an approximately Cohen-Macaulay module, for any proper ideal I we have $\operatorname{grade}(I, M) \geq \dim_R M - \dim_R M/IM - 1$. Specially when M is R itself, we obtain an interval for grade(I, R). We also give a definition for these modules in case that R is not necessarily local and show that approximately Cohen-Macaulay modules are in close relationship with perfect modules. Finally we consider the behaviour of these modules under faithful flat extensions.

Mathematics Subject Classification (2020). 13E05, 13C14, 13D45

Keywords. approximately Cohen-Macaulay module, local cohomology, canonical module

1. Introduction

Let R denote a commutative Noetherian ring (with identity) and I be an ideal of R. The local cohomology modules $\mathrm{H}_{I}^{i}(M)$, $i = 0, 1, 2, \cdots$, of an R-module M with respect to I were introduced by Grothendieck, [6]. They arise as the derived functors of the left exact functor $\Gamma_{I}(-)$, where for an R-module M, $\Gamma_{I}(M)$ is the submodule of M consisting of all elements annihilated by some power of I, i.e., $\Gamma_{I}(M) = \bigcup_{n=1}^{\infty} (0 :_{M} I^{n})$. We refer the reader to [6] or [2], for more details about local cohomology.

For a finitely generated *R*-module *M* over a commutative Noetherian local ring (R, \mathfrak{m}) , let δ be the largest submodule of *M* with $\dim_R \delta < \dim_R M$. Because *M* is a Noetherian *R*-module, δ is well-defined. Suppose that

$$\operatorname{Assh}_R M = \{ \mathfrak{p} \in \operatorname{Ass}_R M | \dim R / \mathfrak{p} = \dim_R M \}$$

and put

$$U_M(0) = \bigcap_{\mathfrak{p} \in \operatorname{Assh}_R M} Q(\mathfrak{p}),$$

^{*}Corresponding Author.

Email addresses: saeedyzdn@uma.ac.ir (S. Yazdani), azami@uma.ac.ir (J. A'zami), y.sadegh@uma.ac.ir (Y. Sadegh)

Received: 20.08.2021; Accepted: 20.12.2021

where $0 = \bigcap_{\mathfrak{p} \in \operatorname{Ass}_R M} Q(\mathfrak{p})$ denotes a minimal primary decomposition of 0 in M. It is seen that $U_M(0) = \delta$, see 2.2. We denote the common length of maximal regular M-sequence in ideal I, by $\operatorname{grade}(I, M)$ and if (R, \mathfrak{m}) is local we denote the $\operatorname{grade}(\mathfrak{m}, M)$ by $\operatorname{depth}_R M$. We also denote the height of I by $\operatorname{ht}(I)$.

The concept of approximately Cohen-Macaulay rings was introduced first by Goto in [5]. The local ring (R, \mathfrak{m}) of dimension d is called an approximately Cohen-Macaulay ring if either d = 0 or there exists an element a of \mathfrak{m} such that $R/a^n R$ is a Cohen-Macaulay ring of dimension d-1 for every integer n > 0. Schenzel in [11, Definition 4.4], inspired by Goto's idea employed [5, Theorem 1.1], (without proof) to introduce approximately Cohen-Macaulay modules. Then he considered these modules as a subset of Cohen-Macaulay filtered modules that in their dimension filteration appear only two modules, M_{d-1} and M_d . As a first part of our investigations we prepare a proof, in modules mode, for Goto's Theorem which guarantees the Schenzel's definition and generalizes the concept of approximately Cohen-Macaulay, see 2.1 to 2.7. In addition, in case that (R, \mathfrak{m}) is the homomorphic image of a local Gorenstein ring (R', \mathfrak{n}) , we describe a relation between approximately Cohen-Macaulay R-modules and their canonical and deficiency modules, see 2.9.

It turns out, see 3.1 and 3.2, that approximately Cohen-Macaulay property is stable under finite direct sum and specialization.

Pournaki, Tousi and Yassemi in [9], investigated the behaviour of approximately Cohen-Macaulay rings and algebras under tensor product operations. They showed if R is an approximately Cohen-Macaulay ring, then so is the ring $R_{\mathfrak{p}}$ for any prime ideal \mathfrak{p} . As an analogue for modules, we present Theorem 3.4 and show if M is an approximately Cohen-Macaulay module, then so is $M_{\mathfrak{p}}$ for any prime ideal $\mathfrak{p} \in \operatorname{Supp}_R M$. Therefore, approximately Cohen-Macaulay property can be extended from modules over local rings, to modules over not necessarily local rings.

For every ideal I we study the relation between $\operatorname{grade}(I, M)$ and $\dim_R M$, whenever M is an approximately Cohen-Macaulay module. It is seen that if R is an approximately Cohen-Macaulay ring, $\operatorname{grade}(I, R)$ can take only two values $\operatorname{ht}(I)$ or $\operatorname{ht}(I) - 1$. In addition if R is local, $\operatorname{ht}(I) + \dim R/I$ can take only two values $\dim R$ or $\dim R - 1$, see Lemmas 3.3 and 3.7.

A finitely generated R-module M is said to be perfect, if it's projective dimension is equal to grade(Ann_R M, R). There is an interesting relation between perfect modules and Cohen-Macaulay modules over Cohen-Macaulay rings presented in [3, Theorem 2.1.5]. Lemmas 3.3 and 3.7, help us to probe this relation between perfect modules and approximately Cohen-Macaulay modules over approximately Cohen-Macaulay rings, see 3.8.

It is shown in [5, Example 3.5], a local ring R is approximately Cohen-Macaulay if and only if so is the formal power series ring R[[x]]. This raises the following two natural questions for approximately Cohen-Macaulay modules over (non)local rings:

1. If R is not necessarily local, is it true that M is an approximately Cohen-Macaulay R-module if and only if so is M[[x]] as R[[x]]-module?

2. What can we say about M[x]? If R is not necessarily local, is it true that M is an approximately Cohen-Macaulay R-module if and only if so is M[x] as R[x]-module?

In order to give answers for the above questions we first need to study the behaviour of approximately Cohen-Macaulay modules, under faithful flat extensions in 4.1. Fortunately this helps us in 4.3, to find the positive answers for both questions.

2. Approximately Cohen-Macaulay modules

Throughout this section, M is a finitely generated module over a commutative Noetherian lacal ring (R, \mathfrak{m}) . **Lemma 2.1.** Let $M \neq 0$ be an *R*-module of dimension *d*. Then the set $\Sigma := \{N | N \text{ is a submodule of } M \text{ and } \dim_R N < d\}$

has a unique largest element with respect to inclusion, δ say. Set $G := M/\delta$. Then

- (i) $\dim_R G = d;$
- (ii) G has no non-zero submodule of dimension less than d;
- (iii) $\operatorname{Ass}_R G = \{ \mathfrak{p} \in \operatorname{Ass}_R M | \dim R/\mathfrak{p} = d \};$
- (iv) $\mathrm{H}^{d}_{\mathfrak{m}}(M) \cong \mathrm{H}^{d}_{\mathfrak{m}}(G).$

Proof. See [2, Lemma 7.3.1].

In the following for an *R*-module M, we characterize the submodule δ in term of the minimal primary decomposition of 0 in M. To this end, let

$$\mathfrak{g} := \bigcap_{\mathfrak{p} \in \operatorname{Ass}_R M \smallsetminus \operatorname{Assh}_R M} \mathfrak{p}$$

and in the case that $\operatorname{Ass}_R M = \operatorname{Assh}_R M$ assume $\mathfrak{g} = R$. As mentioned already in section 1, we set $U_M(0) := \bigcap_{\mathfrak{p} \in \operatorname{Assh}_R M} Q(\mathfrak{p})$, where $0 = \bigcap_{\mathfrak{p} \in \operatorname{Ass}_R M} Q(\mathfrak{p})$ denotes a minimal primary decomposition of 0 in M. It is easy to see that $\operatorname{Ass}_R M = \operatorname{Assh}_R M$ if and only if $U_M(0) = 0$.

