||| % "" Mugla Journal of Science and Technology

w
w
L
&

— &
— &

)

Cigapy pai

PARAMETER ESTIMATION BASED ON MAXIMUM LIKELIHOOD ESTIMATION
METHOD FOR WEIBULL DISTRIBUTION USING DRAGONFLY ALGORITHM

Aynur YONAR, Department of Statistics, Faculty of Science, Selguk University/Konya, aynursahin@selcuk.edu.tr
(“= https://orcid.org/0000-0003-1681-9398)
Nimet YAPICI PEHLIVAN*, Department of Statistics, Faculty of Science, Selcuk University/Konya, nimet@selcuk.edu.tr

(= https://orcid.org/-0000-0002-7094-8097)

Received: 20.07.2021, Accepted: 28.12.2021 Research Article
*Corresponding author DOI: 10.22531/muglajsci.973403
Abstract

Three-parameter (3-p) Weibull distribution is commonly used in sciences such as engineering, reliability, and renewable
energy. Thus, a great number of studies have been conducted on the estimation for the parameters of this distribution. One
of the mostly utilized methods for estimating the unknown parameters of the Weibull distribution in the related literature
is Maximum likelihood (ML) method. In this study, a population-based novel heuristic method is proposed to use the
Dragonfly Algorithm (DA) for obtaining the Maximum Likelihood estimates of three-parameter Weibull distribution.
Inspired by the static and dynamic swarming behavior of the dragonflies in nature, Dragonfly algorithm has been
introduced. These behaviors ensure that the algorithm has a high exploration and exploitation. An extensive Monte-Carlo
simulation study is conducted to show the performance of the DA. Furthermore, the performance of DA is compared with
other algorithms well known in the literature. Finally, a real data set is analyzed to show the applicability of the ML
estimation based on the DA.

Keywords: Dragonfly Algorithm, Maximum Likelihood Estimation Method, Monte Carlo Simulation, Weibull Distribution.

DRAGONFLY (YUSUFCUK) ALGORITMASI KULLANILARAK WEIBULL
DAGILIMI iCIN EN COK OLABILIRLIK TAHMIN YONTEMINE DAYALI
PARAMETRE TAHMINI

Ozet

U¢ parametreli (3-p) Weibull dagilimi, miihendislik, giivenilirlik ve yenilenebilir enerji gibi bilimlerde yaygin olarak
kullanilmaktadir. Bu nedenle, bu dagilimin parametrelerinin tahmini iizerine bir¢cok calisma yapilmaktadir. En ¢cok
olabilirlik (ML) yéntemi, literatiirde Weibull dagiliminin bilinmeyen parametrelerinin tahmininde yaygin olarak kullanilan
yontemlerden biridir. Bu ¢alismada, lic-parametreli Weibull dagiliminin ML tahminlerini elde etmek icin popiilasyon
tabanli yeni bir sezgisel yéntem olan yusufcuk algoritmasinin (DA) kullanilmasi énerilmistir. Bu algoritma, yusufcuklarin
dogadaki statik ve dinamik kiimelenme davranisindan esinlenilerek tanitilmistir. Bu davranislar, algoritmanin ytiksek bir
kesif ve isletme yeteneklerine sahip olmasini saglamaktadir. DA'nin performansini géstermek icin kapsamli bir Monte-Carlo
simiilasyon ¢alismast yapilmistir. Ayrica, DA'nin performansi literatiirdeki diger iyi bilinen algoritmalarla karsilastirmistir.
Son olarak, DA'ya dayali ML tahmininin uygulanabilirligini gostermek icin gercek bir veri seti analiz edilmistir.

Anahtar Kelimeler: Yusufcuk Algoritmasi, En Cok Olabilirlik Tahmin Yontemi, Monte Carlo Simiilasyonu, Weibull Dagilimi
Cite

Yonar, A, Pehlivan, Y. N,, (2021). “Parameter Estimation Based on Maximum Likelihood Estimation Method for Weibull
Distribution Using Dragonfly Algorithm”, Mugla Journal of Science and Technology, 7(2), 84-90.

