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Abstract 

Three-parameter (3-p) Weibull distribution is commonly used in sciences such as engineering, reliability, and renewable 
energy. Thus, a great number of studies have been conducted on the estimation for the parameters of this distribution. One 
of the mostly utilized methods for estimating the unknown parameters of the Weibull distribution in the related literature 
is Maximum likelihood (ML) method. In this study, a population-based novel heuristic method is proposed to use the 
Dragonfly Algorithm (DA) for obtaining the Maximum Likelihood estimates of three-parameter Weibull distribution. 
Inspired by the static and dynamic swarming behavior of the dragonflies in nature, Dragonfly algorithm has been 
introduced. These behaviors ensure that the algorithm has a high exploration and exploitation. An extensive Monte-Carlo 
simulation study is conducted to show the performance of the DA. Furthermore, the performance of DA is compared with 
other algorithms well known in the literature. Finally, a real data set is analyzed to show the applicability of the ML 
estimation based on the DA. 
Keywords: Dragonfly Algorithm, Maximum Likelihood Estimation Method, Monte Carlo Simulation, Weibull Distribution. 

DRAGONFLY (YUSUFÇUK) ALGORİTMASI KULLANILARAK WEIBULL 
DAĞILIMI İÇİN EN ÇOK OLABİLİRLİK TAHMİN YÖNTEMİNE DAYALI 

PARAMETRE TAHMİNİ 

Özet 

Üç parametreli (3-p) Weibull dağılımı, mühendislik, güvenilirlik ve yenilenebilir enerji gibi bilimlerde yaygın olarak 
kullanılmaktadır. Bu nedenle, bu dağılımın parametrelerinin tahmini üzerine birçok çalışma yapılmaktadır. En çok 
olabilirlik (ML) yöntemi, literatürde Weibull dağılımının bilinmeyen parametrelerinin tahmininde yaygın olarak kullanılan 
yöntemlerden biridir. Bu çalışmada, üç-parametreli Weibull dağılımının ML tahminlerini elde etmek için popülasyon 
tabanlı yeni bir sezgisel yöntem olan yusufçuk algoritmasının (DA) kullanılması önerilmiştir. Bu algoritma, yusufçukların 
doğadaki statik ve dinamik kümelenme davranışından esinlenilerek tanıtılmıştır. Bu davranışlar, algoritmanın yüksek bir 
keşif ve işletme yeteneklerine sahip olmasını sağlamaktadır. DA'nın performansını göstermek için kapsamlı bir Monte-Carlo 
simülasyon çalışması yapılmıştır. Ayrıca, DA'nın performansı literatürdeki diğer iyi bilinen algoritmalarla karşılaştırmıştır. 
Son olarak, DA'ya dayalı ML tahmininin uygulanabilirliğini göstermek için gerçek bir veri seti analiz edilmiştir. 
Anahtar Kelimeler: Yusufçuk Algoritması, En Çok Olabilirlik Tahmin Yöntemi, Monte Carlo Simülasyonu, Weibull Dağılımı 
Cite 
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1.  Introduction 
 
Weibull distribution, proposed by Weibull [1] is one of 
the commonly used continuous distributions in studies 
on lifetime and reliability, due to its flexible structure and 
suitability for the distribution of a wide variety of 
experimental observations [2]. It is applied in many 
fields such as engineering, quality control, physics, 

medicine, economics, business, etc., and is very useful in 
modeling [3]. 
A random variable X  which has the three-parameter 
Weibull distribution having location parameter  , scale 

parameter  , and  shape parameter  , is indicated by  

Weibull , ,  X ( ) . Probability density function and 

cumulative distribution function of the 
Weibull , ,  X ( )  are given by  
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respectively. The three-parameter Weibull distribution 
takes different forms according to shape parameter (  ) 

values. For instance, the distribution is J-shaped for 
1   and the bell-shaped for 1  . In addition, the 

exponential distribution and the Rayleigh distribution 
are obtained for 1 =  and 2 = , respectively [4,5]. 