Proposition 2.2. Let $M \neq 0$ be an *R*-module of dimension *d*. Then

(i) $U_M(0) = \Gamma_{\mathfrak{g}}(M);$

(ii) $U_M(0)$ is the largest element of Σ , introduced in Lemma 2.1.

Proof. (i) The proof is clear in case that $\operatorname{Ass}_R M = \operatorname{Assh}_R M$ because $\mathfrak{g} = R$ and $U_M(0) = 0$. So let $\operatorname{Assh}_R M \subsetneqq \operatorname{Ass}_R M$ and put $I := \bigcap_{\mathfrak{p} \in \operatorname{Ass}_R M \smallsetminus \operatorname{Assh}_R M} \operatorname{Ann}_R(M/Q(\mathfrak{p}))$ and $K := \bigcap_{\mathfrak{p} \in \operatorname{Ass}_R M \smallsetminus \operatorname{Assh}_R M} Q(\mathfrak{p})$, where the submodules $Q(\mathfrak{p})$ are primary components of 0 in M. Assume that $x \in U_M(0)$. Then $Ix \subseteq U_M(0) \cap K = 0$. This leads to $x \in \Gamma_{\mathfrak{g}}(M)$ because $\sqrt{I} = \mathfrak{g}$. Conversely if $y \in \Gamma_{\mathfrak{g}}(M)$, there exists $t \in \mathbb{N}$, such that $\mathfrak{g}^t y \subseteq \bigcap_{\mathfrak{p} \in \operatorname{Assh}_R M} Q(\mathfrak{p})$. Therefore $\mathfrak{g}^t y \subseteq Q(\mathfrak{p})$ for every primary component $Q(\mathfrak{p})$ which $\mathfrak{p} \in \operatorname{Assh}_R M$. Moreover $\mathfrak{g}^t \nsubseteq \sqrt{\operatorname{Ann}_R(M/Q(\mathfrak{p}))}$ for all such components. This guarantees that $y \in U_M(0)$.

(ii) First note that $\Sigma = \{N \leq M | N_{\mathfrak{p}} = 0 \quad \forall \mathfrak{p} \in \operatorname{Supp}_{R} M \text{ with } \dim R/\mathfrak{p} = d\}$. Let $\Gamma_{\mathfrak{g}}(M) \notin \Sigma$. Then there exist $\mathfrak{p}^{*} \in \operatorname{Supp}_{R} M$ with $\dim R/\mathfrak{p}^{*} = d$ such that $(\Gamma_{\mathfrak{g}}(M))_{\mathfrak{p}^{*}} \neq 0$. By Flat Base Change theorem, see [2, Corollary 4.3.2], we can pass this statement to the $\Gamma_{\mathfrak{g}R_{\mathfrak{p}^{*}}}(M_{\mathfrak{p}^{*}}) \neq 0$ and get $\mathfrak{g} \subseteq \mathfrak{p}^{*}$, while it is a contradiction. Therefore by view of part (i), $U_{M}(0) \in \Sigma$.

Now suppose that δ is the largest element of Σ with respect to inclusion and that $x \in \delta$ is arbitrary. Since for all components $Q(\mathfrak{p})$ in the primary decomposition of 0 with $\dim_R M/Q(\mathfrak{p}) = d$ we have $(\operatorname{Ann}_R x) \cdot x \subseteq Q(\mathfrak{p})$ and $\operatorname{Ann}_R x \not\subseteq \mathfrak{p}$, we must have $x \in Q(\mathfrak{p})$. Hence it follows that $\delta \subseteq U_M(0)$ and the proof is complete.

From both the previous lemma and proposition, we immediately get the following corollary.

Corollary 2.3. Let $M \neq 0$ be an *R*-module of dimension *d*. Then $U_M(0)$ is the largest submodule of *M* contained in Σ , introduced in Lemma 2.1. Moreover

- (i) $\dim_R M/U_M(0) = d;$
- (ii) $M/U_M(0)$ has no non-zero submodule of dimension less than d;
- (iii) $\operatorname{Ass}_R M/U_M(0) = \{ \mathfrak{p} \in \operatorname{Ass}_R M | \dim R/\mathfrak{p} = d \};$
- (iv) $\mathrm{H}^{d}_{\mathfrak{m}}(M) \cong \mathrm{H}^{d}_{\mathfrak{m}}(M/U_{M}(0)).$

The following lemma which is quite useful in the proof of the main result of this section, deals with a special element $a \in \mathfrak{m}$ with the property $(0:_M a) = (0:_M a^2)$. It should be mentioned, this property is equivalent to a being a d-sequence of length 1 on the module M, as defined by Huneke in [7, Definition 1.1 and Remark 4].

Lemma 2.4. Let $M \neq 0$ be an *R*-module of dimension *d*. Let $a \neq 0$ be an element of \mathfrak{m} and put $N := (0:_M a)$. Assume that $(0:_M a) = (0:_M a^2) \neq 0$ and that $\operatorname{depth}_R M/a^2M \geq d-1$. Then

- (i) M/N is a Cohen-Macaulay R-module of dimension d;
- (ii) depth_R $M/aM \ge d-1$;
- (iii) depth_R $N \ge d 1$;
- (iv) depth_R $M \ge d 1$.
- **Proof.** (i) We know that $\operatorname{depth}_R M/N \leq \dim_R M/N \leq d$. So it is enough to show that $\operatorname{depth}_R M/N > d-1$. If $\operatorname{depth}_R M/N := t \leq d-1$, then we get $\operatorname{depth}_R M/aM + N = \operatorname{depth}_R M/a^2M + N = t-1$ since a is regular on M/N. Consequently by considering the exact sequences
 - (a) $0 \longrightarrow N \longrightarrow M/a^2 M \longrightarrow M/a^2 M + N \longrightarrow 0$,

(b) $0 \longrightarrow N \longrightarrow M/aM \longrightarrow M/aM + N \longrightarrow 0$,

which exist since $aM \cap N = 0$, we conclude that depth_R $N \ge t$ and depth_R $M/aM \ge t-1$. On the other hand, the natural surjective homomorphism $f: M \to aM$ yields $M/N \cong aM$ and so $aM/a^2M \cong M/aM + N$. These lead to the following exact sequence

$$(c) \quad 0 \longrightarrow M/aM + N \longrightarrow M/a^2M \longrightarrow M/aM \longrightarrow 0,$$

and therefore depth_R $M/aM + N \ge t$. A contradiction, since depth_R M/aM + N = t - 1.

(ii) We employ the exact sequences of part (i) and by using a same argument as above prove the statement. To this end assume that depth_R M/aM := t < d - 1. Therefore depth_R $M/a^2M \ge t+1$ and it follows that depth_R $M/N \ge t+2$ because by the exact sequence (c) we get depth_R $M/aM + N \ge t+1$.

Thus regularity of a on M/N implies that $\operatorname{depth}_R M/a^2M + N \ge t + 1$. Now by using the exact sequence (a) we see that $\operatorname{depth}_R N \ge t + 1$ and hence by (b) we must have $\operatorname{depth}_R M/aM \ge t + 1$. This is a contradiction.