medicine, economics, business, etc., and is very useful in

1. Introduction modeling [3].
A random variable X which has the three-parameter
Weibull distribution, proposed by Weibull [1] is one of Weibull distribution having location parameter x, scale
the commonly used continuous distributions in studies parameter 7, and shape parameter §, is indicated by

on lifetime and reliability, due to its flexible structure and . . . .
suitability for the distribution of a wide variety of X ~ Weibul{' 2,7, fj . Probability density function and

experimental observations [2]. It is applied in many cumulati_ve distributior'l function of the
fields such as engineering, quality control, physics, X ~Weibul{ x,77, are given by
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plx-u)" 0]
fX(X):;[TJ e ; x2>2u,1n>0,6>0 1)
and
FX(X)zl—e{X'_’y) S x>, n>0, 850 (2)

respectively. The three-parameter Weibull distribution
takes different forms according to shape parameter ( 3 )

values. For instance, the distribution is J-shaped for
£ <1 and the bell-shaped for g >1. In addition, the

exponential distribution and the Rayleigh distribution
are obtained for g =1 and S =2, respectively [4,5].

Parameter estimation for the three-parameter Weibull
distribution is very important because of its flexible
structure and very well-fitting ability in an extremely
wide range of empirical observations.

One of the most widely used methods for parameter
estimation is the Maximum Likelihood (ML), as ML
estimators are asymptotically unbiased and have
minimum variance. However, the ML estimation of the
parameters for the three-parameter Weibull distribution
cannot be obtained analytically and hence using the
various metaheuristic methods are proposed to find the
approximate values of the estimates. In recent times, the
Maximum Likelihood parameter estimations for the
three-parameter Weibull distribution by metaheuristic
methods have been extensively studied in the literature.
Abbasi et al. [6] applied the Simulated Annealing (SA)
method for the ML parameter estimation of a three-
parameter Weibull distribution by using three numerical
examples and four sample sizes and they demonstrated
that this method gives powerful and accurate results.
Abbasi et al. [7] proposed a hybrid meta-heuristic based
on the SA algorithm and variable neighborhood search to
maximize the likelihood function for the three-parameter
Weibull distribution and compared the performances of
the considered methods in terms of estimation accuracy
and computation time. Orkgii et al. [8] suggested the
differential evolution (DE) approaches for the parameter
estimation of three-parameter Weibull distribution via
numerical examples and they showed that with DE, less
CPU time is needed and accurate estimates are obtained.
Orkcii et al. [9] obtained the ML parameter estimation of
the three-parameter Weibull distribution using particle
swarm optimization (PSO) approaches with different
parameters, i.e. inertia weight, acceleration coefficients,
particle size, and search space. The study concluded that
these PSO approaches provide accurate estimates even
with fewer iterations. Carneiro et al. [10] utilized the PSO
method to estimate the Weibull parameters for wind
resources in the Northeast Region of the Brazil and
compared the PSO with five numerical methods. It has
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been observed that PSO provides the best performance.
Yang et al. [11] used the evolutionary strategy for
maximizing the likelihood function of the three-
parameter Weibull distribution. Acitas et al. [12]
suggested a new PSO algorithm approach whose initial
search space is constructed modified maximum
likelihood estimators for the parameter estimation of the
three-parameter Weibull distribution. Yonar and Yapici
Pehlivan [13] proposed a new approach by integrating
Artificial Bee Colony and Levy Flights, to get the ML
estimation of the three-parameter Weibull distribution
and compared this approach with some metaheuristic
methods. It is concluded that the proposed algorithm
produces more accurate parameter estimates.

It is not possible to talk about a general best algorithm
among the above-mentioned algorithms for parameter
estimation in the literature. The algorithm that gives the
best parameter estimation varies according to the
distribution and actual parameter values. Therefore, it is
necessary to try various algorithms in the parameter
estimation process.

The aim of this study is to propose an alternative method
by using a novel population-based heuristic method,
Dragonfly Algorithm (DA) to these methods suggested in
the literature for obtaining maximum likelihood
estimations of three-parameter Weibull distribution.
This algorithm is inspired by dragonflies' static and
dynamic swarming behaviors which allow for high levels
of exploration and exploitation.

The remainder of this study is organized as follows. The
Maximum Likelihood (ML) estimation method for three-
parameter Weibull distribution is introduced in Section
2. The Dragonfly Algorithm (DA) is explained in Section
3. In Section 4, a comprehensive Monte-Carlo simulation
study is conducted to demonstrate the performance of
the DA and it is compared with some meta-heuristic
methods in the literature. Also, a real dataset is analyzed
to show the applicability of the ML estimation based on
the Dragonfly Algorithm. As a final, conclusions are
presented in Section 5.