- (iii) We have by (i) that depth_R $M/a^2M + N = d 1$. Thus the assertion follows from the exact sequence (a).
- (iv) This immediately follows from the exact sequence

$$0 \longrightarrow N \longrightarrow M \longrightarrow M/N \longrightarrow 0.$$

Lemma 2.5. Let N be a submodule of d-dimensional R-module M. Assume that N is Cohen-Macaulay of dimension d-1 and that M/N is Cohen-Macaulay of dimension d. Let a be an element of \mathfrak{m} such that $\dim_R M/aM = d-1$. Then M/aM is a Cohen-Macaulay R-module of dimension d-1, provided aN = 0.

Proof. Since $\operatorname{Ass}_R M/N \subseteq \operatorname{Assh}_R M$ we find that a is M/N-regular. Therefore $aM \cap N = 0$ provides the following exact sequence

$$0 \longrightarrow N \longrightarrow M/aM \longrightarrow M/aM + N \longrightarrow 0,$$

which implies depth_R $M/aM \ge d-1$. Thus M/aM is a Cohen-Macaulay R-module of dimension d-1.

 \square

In the following we define the notion of approximately Cohen-Macaulay modules inspired by definition of approximately Cohen-Macaulay rings. It should be mentioned that, this is a generalization of the definition provided with N. T. Cuong and D. T. Cuong in [4, Definition 4.4].

Definition 2.6. A finitely generated module M over a Noetherian local ring (R, \mathfrak{m}) is called an approximately Cohen-Macaulay module if either $\dim_R M = 0$ or there exists an element a of \mathfrak{m} such that $M/a^n M$ is Cohen-Macaulay of dimension d-1 for every integer n > 0.

Note that every Cohen-Macaulay module is approximately Cohen-Macaulay module. So we may consider the zero module to be approximately Cohen-Macaulay.

We are now in the position to present the main result of this section. The following theorem gives us some equivalent conditions for the approximately Cohen-Macaulay concept. In case that M is a non Cohen-Macaulay R-module, the equivalence of (i) and (ii) is shown in [4, Proposition 4.5]. Moreover, in [11, Definition 4.4], Schenzel considered the equivalence condition (iv), as the definition of approximately Cohen-Macaulay modules. In addition to prove the equivalence of these conditions in a more general case, we also mention another equivalent condition for approximately Cohen-Macaulay modules.

Theorem 2.7. Let M be an R-module of dimension d > 0. Then the following are equivalent:

- (i) M is an approximately Cohen-Macaulay module;
- (ii) There is an element $a \in \mathfrak{m}$ such that $(0:_M a) = (0:_M a^2)$ and M/a^2M is a Cohen-Macaulay module of dimension d-1;
- (iii) M contains a submodule N such that M/N is Cohen-Macaulay of dimension dand N is either zero or Cohen-Macaulay of dimension d-1;
- (iv) $M/U_M(0)$ is Cohen-Macaulay of dimension d and depth_R $M \ge d-1$.

Proof. (i) \Rightarrow (ii): Since M is Noetherian, there exists an integer n > 0 such that $(0:_M a^n) = (0:_M a^{2n})$. It is enough to replace a with a^n . Then the assertion (ii) follows immediately.

(ii) \Rightarrow (iii): We put $N = (0 :_M a)$. In case that M is not Cohen-Macaulay, $N \neq 0$. Thus by Lemma 2.4, we have that M/N is a Cohen-Macaulay R-module of dimension d and that depth_R $N \geq d - 1$. Moreover it follows that dim_R $N \neq d$ because aN = 0 and dim_R M/aM = d - 1. So we get that N is a Cohen-Macaulay R-module of dimension d - 1, as required. In the case in which M is Cohen-Macaulay, N = 0 and the assertion follows immediately.

(iii) \Rightarrow (iv): If N = 0, M is a Cohen-Macaulay module and therefore $U_M(0) = 0$ as $\operatorname{Ass}_R M = \operatorname{Assh}_R M$. Hence there is nothing to prove in this case. When $N \neq 0$, by using the exact sequence

$$0 \longrightarrow N \longrightarrow M \longrightarrow M/N \longrightarrow 0;$$

we get depth_R $M \ge d - 1$. So it remains to prove that $U_M(0) = N$.

First note that because of $\dim_R N < d$, from the Corollary 2.3, we find N as a submodule of $U_M(0)$. Also from the above exact sequence we have $\operatorname{Assh}_R M \subseteq \operatorname{Ass}_R N \cup \operatorname{Ass}_R M/N$. This implies that $\operatorname{Assh}_R M \subseteq \operatorname{Ass}_R M/N$ since $\operatorname{Assh}_R M \cap \operatorname{Ass}_R N = \Phi$. On the other hand because M/N is a Cohen-Macaulay R-module of dimension d, it is well known that $\operatorname{Ass}_R M/N = \operatorname{Assh}_R M/N \subseteq \operatorname{Assh}_R M$. Hence we get that $\operatorname{Ass}_R M/N = \operatorname{Assh}_R M$. So by view of definition of $U_M(0)$, this yields that $U_M(0)/N = 0$.

 $(iv) \Rightarrow (i)$: If M is a Cohen-Macaulay module, $U_M(0) = 0$. Therefore we immediately have the assertion (i) by [3, Theorem 2.1.2 (c)]. In case that M is not Cohen-Macaulay module, let us apply Lemma 2.5, to the situation $N = U_M(0)$. From which the fact that $U_M(0) \neq 0$, we can consider the exact sequence

$$0 \longrightarrow U_M(0) \longrightarrow M \longrightarrow M/U_M(0) \longrightarrow 0$$
,

which implies depth_R $U_M(0) \ge d-1$. Hence by Corollary 2.3, we find $U_M(0)$ as a Cohen-Macaulay *R*-module of dimension d-1. Let $0 = \bigcap_{\mathfrak{p}\in \operatorname{Ass}_R M} Q(\mathfrak{p})$ denotes a minimal primary

decomposition of 0 in M. Then with the notations K and \mathfrak{g} were introduced in Proposition 2.2, we have $K \neq 0$ since $\operatorname{Ass}_R M \neq \operatorname{Assh}_R M$. Moreover it follows that $\mathfrak{g} \neq 0$ immediately. So we can take an element $b \neq 0$ of \mathfrak{g} not contained in $\bigcup_{\mathfrak{p} \in \operatorname{Assh}_R M} \mathfrak{p}$. It is straightforward to

see that there exists an integer t > 0 such that $b^t M \subseteq K$. Now we can put $a = b^t$ and get $aU_M(0) = 0$, because $K \cap U_M(0) = 0$. Finally by Lemma 2.5, the proof is completed. \Box

As we saw above, the submodule N in assertion (iii) is uniquely determined and is exactly equal to $U_M(0)$.

Definition 2.8. [10, Section 1.2] Suppose that the local ring (R, \mathfrak{m}) is the homomorphic image of a local Gorenstein ring (R', \mathfrak{n}) . Let M be a finitely generated R-module of dimension d. For an integer $i \in \mathbb{Z}$, define

$$K^i(M) := \operatorname{Ext}_{R'}^{n'-i}(M, R'),$$

where $n' = \dim R'$. Then the module $K(M) := K^d(M)$ is called the canonical module of M and for $i \neq d$ the modules $K^i(M)$ are called the modules of deficiency of M.

Theorem 2.9. Let (R, \mathfrak{m}) denote a complete local ring and suppose that M is a ddimensional R-module which is not Cohen-Macaulay. Then the following are equivalent:

- (i) M is approximately Cohen-Macaulay;
- (ii) $K^{d}(M), K^{d-1}(M)$ are Cohen-Macaulay R-modules of dimension d, d-1 respectively and $K^{i}(M) = 0$ for all $i \neq d, d-1$.

Proof. (i) \Rightarrow (ii): Applying the fact that $M/U_M(0)$ is a Cohen-Macaulay *R*-module of dimension *d* together with

$$\operatorname{depth}_{R} M = \operatorname{depth}_{R} U_{M}(0) = \operatorname{dim}_{R} U_{M}(0) = d - 1,$$

to the following induced exact sequence

$$\cdots \longrightarrow \mathrm{H}^{d-2}_{\mathfrak{m}}(M/U_{M}(0)) \longrightarrow \mathrm{H}^{d-1}_{\mathfrak{m}}(U_{M}(0)) \longrightarrow \mathrm{H}^{d-1}_{\mathfrak{m}}(M)) \longrightarrow \mathrm{H}^{d-1}_{\mathfrak{m}}(M/U_{M}(0)) \longrightarrow \mathrm{H}^{d}_{\mathfrak{m}}(M/U_{M}(0)) \longrightarrow \mathrm{H}^{d}_{\mathfrak{m}}(M/U_{M}(0)) \longrightarrow \mathrm{H}^{d+1}_{\mathfrak{m}}(U_{M}(0)) \longrightarrow \cdots ;$$

leads us to obtain $\mathrm{H}^{i}_{\mathfrak{m}}(M) = 0$ for all $i \neq d, d-1$ and

$$\mathrm{H}^{d-1}_{\mathfrak{m}}(M) \cong \mathrm{H}^{d-1}_{\mathfrak{m}}(U_M(0)), \quad \mathrm{H}^{d}_{\mathfrak{m}}(M) \cong \mathrm{H}^{d}_{\mathfrak{m}}(M/U_M(0)).$$

Note that we may express R as a homomorphic image of a local Gorenstein ring R' with dim R' = n', see [8, Theorem 29.4]. Hence by view of Matlis Duality theorem [3, Theorem 3.2.13], and Local Duality theorem [2, Theorem 11.2.6], we have the following isomorphisms

$$K^{i}(M) = \operatorname{Ext}_{R'}^{n'-i}(M, R') \cong \operatorname{Hom}_{R}\left(\operatorname{Hom}_{R}(\operatorname{Ext}_{R'}^{n'-i}(M, R'), \operatorname{E}(R/\mathfrak{m})), \operatorname{E}(R/\mathfrak{m})\right)$$
$$\cong \operatorname{Hom}_{R}(\operatorname{H}_{\mathfrak{m}}^{i}(M), \operatorname{E}(R/\mathfrak{m})),$$

which imply $K^i(M) = 0$ for all $i \neq d, d-1$. (Here $E(R/\mathfrak{m})$ denotes the injective hull of R/\mathfrak{m}). However, by putting i = d in above, we find that

$$K^{d}(M) \cong \operatorname{Hom}_{R}(\operatorname{H}^{d}_{\mathfrak{m}}(M), \operatorname{E}(R/\mathfrak{m})) \cong \operatorname{Hom}_{R}(\operatorname{H}^{d}_{\mathfrak{m}}(M/U_{M}(0)), \operatorname{E}(R/\mathfrak{m}))$$
$$\cong \operatorname{Hom}_{R}\left(\operatorname{Hom}_{R}(\operatorname{Ext}^{n'-d}_{R'}(M/U_{M}(0), R'), \operatorname{E}(R/\mathfrak{m})), \operatorname{E}(R/\mathfrak{m})\right)$$
$$\cong \operatorname{Ext}^{n'-d}_{R'}(M/U_{M}(0), R') = K^{d}(M/U_{M}(0)).$$

Similarly in case i = d - 1 it is straightforward to obtain $K^{d-1}(M) \cong K^{d-1}(U_M(0))$. So by [11, Proposition 3.2], the proof is complete.

(ii) \Rightarrow (i): Since for all $0 \le i \le d$ the *R*-modules $K^i(M)$ are either zero or *i*-dimensional Cohen-Macaulay modules, we find by [11, Theorem 5.5], that *M* is a Cohen-Macaulay filtered module (in the sense of [11, Definition 4.1]). We claim that depth_R M = d - 1. To this end first note, it is well known that for every *R*-module *M*, $\operatorname{Hom}_R(M, \operatorname{E}(R/\mathfrak{m})) \ne 0$ if and only if $M \ne 0$. So it follows from Local Duality theorem [2, Theorem 11.2.6], and Matlis Duality theorem [3, Theorem 3.2.13], that $\operatorname{H}^i_{\mathfrak{m}}(M) = 0$ for all $i \ne d, d - 1$. Moreover $\operatorname{H}^{d-1}_{\mathfrak{m}}(M) \ne 0$ because $K^{d-1}(M) \ne 0$. This guarantees depth_R M = d - 1.

Now it follows immediately from [11, Proposition 4.5], that M is an approximately Cohen-Macaulay module.

Let \widehat{R} and \widehat{M} denote the m-adic completions of R and M respectively. At the end of this section we collect some preliminary properties of approximately Cohen-Macaulay modules.

Corollary 2.10. Suppose that M is an approximately Cohen-Macaulay R-module of dimension d. Then

- (i) $\dim R/\mathfrak{p} \ge \dim_R M 1$ for all $\mathfrak{p} \in \operatorname{Ass}_R M$; Moreover if M is not Cohen-Macaulay
- (ii) $\operatorname{H}^{i}_{\mathfrak{m}}(M) \neq 0$ for i = d, d-1 and it is zero for all $0 \leq i < d-1$;
- (iii) K^d(M), K^{d-1}(M) are Cohen-Macaulay R-modules of dimension d, d − 1 respectively and Kⁱ(M) = 0 for all i ≠ d, d − 1.
- **Proof.** (i) This is an immediately consequence of [3, Proposition 1.2.13], because of depth_R $M \ge d-1$.
 - (ii) This is trivial by view of [2, Corollary 6.2.8]
 - (iii) Note that \widehat{R} is a complete ring, $H^{d-1}_{\mathfrak{m}\widehat{R}}(\widehat{M}) \cong H^{d-1}_{\mathfrak{m}\widehat{R}}(\widehat{U_M(0)})$ and $H^d_{\mathfrak{m}\widehat{R}}(\widehat{M}) \cong H^{d}_{\mathfrak{m}\widehat{R}}(\widehat{M/U_M(0)})$. Thus with a similar argument presented for Theorem 2.9, we find $K^{d-1}(\widehat{M}) \cong K^{d-1}(\widehat{U_M(0)})$ and $K^d(\widehat{M}) \cong K^d(\widehat{M/U_M(0)})$. Moreover it follows that $K^i(\widehat{M}) = 0$ for all $i \neq d, d-1$ because $H^i_{\mathfrak{m}\widehat{R}}(\widehat{M}) = 0$ for all $i \neq d, d-1$. Now we invoke [11, Proposition 3.2] and complete the proof.

3. Some results

In this section we shall investigate some properties of approximately Cohen-Macaulay modules. Throughout this section unless we say otherwise, the Noetherian ring R is local with maximal ideal \mathfrak{m} and M is a finitely generated R-module.

Proposition 3.1. A direct sum of finitely many approximately Cohen-Macaulay R-modules with equal dimension d is approximately Cohen-Macaulay.