2. Maximum Likelihood Estimation for Three-
Parameter Weibull Distribution

Maximum Likelihood (ML) estimation method is based
on maximizing the likelihood (L) orlog-likelihood (InL)

function of any statistical distribution. Since logarithmic
functions have the property of monotony, the values that
maximize the L and InL functions are the same.
Therefore, InLis generally used in terms of ease of
calculation. The InL function for the three-parameter
Weibull distribution is given by Eq. (3).
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Taking the partial derivatives of the InL according to the
unknown parameters and then equalized to =zero,
likelihood equations are obtained. Solving these
equations, the ML parameter estimations for the three-
parameter Weibull distribution are obtained. However,
these equations cannot be solved analytically since
likelihood equations contain nonlinear functions.
Therefore, it is suggested to use the Dragonfly Algorithm,
which is one of the metaheuristic methods, in this study.

3. Dragonfly Algorithm (DA)

Dragonfly algorithm (DA) was proposed by Mirjalili [14]
inspired by dragonflies' hunting and migrating behavior
in nature. Hunting is called a static swarm while
migration is called a dynamic swarm. In the static swarm,
dragonflies fly in a narrow space to hunt in small groups.
In the dynamic swarm, however, dragonflies migrate in
large groups towards one direction over great distances.
These movements are very similar to the exploration and
exploitation phases in metaheuristic methods. While the
movement of dragonflies in the static swarm forms the
basis of the exploration phase, the movement in the
dynamic swarm supports the exploitation phase.

The behavior of the dragonflies depends on the following
five corrective patterns, namely separation, alignment,
cohesion, attraction, and distraction.

Separation: It is a mechanism applied by an individual to
stay away from other neighboring individuals. The
separation of the individual i is computed by following:

(4)

where; X shows the position of the current individual,

X, stands the position of neighboring individual j, and

N indicates the number of neighboring individuals.

Alignment: It shows how an individual matches its
velocity with the velocity of other neighboring
individuals. The alignment of the individual i is calculated
as follows:

= (5)

where; V, represents the velocity of the neighboring

individual j.
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Cohesion: It indicates the tendency of individuals
towards the neighboring center of mass. The cohesion of
the individual i is calculated as follows:

>,
c ==
"N

. (6)

Attraction: It refers the tendency of individuals towards
a food source. The food search of the individual i is
computed by:

F=X'-X )

where; X stands the position of the food source.

Distraction: It refers the tendency of individuals
outwards an enemy. The position of enemy for the
individual i is calculated by:

E =X -X (8)

where; X~ stands the position of the enemy.

The step vector defining the direction of the movement
for the dragonflies is defined as follows:

AX,,; =(sS; +aA +cC, + fF, +eE, )+ WAX, 9

where;

S : separation weight,
a:alignment weight,
c: cohesion weight,

f : food factor,

e : enemy factor,
w : inertia weight.

These weights enable the DA to achieve different
exploration and exploitation behaviors during
optimization.
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The new position of the dragonfly is computed by
following:

Xea = X +AX (10)

where; t indicates the current iteration.

If there are no neighboring individuals, the dragonfly's
new position will be updated using Levy Flight in order
to improve the dragonfly's randomness, stochastic
behavior and global search capability. In this case, the
new position is calculated as follows:
X = X+ Levy(d) X, (11)
where; d defines the dimension of the position vectors.
The Levy flight is computed by Eq. (12):

o

/
7

Levy(x) =0.01 (12)

where; 1, and r, indicate the random numbers in [0,1].
A isaconstant and o is calculated by:

1A

o 'L+ A)xsin (71'/1 / 2) (13)

F(l—;lj X A X 2(%)

where; I'(.) is the gamma function.

The DA starts by randomly generating the initial
population. The algorithm updates the following until a
termination criterion is satisfied for each iteration. At
first, each individual in the population is assessed by
using the objective function. Then, §;, A, C,, F, E; are
updated using Equations (5)-(9). The step vector and the
new position are subsequently updated utilizing the
Equations (10)-(14). Finally, the best solution obtained
in the last iteration becomes the solution of the
considered problem.

4. The Monte Carlo Simulation Study

This section presents a Monte Carlo simulation study to
demonstrate the efficiency of the DA algorithm in the ML
parameter estimations for the three-parameter Weibull
distribution. In this study, various real parameter values
of 6=[2,2,2], 6=[4,3,2] and 6 =]5,2,3] for the three-
parameter Weibull distribution and various sample sizes
(n) of 100, 500, 1000, and 2500 are taken similar to
studies of Abbasi et al. [6] and Orkcii et al. [8]. Also, the
population size (N) is considered to be 50 and 100
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judging by other studies such as Orkcii et al. [8] and
Acitas et al. [12]. The mathematical expressions of Mean
values, Bias, Mean Square Error (MSE) and Deficiency
(Def) criteria used in comparisons are defined as follows
[15]:

Mean(d) =0 = 34 Ik (14)
Bias(d) = E(0) -0 =0 -0 (15)
MSE () =Var(8) + (Bias(8))? (16)
Def (2,3, ) = MSE(i2) + MSE(#) + MSE(/3) (17)

All the simulations are based on 1000 Monte Carlo runs.
Simulation results obtained using the DA for the various
parameter of the three-parameter Weibull distribution
are given in Tables 1-6.

Table 1: The results of the DA for the parameters
0=(u,n,B)=(2,2,2) and population size(N)=50

A

n Results i n B
Mean 2.0216 1.9650 1.9932
100 Bias 0.0216 -0.0350 -0.0068
MSE 0.0502 0.0785 0.1410
Def 0.2697
Mean 2.0165 1.9765 1.9712
500 Bias 0.0165 -0.0235 -0.0288
MSE 0.0232 0.0321 0.0461
Def 0.1014
Mean 2.0124 1.9812 1.9737
1000 Bias 0.0124 -0.0188 -0.0263
MSE 0.0168 0.0225 0.0297
Def 0.0690
Mean 2.0045 1.9926 1.9886
2500 Bias 0.0045 -0.0074 -0.0114
MSE 0.0153 0.0196 0.0243
Def 0.0592

Table 2: The results of the DA for the parameters
0 =(u,n,B)=(2,2,2) and population size(N)=100

A

n Results ol 7 Yi;
Mean 2.0277 1.9541 1.9767
100 Bias 0.0277 -0.0459 -0.0233
MSE 0.0553 0.0836 0.1517
Def 0.2907
Mean 2.0149 1.9792 1.9798
500 Bias 0.0149 -0.0208 -0.0202
MSE 0.0136 0.0207 0.0306
Def 0.0650
Mean 2.0150 1.9790 1.9710
1000 Bias 0.0150 -0.0210 -0.0290
MSE 0.0126 0.0174 0.0250
Def 0.0549
Mean 2.0101 1.9867 1.9805
2500 Bias 0.0101 -0.0133 -0.0195
MSE 0.0088 0.0117 0.0157
Def 0.0363




Aynur Yonar Nimet Yapici Pehlivan
Parameter Estimation Based on Maximum Likelihood Estimation Method for Weibull Distribution Using Dragonfly Algorithm

Table 3: The results of the DA for the parameters
0= (u,n,B)=(4,3,2) and population size (N)=50

~

n Results A n L
Mean 4.0409 2.9361 1.9739
100 Bias 0.0409 -0.0639 -0.0261
MSE 0.1493 0.2167 0.1603
Def 0.5263
Mean 4.0226 2.9608 1.9693
500 Bias 0.0226 -0.0392 -0.0307
MSE 0.0897 0.1132 0.0635
Def 0.2663
Mean 4.0150 2.9737 1.9741
1000 Bias 0.0150 -0.0263 -0.0259
MSE 0.0673 0.0851 0.0474
Def 0.1997
Mean 4.0009 2.9936 1.9905
2500 Bias 0.0009 -0.0064 -0.0095
MSE 0.0662 0.0821 0.0435
Def 0.1918