Proof. By induction, it is enough to prove for a direct sum of two approximately Cohen-Macaulay *R*-modules. Let $M = M_1 \oplus M_2$, where M_1 and M_2 are approximately Cohen-Macaulay modules of dimension *d*. Then by Theorem 2.7, there exist Cohen-Macaulay submodules $N_1 \leq M_1$ and $N_2 \leq M_2$ such that M_1/N_1 and M_2/N_2 are Cohen-Macaulay of dimension *d*. We may assume that N_1 and N_2 are not zero. Thus, it follows easily from the exact sequence

$$0 \longrightarrow N_1 \longrightarrow N_1 \oplus N_2 \longrightarrow N_2 \longrightarrow 0,$$

that $N_1 \oplus N_2$ is Cohen-Macaulay of dimension d-1. Moreover $(M_1 \oplus M_2)/(N_1 \oplus N_2)$ is Cohen-Macaulay of dimension d because it is isomorphic to $(M_1/N_1) \oplus (M_2/N_2)$. Hence M is approximately Cohen-Macaulay.

Lemma 3.2. Let M be an approximately Cohen-Macaulay R-module. Suppose that $\mathbf{x} = x_1, x_2, \dots, x_n$ is an M-sequence in \mathfrak{m} . Then $M/\mathbf{x}M$ is also approximately Cohen-Macaulay (over both R and $R/(\mathbf{x})$).

Proof. We may assume that M is not Cohen-Macaulay and $\dim_R M = d$. By the hypothesis, there exists a submodule N of M such that N is a Cohen-Macaulay R-module of dimension d-1 and M/N is a Cohen-Macaulay R-module of dimension d. Let n = 1 be considered, that is $\mathbf{x} = x_1$ is an M-sequence of length one. Therefore N/x_1N is a (d-2)-dimensional Cohen-Macaulay submodule of M/x_1M (over both R and $R/(x_1)$). So by view of Theorem 2.7, it is enough to show that $\frac{M/x_1M}{N/x_1N}$ is a Cohen-Macaulay module of

dimension d-1 (over both R and $R/(x_1)$).

Obviously x_1 is regular over M/N because $\operatorname{Ass}_R M/N = \operatorname{Assh}_R M$. Thus $M/x_1M + N$ is a Cohen-Macaulay module of dimension d-1. On the other hand, from which the fact that the submodule N is exactly $U_M(0)$ itself, we get $N \cap x_1M = x_1N$. This implies the isomorphism $\frac{M/x_1M}{N/x_1N} \cong M/x_1M + N$ and completes the proof in case n = 1. Now we can get the sentence by induction on n.

In the following lemma for an ideal I in R, we prepare a relation between grade(I, M) and $\dim_R M$.

Lemma 3.3. Suppose that M is an approximately Cohen-Macaulay R-module and that $I \subseteq \mathfrak{m}$ is an ideal of R. Then

$$\operatorname{grade}(I, M) \ge \dim_R M - \dim_R M/IM - 1.$$

Proof. If $\dim_R M \leq 0$, there is nothing to prove. So we put $\dim_R M > 0$ and prove the assertion by induction on $\operatorname{grade}(I, M)$. In the first step suppose that $\operatorname{grade}(I, M) = 0$. Then there exists a prime $\mathfrak{p} \in \operatorname{Ass}_R M$ with $I + \operatorname{Ann}_R M \subseteq \mathfrak{p}$. Therefore it follows from Corollary 2.10 part (i)

$$\dim_R M - 1 \le \dim R/\mathfrak{p} \le \dim R/(I + \operatorname{Ann}_R M) = \dim_R M/IM,$$

which proves the first step.

Now let $\operatorname{grade}(I, M) > 0$. Then we can choose an M-regular element $x \in I$. It should be pointed $\operatorname{grade}(I, M/xM) = \operatorname{grade}(I, M) - 1$ and $\operatorname{dim}_R M/xM = \operatorname{dim}_R M - 1$. Moreover M/xM is an approximately Cohen-Macaulay R-module by Lemma 3.2. Hence in view of the inductive hypothesis

$$\operatorname{grade}(I, M/xM) \ge \dim_R M/xM - \dim_R M/IM - 1.$$

This completes the proof.

Theorem 3.4. Let M be an approximately Cohen-Macaulay R-module. Then

- (i) $\dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}} \operatorname{depth}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} \leq 1$ for any $\mathfrak{p} \in \operatorname{Spec} R$.
- (ii) Suppose that M is not Cohen-Macaulay. Then the following hold for any p ∈ Supp_R M such that M_p is not Cohen-Macaulay:
 - (a) $\dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}} + \dim_R M/\mathfrak{p}M = \dim_R M;$
 - (b) grade(\mathfrak{p}, M) = dim_R M dim_R $M/\mathfrak{p}M$ 1 = depth_R M dim_R $M/\mathfrak{p}M$;
 - (c) grade(\mathfrak{p}, M) = depth_{$R_\mathfrak{p}$} $M_\mathfrak{p}$.

- (iii) Suppose that M is not Cohen-Macaulay. Then $(U_M(0))_{\mathfrak{p}} = U_{M_{\mathfrak{p}}}(0)$, for any $\mathfrak{p} \in \operatorname{Supp}_R M$ such that $M_{\mathfrak{p}}$ is not Cohen-Macaulay.
- (iv) $M_{\mathfrak{p}}$ is an approximately Cohen-Macaulay $R_{\mathfrak{p}}$ -module, for any $\mathfrak{p} \in \operatorname{Supp}_R M$.
- **Proof.** (i) It is straightforward to see that depth_R $M \leq \operatorname{grade}(\mathfrak{p}, M) + \dim_R M/\mathfrak{p}M$, for every $\mathfrak{p} \in \operatorname{Spec} R$. Applying this together with the fact that $\dim_{R_\mathfrak{p}} M_\mathfrak{p} + \dim_R M/\mathfrak{p}M \leq \dim_R M$ for every $\mathfrak{p} \in \operatorname{Spec} R$, we can write

$$\begin{split} 1 \geq \dim_R M - \operatorname{depth}_R M \geq \dim_R M - \operatorname{grade}(\mathfrak{p}, M) - \dim_R M/\mathfrak{p}M \\ \geq \dim_{R_\mathfrak{p}} M_\mathfrak{p} - \operatorname{grade}(\mathfrak{p}, M) \\ \geq \dim_{R_\mathfrak{p}} M_\mathfrak{p} - \operatorname{depth}_{R_\mathfrak{p}} M_\mathfrak{p}. \end{split}$$

(ii) Let \mathfrak{p} be a prime in $\operatorname{Supp}_R(M)$ such that $M_{\mathfrak{p}}$ is not Cohen-Macaulay. Then by (i), $\operatorname{depth}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} = \dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}} - 1$. Now in view of Lemma 3.3, we have

$$\begin{split} \operatorname{depth}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} + \operatorname{dim}_{R} M/\mathfrak{p}M &= \operatorname{dim}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} - 1 + \operatorname{dim}_{R} M/\mathfrak{p}M \\ &= \operatorname{ht}(\mathfrak{p}/\operatorname{Ann}_{R} M) - 1 + \operatorname{dim} R/\mathfrak{p} \\ &\leq \operatorname{dim} R/\operatorname{Ann}_{R} M - 1 \\ &= \operatorname{dim}_{R} M - 1 \\ &\leq \operatorname{grade}(\mathfrak{p}, M) + \operatorname{dim}_{R} M/\mathfrak{p}M \\ &\leq \operatorname{depth}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} + \operatorname{dim}_{R} M/\mathfrak{p}M. \end{split}$$

This implies all equations (a), (b) and (c) immediately.

(iii) Let $\mathfrak{p} \in \operatorname{Supp}_R M$ such that $M_\mathfrak{p}$ is not Cohen-Macaulay $R_\mathfrak{p}$ -module. Suppose that $0 = \bigcap_{\mathfrak{q} \in \operatorname{Ass}_R M} Q(\mathfrak{q})$ denotes a minimal primary decomposition of 0 in M. Then $Q(\mathfrak{q})$ is a $\mathfrak{q} R$ primary submodule of M for any $\mathfrak{q} \in \operatorname{Ass}_R M$ such that $\mathfrak{q} \in \mathfrak{p}$.

 $(Q(\mathfrak{q}))_{\mathfrak{p}}$ is a $\mathfrak{q}R_{\mathfrak{p}}$ -primary submodule of $M_{\mathfrak{p}}$ for any $\mathfrak{q} \in \operatorname{Ass}_{R} M$ such that $\mathfrak{q} \subseteq \mathfrak{p}$. Moreover it is obvious that $(Q(\mathfrak{q}))_{\mathfrak{p}} = M_{\mathfrak{p}}$ for all $\mathfrak{q} \in \operatorname{Ass}_{R} M$ such that $\mathfrak{q} \not\subseteq \mathfrak{p}$. Therefore

$$0 = \bigcap_{\substack{\mathfrak{q} \in \operatorname{Ass}_R M \\ \mathfrak{q} \subseteq \mathfrak{p}}} (Q(\mathfrak{q}))_{\mathfrak{p}}$$

is a minimal primary decomposition for the zero submodule of $M_{\mathfrak{p}}$. Thus by definition of $U_M(0)$, it is enough to show that

$$\operatorname{Assh}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} = \{\mathfrak{q}R_{\mathfrak{p}} \mid \mathfrak{q} \in \operatorname{Assh}_{R} M, \quad \mathfrak{q} \subseteq \mathfrak{p}\}.$$

Let $\mathfrak{q} \in \operatorname{Supp}_{R} M$. Then by view of (ii), we have

$$\begin{split} \mathfrak{q}R_\mathfrak{p} \in \operatorname{Assh}_{R_\mathfrak{p}} M_\mathfrak{p} & \Longleftrightarrow \mathfrak{q} \subseteq \mathfrak{p} \quad \text{and} \quad \dim R_\mathfrak{p}/\mathfrak{q}R_\mathfrak{p} = \dim_{R_\mathfrak{p}} M_\mathfrak{p} \\ & \iff \mathfrak{q} \subseteq \mathfrak{p} \quad \text{and} \quad \operatorname{ht}(\mathfrak{p}/\mathfrak{q}) = \dim_{R_\mathfrak{p}} M_\mathfrak{p} \\ & \iff \mathfrak{q} \subseteq \mathfrak{p} \quad \text{and} \quad \operatorname{ht}(\mathfrak{p}/\mathfrak{q}) + \dim R/\mathfrak{p} = \dim_R M. \end{split}$$

Let $\mathfrak{q}R_{\mathfrak{p}} \in \operatorname{Assh}_{R_{\mathfrak{p}}} M_{\mathfrak{p}}$. Since

$$\dim_R M = \operatorname{ht}(\mathfrak{p}/\mathfrak{q}) + \dim R/\mathfrak{p} \le \dim R/\mathfrak{q} \le \dim_R M_{\mathfrak{q}}$$

 $\dim R/\mathfrak{q} = \dim_R M$ and hence $\mathfrak{q} \in \operatorname{Assh}_R M$.

Conversely, let $\mathfrak{q} \subseteq \mathfrak{p}$ and $\mathfrak{q} \in \operatorname{Assh}_R M$. Since M is approximately Cohen-Macaulay, by view of [11, Propositions 4.5 and 4.6], $\operatorname{Supp}_R M$ is a catenary subset of Spec R. Consequently R/\mathfrak{q} is a catenary integral domain, because $\operatorname{Supp}_R R/\mathfrak{q} \subseteq$ $\operatorname{Supp}_R M$. Now by [8, Theorem 31.4], we have $\operatorname{ht}(\mathfrak{p}/\mathfrak{q}) + \dim R/\mathfrak{p} = \dim R/\mathfrak{q}$. Thus $\operatorname{ht}(\mathfrak{p}/\mathfrak{q}) + \dim R/\mathfrak{p} = \dim_R M$ and we conclude that $\mathfrak{q}R_\mathfrak{p} \in \operatorname{Assh}_{R_\mathfrak{p}} M_\mathfrak{p}$.

(iv) Let $\mathfrak{p} \in \operatorname{Supp}_R M$. If $M_{\mathfrak{p}}$ is a Cohen-Macaulay $R_{\mathfrak{p}}$ -module, then it is an approximately Cohen-Macaulay module. If $M_{\mathfrak{p}}$ is not a Cohen-Macaulay module, then M is not Cohen-Macaulay. On the other hand, $M/U_M(0)$ is a Cohen-Macaulay *R*-module by Theorem 2.7. Hence by (iii), $M_{\mathfrak{p}}/U_{M_{\mathfrak{p}}}(0)$ is a Cohen-Macaulay $R_{\mathfrak{p}}$ -module. Now the assertion follows from Theorem 2.7, because $\operatorname{depth}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} \geq \dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}} - 1$, by (i).

In the following by using Theorem 3.4, we can extend the concept of approximately Cohen-Macaulay modules over a local ring R, to those finitely generated R-modules that R is not necessarily local.

Definition 3.5. Let R be a ring which is not necessarily local. A finitely generated module M over R is said to be an approximately Cohen-Macaulay R-module if for every prime ideal $\mathfrak{p} \in \operatorname{Supp}_R M$, $M_{\mathfrak{p}}$ is an approximately Cohen-Macaulay $R_{\mathfrak{p}}$ -module. In the same way, if R itself is an approximately Cohen-Macaulay module, then it is called an approximately Cohen-Macaulay ring.

Remark 3.6. Let Max R denotes the set of all maximal ideals in R. Since for every $\mathfrak{p} \in \operatorname{Supp}_R M$ there exists $\mathfrak{m} \in \operatorname{Max} R$ with $\mathfrak{p} \subseteq \mathfrak{m}$ and hence $M_{\mathfrak{p}} \cong (M_{\mathfrak{m}})_{\mathfrak{p}R_{\mathfrak{m}}}$, therefore in case that R is not necessarily local, can be asserted M is approximately Cohen-Macaulay if and only if so is $M_{\mathfrak{m}}$ for all $\mathfrak{m} \in \operatorname{Max} R$.

Now assume that M is an approximately Cohen-Macaulay R-module and that $\mathbf{x} = x_1, x_2, \cdots, x_n$ is an M-sequence in R. Then $M/\mathbf{x}M$ is an approximately Cohen-Macaulay module (over both R and $R/(\mathbf{x})$). In fact, it is well known that $\mathbf{x}R_{\mathfrak{m}}$ is an $M_{\mathfrak{m}}$ -sequence for all $\mathfrak{m} \in \operatorname{Max} R$ with $\mathbf{x}R \subseteq \mathfrak{m}$, see [3, Corollary 1.1.3]. So by Lemma 3.2, $M_{\mathfrak{m}}/\mathbf{x}R_{\mathfrak{m}}M_{\mathfrak{m}}$ is an approximately Cohen-Macaulay module for every $\mathfrak{m} \in \operatorname{Max} R$.