Table 4: The results of the DA for the parameters
0=(u,n,B)=(4,3,2) and population size (N)=100

n Results A I Yij
Mean 4.0595 29151 1.9697
100 Bias 0.0595 -0.0849 -0.0303
MSE 0.0948 0.1540 0.1184
Def 0.3673
Mean 4.0524 2.9338 1.9468
500 Bias 0.0524 -0.0662 -0.0532
MSE 0.0203 0.0344 0.0246
Def 0.0792
Mean 4.0430 2.9448 1.9518
1000 Bias 0.0430 -0.0552 -0.0482
MSE 0.0188 0.0271 0.0180
Def 0.0639
Mean 4.0307 2.9605 1.9653
2500 Bias 0.0307 -0.0395 -0.0347
MSE 0.0127 0.0175 0.0112
Def 0.0414

Table 5: The results of the DA for the parameters
0 =(u,n,B)=(5273) and population size (N)=50

~ ~ A

n Results H n Y]
Mean 4.3818 2.6256 4.1209
100 Bias -0.6182 0.6256 1.1209
MSE 2.1395 2.2511 6.8280
Def 11.2186
Mean 4.5067 2.5042 3.8277
500 Bias -0.4933 0.5042 0.8277
MSE 1.6739 1.7567 4.7200
Def 8.1506
Mean 4.4788 2.5337 3.8656
1000 Bias -0.5212 0.5337 0.8656
MSE 1.7057 1.7905 4.7485
Def 8.2447
Mean 4.5646 2.4439 3.7090
2500 Bias -0.4354 0.4439 0.7090
MSE 1.4960 1.5685 4.0293
Def 7.0938
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Table 6: The results of the DA for the parameters
0=(u,n,B)=(52,3) and population size (N)=100

A

A

n Results H n £
Mean 4.6182 2.3827 3.7077
100 Bias -0.3818 0.3827 0.7077
MSE 1.3470 1.4176 4.3767
Def 7.1413
Mean 4.7924 2.2089 3.3459
500 Bias -0.2076 0.2089 0.3459
MSE 0.6585 0.6972 1.9154
Def 3.2711
Mean 4.8439 2.1561 3.2478
1000 Bias -0.1561 0.1561 0.2478
MSE 0.5454 0.5767 1.5084
Def 2.6306
Mean 4.8846 2.1152 3.1755
2500 Bias -0.1154 0.1152 0.1755
MSE 0.4727 0.4998 1.3133
Def 2.2858

As can be seen from Tables 1-6, the ML estimates
obtained from the DA are generally close to the actual
parameter values, and the MSE and Def values of the
estimates decrease as the number of samples increases.
This demonstrates the suitability of using the Dragonfly
Algorithm for the Maximum Likelihood parameter
estimation of the three-parameter Weibull distribution.
The DA gives better results for population size(N)=100
than for population size(N)=50 in most cases, except for
6 =(2,2,2) and n=100. However, it is undesirable to

have a large population size as the computation time
increases as the population size increases. It is also noted
from these tables that when the value of shape parameter
p is high, estimates with higher MSE and Def values are

obtained. This may be due to the shape of the function.

This study also compares the parameter estimation
results of the DA with those of the SA by [6], the DE [8]
and the PSO [9] as shown in Table 7.

It can be clearly seen from Table 7 that PSO and DE
methods produced better parameter estimates than DA,
while DA gave better parameter estimates than SA
according to the MSE criterion. DE gives the best
parameter estimates for the actual parameter values of
0=[2,2,2] and 0=[4,3,2] while PSO gives the best
parameter estimates for 6 =[5,2,3]. As a result, it is not

possible to talk about a general method that is good for
all parameter values considered. Therefore, the methods
discussed in this study, except SA, can be tried as an
alternative.

Detailed results of the SA, DE and PSO are notincluded in
the result tables in order not to take up too much place.
Readers can see detailed parameter estimation results
from [6-9].
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Table 7: The average ML parameter estimates of the DA,
SA, DE and PSO for various real parameter vector
6= (u,n,B) for population size (N)=100