Lemma 3.7. Let R be an approximately Cohen-Macaulay ring which is not necessarily local and $I \neq R$ an ideal. Then

$$ht(I) - 1 \leq grade(I, R) \leq ht(I)$$

and if R is local, then

 $\dim R - \dim R/I - 1 \leq \operatorname{grade}(I, R) \leq \dim R - \dim R/I ;$

$$\dim R - 1 \le \operatorname{ht}(I) + \dim R/I \le \dim R \ .$$

Proof. For an ideal $I \neq R$ one has $\operatorname{grade}(I, R) = \min\{\operatorname{depth} R_{\mathfrak{p}} | \mathfrak{p} \in \operatorname{Spec} R, I \subseteq \mathfrak{p}\}$ and furthermore $\operatorname{ht}(I) = \min\{\dim R_{\mathfrak{p}} | \mathfrak{p} \in \operatorname{Spec} R, I \subseteq \mathfrak{p}\}$. On the other hand, Theorem 2.7 yields depth $R_{\mathfrak{p}} \geq \dim R_{\mathfrak{p}} - 1$ because $R_{\mathfrak{p}}$ is an approximately Cohen-Macaulay local ring for any $\mathfrak{p} \in \operatorname{Spec} R$. This proves the first two inequalities.

Now suppose that R is local. As was shown, $\operatorname{grade}(I, R)$ either equals to $\operatorname{ht}(I)$ or $\operatorname{ht}(I) - 1$. Moreover, it is well known that $\operatorname{ht}(I) + \dim R/I \leq \dim R$. Both these facts together with Lemma 3.3, imply that

$$\dim R - \dim R/I - 1 \le \operatorname{grade}(I, R) \le \dim R - \dim R/I.$$

Also by a similar argument and puting ht(I) or ht(I) - 1 instead of grade(I, R) in Lemma 3.3, we can conclude immediately

$$\dim R - 1 \le \operatorname{ht}(I) + \dim R/I \le \dim R.$$

One says that a finitely generated R-module M is perfect if $pd_R M = grade M$. Here $pd_R M$ denotes the projective dimension of M and grade M is $grade(Ann_R M, R)$, the length of all maximal R-sequences in $Ann_R M$. For more details see [3, Definition 1.2.11]. In the following we compare the perfect modules with approximately Cohen-Macaulay modules.

Proposition 3.8. Let R be an approximately Cohen-Macaulay ring which is not necessarily local and $M \neq 0$ a finitely generated R-module with $pd_R M < \infty$.

- (i) If M is perfect, M_p is Cohen-Macaulay (so is approximately Cohen-Macaulay) or depth_{R_p} M_p = dim_{R_p} M_p − 1, for every p ∈ Supp_R M.
- (ii) If M is approximately Cohen-Macaulay, M_p is perfect or pd_{R_p}M_p = grade M_p + 1, for every p ∈ Supp_R M. In particular, when M is an approximately Cohen-Macaulay module over a local ring R, then M is perfect or pd_RM = grade M + 1.
- **Proof.** (i) Let \mathfrak{p} be a prime in $\operatorname{Supp}_R M$. Then $M_\mathfrak{p}$ is a module over the local ring $R_\mathfrak{p}$. For simplicity of writing, we would rather replace $R_\mathfrak{p}$ and $M_\mathfrak{p}$ with R and M. In this way we should prove M is a Cohen-Macaulay R-module or depth_R $M = \dim_R M - 1$. Note that with these notations M is a finitely generated perfect module over the approximately Cohen-Macaulay local ring R and $\operatorname{pd}_R M < \infty$. Hence Auslander-Buchsbaum formula [3, Theoreme 1.3.3], gives grade $M + \operatorname{depth}_R M = \operatorname{depth} R$ and follows frome Theorem 2.7, that grade $M + \operatorname{depth}_R M \ge \dim R - 1$. Therefore

 $\operatorname{depth}_R M \ge \operatorname{dim} R - 1 - \operatorname{grade}(\operatorname{Ann}_R M, R).$

According to Lemma 3.7, there are two possible values for $\operatorname{grade}(\operatorname{Ann}_R M, R)$. In case that $\operatorname{grade}(\operatorname{Ann}_R M, R) = \operatorname{ht}(\operatorname{Ann}_R M) - 1$ we have $\operatorname{depth}_R M \ge \dim R - \operatorname{ht}(\operatorname{Ann}_R M)$. Thus $\operatorname{depth}_R M \ge \dim R / \operatorname{Ann}_R M = \dim_R M$ due to $\operatorname{ht}(\operatorname{Ann}_R M) + \dim R / \operatorname{Ann}_R M \le \dim R$. This yields that M is Cohen-Macaulay.

On the other hand in case that $grade(\operatorname{Ann}_R M, R) = \operatorname{ht}(\operatorname{Ann}_R M)$ we obtain

 $\operatorname{depth}_{R} M \geq \dim R - 1 - \operatorname{ht}(\operatorname{Ann}_{R} M) \geq \dim R / \operatorname{Ann}_{R} M - 1 = \dim_{R} M - 1,$

which leads depth_R $M = \dim_R M - 1$ provided that M is not Cohen-Macaulay. (ii) It is enough to show that grade $M \le \operatorname{pd}_R M \le \operatorname{grade} M + 1$ whenever R is local.

To this end we consider the following cases:

First, it follows from [3, Theorem 2.1.5], that $pd_R M = grade M$ provided that both of R and M are Cohen-Macaulay.

Second, in case that R is Cohen-Macaulay and M is not, Auslander-Buchsbaum formula [3, Theorem 1.3.3] and the fact that depth_R $M = \dim_R M - 1$, give $pd_R M = \dim R - \dim_R M + 1$. Therefore $pd_R M = \dim R - \dim R / \operatorname{Ann}_R M + 1$ and by [3, Corollary 2.1.4], we have

 $pd_R M = ht(Ann_R M) + 1 = grade(Ann_R M, R) + 1 = grade M + 1.$

Finally, suppose that R is not Cohen-Macaulay (and M is Cohen-Macaulay or not). Because depth $R = \dim R - 1$ and depth_R $M \ge \dim_R M - 1$, by a similar argument as above we find

(a) $\operatorname{pd}_R M \leq \dim R - \dim R / \operatorname{Ann}_R M.$

It is easy to see that we always have grade $M \leq \text{pd}_R M$. Moreover follows from Lemma 3.7, that dim $R - \dim R / \operatorname{Ann}_R M$ is equal to $\operatorname{ht}(\operatorname{Ann}_R M)$ or $\operatorname{ht}(\operatorname{Ann}_R M) + 1$. Thus we have the following two possible inequalities:

(b) $\operatorname{grade}(\operatorname{Ann}_R M, R) \le \operatorname{pd}_R M \le \operatorname{ht}(\operatorname{Ann}_R M);$

(c) $\operatorname{grade}(\operatorname{Ann}_R M, R) \le \operatorname{pd}_R M \le \operatorname{ht}(\operatorname{Ann}_R M) + 1.$

On the other hand by Lemma 3.7 again, $ht(\operatorname{Ann}_R M)$ can be equal to $\operatorname{grade}(\operatorname{Ann}_R M, R)$ or $\operatorname{grade}(\operatorname{Ann}_R M, R) + 1$. Hence we find by (b) and (c) in general that

 $\operatorname{grade}(\operatorname{Ann}_R M, R) \le \operatorname{pd}_R M \le \operatorname{grade}(\operatorname{Ann}_R M, R) + 2.$

We claim that $pd_R M \neq grade(Ann_R M, R) + 2$. Otherwise, by Lemma 3.3,

 $\operatorname{pd}_R M = \operatorname{grade}(\operatorname{Ann}_R M, R) + 2 \ge \dim R - \dim R / \operatorname{Ann}_R M + 1.$

This means $\operatorname{pd}_R M > \dim R - \dim R / \operatorname{Ann}_R M$ which contradicts (a). Therefore in all cases we have $\operatorname{grade}(\operatorname{Ann}_R M, R) \leq \operatorname{pd}_R M \leq \operatorname{grade}(\operatorname{Ann}_R M, R) + 1$.

4. Faithful flat extensions

In the following we investigate how approximately Cohen-Macaulay modules behave under faithful flat local extensions. It is seen that they behave somehow similar to Cohen-Macaulay modules (see [3, Theorem 2.1.7]).

Theorem 4.1. Let $(R, \mathfrak{m}) \longrightarrow (S, \mathfrak{n})$ be a homomorphism of Noetherian local rings. Suppose M is a finitely generated R-module and N is a finitely generated S-module which is faithfully flat over R. Then the following are equivalent:

- (i) M is an approximately Cohen-Macaulay R-module and N/mN is a Cohen-Macaulay S-module;
- (ii) $M \otimes_R N$ is an approximately Cohen-Macaulay S-module and $U_M(0) \otimes_R N = U_{M \otimes_R N}(0)$.

Proof. (i) \Rightarrow (ii): In case that M is a Cohen-Macaulay R-module, the assertion follows immediately from [3, Theorem 2.1.7]. Suppose that M is not Cohen-Macaulay. It follows again that $U_M(0) \otimes_R N$ is a Cohen-Macaulay S-module because $U_M(0)$ is a Cohen-Macaulay R-module of dimension dim_R M - 1. Also we have

$$\dim_{S}(U_{M}(0) \otimes_{R} N) = \dim_{R}(U_{M}(0)) + \dim_{S} N/\mathfrak{m}N$$
$$= \dim_{R} M - 1 + \dim_{S} N/\mathfrak{m}N$$
$$= \dim_{S}(M \otimes_{R} N) - 1.$$

On the other hand, $M/U_M(0)$ is Cohen-Macaulay. Thus $(M \otimes_R N)/(U_M(0) \otimes_R N)$ is a Cohen-Macaulay S-module because

$$(M \otimes_R N)/(U_M(0) \otimes_R N) \cong (M/U_M(0)) \otimes_R N.$$

Moreover by view of Corollary 2.3,

$$\dim_{S}(M \otimes_{R} N) \ge \dim_{S}(M \otimes_{R} N) / (U_{M}(0) \otimes_{R} N)$$
$$\ge \dim_{S}((M \otimes_{R} N) / (U_{M \otimes_{R} N}(0)))$$
$$= \dim_{S}(M \otimes_{R} N).$$

Therefore by Theorem 2.7 part (iii), $M \otimes_R N$ is an approximately Cohen-Macaulay S-module. Hence the paragraph before Definition 2.8, implies that $U_M(0) \otimes_R N = U_{M \otimes_R N}(0)$.

(ii) \Rightarrow (i): We may assume that $\dim_S(M \otimes_R N) > 0$, because $M \otimes_R N$ is Cohen-Macaulay in case that $\dim_S(M \otimes_R N) = 0$.

Since $(M \otimes_R N)/(U_{M \otimes_R N}(0))$ is a Cohen-Macaulay S-module, therefore it is also $(M/U_M(0)) \otimes_R N$. This leads to $M/U_M(0)$ and $N/\mathfrak{m}N$ are Cohen-Macaulay modules over R and S respectively. Moreover we have

$$\dim_R M = \dim_S (M \otimes_R N) - \dim_S N/\mathfrak{m}N$$

$$\leq \operatorname{depth}_S (M \otimes_R N) + 1 - \operatorname{depth}_S N/\mathfrak{m}N$$

$$= \operatorname{depth}_R M + 1.$$

Hence by Theorem 2.7 part (iv), we find that M is an approximately Cohen-Macaulay module.

Corollary 4.2. Let M be a finitely generated module over a local ring (R, \mathfrak{m}) . Then M is approximately Cohen-Macaulay if and only if its \mathfrak{m} -adic completion \widehat{M} is approximately Cohen-Macaulay and $U_{\widehat{M}}(0) = \widehat{U_M(0)}$.

Proof. The extension $R \longrightarrow \hat{R}$ is local and faithfully flat. So we can invoke Theorem 4.1 and conclude the proof.

It should be mentioned that in general M is not approximately Cohen-Macaulay in case that \widehat{M} is an approximately Cohen-Macaulay \widehat{R} -module. For this fact see [11, Example 6.1].

Theorem 4.3. Let R be a ring which is not necessarily local, M a finitely generated R-module, and $S = R[X_1, \dots, X_n]$ or $S = R[[X_1, \dots, X_n]]$. Then $M \otimes_R S$ is an approximately Cohen-Macaulay S-module if and only if M is an approximately Cohen-Macaulay R-module

Proof. We may assume n = 1, $X = X_1$ because the indeterminates can be adjoined successively. Suppose $M \otimes_R S$ is approximately Cohen-Macaulay. In both cases X is regular on $M \otimes_R S$, and $R \cong S/(X)$, $M \cong_R (M \otimes_R S)/X(M \otimes_R S)$. Therefore it follows from Remark 3.6, that M is an approximately Cohen-Macaulay module.

Conversely, let \mathfrak{m} be a maximal ideal of S and set $\mathfrak{p} := \mathfrak{m} \cap R$. Then $S_{\mathfrak{m}}$ is an $R_{\mathfrak{p}}$ -module by canonical homomorphism $\varphi : (R_{\mathfrak{p}}, \mathfrak{p}R_{\mathfrak{p}}) \longrightarrow (S_{\mathfrak{m}}, \mathfrak{m}S_{\mathfrak{m}})$. This leads to the following isomorphism

$$(M \otimes_R S)_{\mathfrak{m}} \cong_{S_{\mathfrak{m}}} M_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} S_{\mathfrak{m}}.$$

So we may prove $M_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} S_{\mathfrak{m}}$ is an approximately Cohen-Macaulay $S_{\mathfrak{m}}$ -module. Since in both cases, S is a flat R-algebra, therefore $S_{\mathfrak{m}}$ is faithfully flat over $R_{\mathfrak{p}}$ by [1, Exercises 3.16 and 3.18]. Moreover the fiber $S_{\mathfrak{m}}/\mathfrak{p}S_{\mathfrak{m}}$ is a discrete valuation ring, and thus is Cohen-Macaulay (see outlined below [3, Theorem A.12]). Theorem 4.1, completes the proof. \Box

Acknowledgment. The authors are deeply grateful to reviewers for a very careful reading of the manuscript and many valuable suggestions in improving the quality of the paper.

References

- M.F. Atiyah, I.G. Macdonald, Introduction to Commutateve Algebra, Addison-Wesley, 1969.
- [2] M.P. Brodmann, R.Y. Sharp, Local cohomology; An algebraic introduction with geometric applications, Cambridge University Press, 1998.
- [3] W. Bruns, J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, 1993.
- [4] N.T. Cuong, D.T. Cuong, On sequentially Cohen-Macaulay modules, Kodai Math. J. 30, 409-428, 2007.
- [5] S. Goto, Approximately Cohen-Macaulay rings, J. Algebra 76, 214-225, 1982.
- [6] A. Grothendieck, *Local cohomology (notes by R. Hartshorne)*, Springer Lecture Notes in Math., Springer-Verlag, 1966.
- [7] C. Huneke, The theory of d-sequences and powers of ideals, Adv. Math. 46, 249-279, 1982.
- [8] H. Matsumura, *Commutative ring theory*, Cambridge University Press, 1986.
- [9] M.R. Pournaki, M. Tousi, S. Yassemi, Tensor products of approximately Cohen-Macaulay rings, Comm. Algebra 34, 2857-2866, 2006.
- [10] P. Schenzel, On the use of local cohomology in algebra and geometry, in: Six lectures on commutative algebra, 241-292, Birkhäuser, Basel, 1998.
- [11] P. Schenzel, On the dimension filtration and Cohen-Macaulay filtered modules, Lecture Notes in Pure and Applied Mathematics, 245-264, 1999.