0= (u,mB) 11‘1’1:; i A A
0=(2,2,2) Mean | 2.0277 | 1.9541 | 1.9767
DA MSE 0.0553 | 0.0836 | 0.1517
Def 0.2907
Mean | 1.9963 | 1.9828 | 2.1448
?é‘] MSE 0.0515 | 0.0788 | 0.2190
Def 0.3493
Mean | 2.0433 | 1.9696 | 1.9806
{:g MSE 0.0227 | 0.0372 | 0.0907
Def 0.1505
pso |_Mean | 1.9890 | 20031 | 20339
9] MSE 0.1842 | 02238 | 03128
Def 0.7208
0= (4,3. 2) Mean 4.0595 2.9151 1.9697
DA MSE 0.0948 | 0.1540 | 0.1184
Def 0.3673
sa Mean | 3.2764 | 3.8260 | 2.6195
[61 MSE 1.4024 1.6886 1.0067
Def 4.0977
DE Mean 4.0199 2.9652 2.0323
8] MSE 0.0459 | 0.0895 | 0.0709
Def 0.2063
pso |_Mean | 40990 | 28653 | 19442
9] MSE 0.0528 | 0.1023 | 0.0692
Def 0.2242
0= (5, 2,3) Mean 4.6182 2.3827 3.7077
DA MSE 1.3470 1.4176 4.3767
Def 71413
sa Mean | 3.8283 | 3.2298 | 4.8877
6] MSE 2.8376 | 3.0540 | 7.3209
Def 13.2125
DE Mean | 4.8360 | 2.1668 | 3.3550
i8] MSE 0.2033 | 0.2343 | 0.8636
Def 13011
pso |_Mean | 50401 | 19444 | 29258
9] MSE 00666 | 0.0834 | 0.2805
Def 0.4305

5. A Real Data Application

A real data application is conducted to demonstrate the
implementation of the DA for the ML parameter
estimation of the three-parameter Weibull distribution.
The data set which contain the failure times of 24
mechanical parts is given in Table 8 [16]:

Table 8: Data set for failure times of 24 mechanical parts

P.No | F.time | P.No | F.time | P.No | F.time | P.No | F.time
1 3094 | 7 19.08 | 13 27.47 | 19 19.40
2 1851 | 8 49.56 | 14 14.70 | 20 14.97
3 16.62 | 9 17.12 | 15 14.10 | 21 22.57
4 51.56 | 10 10.67 | 16 2993 | 22 12.26
5 2285 | 11 2543 | 17 2798 | 23 18.14
6 22.38 | 12 10.24 | 18 36.02 | 24 18.84
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The ML estimates of parameters of the Weibull
distribution are obtained by SA, DE, PSO, and DA
algorithms. The values of the ML estimates and InL are
given in Table 9. Furthermore, it is tested whether this
data is distributed as Weibull or not via the Kolmogorov-
Smirnov (K-S) test. The K-S test statistic values and p-
values of the K-S test statistics are also presented in Table
9.

Table 9: Parameter estimates, InL values, K-S test
statistics, and p-values of the K-S test statistics.
P.No ,& ﬁ ,B" InL :(e-SSt g;\;?_lsue
SA 91453 | 30.7047 | 1.1806 | -92.9171 | 03881 | 0.0014
DE 10.0661 | 13.6261 | 1.1782 | -84.8908 | 0.0940 | 0.9831
PSO | 10.1104 | 13.4418 | 1.1474 | -84.8938 | 0.1028 | 0.9613
DA 8.0078 | 16.1042 | 1.4021 | -86.0894 | 0.1007 | 0.9678

Itis clear from Table 9 that the distribution of data set for
failure times is Weibull distribution except for the SA
with p-value=0.0014, since p-values of the K-S test
statistics are greater than a =0.05. As a result, DE, PSO,
and DA can be used to obtain the parameter estimation
of the considered failure times data.

The histogram and fitted densities of data set for failure
times is shown in Figure 1.

0.06 T T

T
[ data
—PSO
0.05 DE | 4

R —on |
—

0.03

0.02

0.01

10 20 30 40 50 60 70

Figure 1: Histogram and fitted densities of data set for

failure times

It is seen that the histogram and fitted densities
presented in Figure 1 also support the above mention
results.

6. Conclusion

In this study, Maximum Likelihood (ML) estimates of the
parameters for the three-parameter Weibull distribution
are obtained via Dragonfly Algorithm (DA). Monte-Carlo
simulation results show that the Dragonfly Algorithm
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(DA) provides accurate estimates and it can be more
preferable than Simulated Annealing (SA) for the
parameter estimation of the three-parameter Weibull
distribution.

Furthermore, the implementation of the DA is
demonstrated by a real data analysis. In future studies,
various approaches can be applied to improve the
performance of the DA in order to obtain parameter
estimates of different distributions.
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