Parameter estimation for the three-parameter Weibull 
distribution is very important because of its flexible 
structure and very well-fitting ability in an extremely 
wide range of empirical observations.  
One of the most widely used methods for parameter 
estimation is the Maximum Likelihood (ML), as ML 
estimators are asymptotically unbiased and have 
minimum variance. However, the ML estimation of the 
parameters for the three-parameter Weibull distribution 
cannot be obtained analytically and hence using the 
various metaheuristic methods are proposed to find the 
approximate values of the estimates. In recent times, the 
Maximum Likelihood parameter estimations for the 
three-parameter Weibull distribution by metaheuristic 
methods have been extensively studied in the literature. 
Abbasi et al. [6] applied the Simulated Annealing (SA) 
method for the ML parameter estimation of a three-
parameter Weibull distribution by using three numerical 
examples and four sample sizes and they demonstrated 
that this method gives powerful and accurate results. 
Abbasi et al. [7] proposed a hybrid meta-heuristic based 
on the SA algorithm and variable neighborhood search to 
maximize the likelihood function for the three-parameter 
Weibull distribution and compared the performances of 
the considered methods in terms of estimation accuracy 
and computation time. Örkçü et al. [8] suggested the 
differential evolution (DE) approaches for the parameter 
estimation of three-parameter Weibull distribution via 
numerical examples and they showed that with DE, less 
CPU time is needed and accurate estimates are obtained. 
Örkçü et al. [9] obtained the ML parameter estimation of 
the three-parameter Weibull distribution using particle 
swarm optimization (PSO) approaches with different 
parameters, i.e. inertia weight, acceleration coefficients, 
particle size, and search space.  The study concluded that 
these PSO approaches provide accurate estimates even 
with fewer iterations. Carneiro et al. [10] utilized the PSO 
method to estimate the Weibull parameters for wind 
resources in the Northeast Region of the Brazil and 
compared the PSO with five numerical methods. It has 

been observed that PSO provides the best performance. 
Yang et al. [11] used the evolutionary strategy for 
maximizing the likelihood function of the three-
parameter Weibull distribution. Acıtaş et al. [12] 
suggested a new PSO algorithm approach whose initial 
search space is constructed modified maximum 
likelihood estimators for the parameter estimation of the 
three-parameter Weibull distribution. Yonar and Yapıcı 
Pehlivan [13] proposed a new approach by integrating 
Artificial Bee Colony and Levy Flights, to get the ML 
estimation of the three-parameter Weibull distribution 
and compared this approach with some metaheuristic 
methods. It is concluded that the proposed algorithm 
produces more accurate parameter estimates.  
It is not possible to talk about a general best algorithm 
among the above-mentioned algorithms for parameter 
estimation in the literature. The algorithm that gives the 
best parameter estimation varies according to the 
distribution and actual parameter values. Therefore, it is 
necessary to try various algorithms in the parameter 
estimation process.  
The aim of this study is to propose an alternative method 
by using a novel population-based heuristic method, 
Dragonfly Algorithm (DA) to these methods suggested in 
the literature for obtaining maximum likelihood 
estimations of three-parameter Weibull distribution. 
This algorithm is inspired by dragonflies' static and 
dynamic swarming behaviors which allow for high levels 
of exploration and exploitation. 
The remainder of this study is organized as follows. The 
Maximum Likelihood (ML) estimation method for three-
parameter Weibull distribution is introduced in Section 
2. The Dragonfly Algorithm (DA) is explained in Section 
3. In Section 4, a comprehensive Monte-Carlo simulation 
study is conducted to demonstrate the performance of 
the DA and it is compared with some meta-heuristic 
methods in the literature. Also, a real dataset is analyzed 
to show the applicability of the ML estimation based on 
the Dragonfly Algorithm. As a final, conclusions are 
presented in Section 5. 

 

2.  Maximum Likelihood Estimation for Three-
Parameter Weibull Distribution 

Maximum Likelihood (ML) estimation method is based 
on maximizing the likelihood ( )L  or log-likelihood (ln )L  

function of any statistical distribution. Since logarithmic 
functions have the property of monotony, the values that 
maximize the L  and lnL  functions are the same. 
Therefore, lnL is generally used in terms of ease of 
calculation. The lnL  function for the three-parameter 
Weibull distribution is given by Eq. (3). 
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Taking the partial derivatives of the lnL  according to the 
unknown parameters and then equalized to zero, 
likelihood equations are obtained. Solving these 
equations, the ML parameter estimations for the three-
parameter Weibull distribution are obtained. However, 
these equations cannot be solved analytically since 
likelihood equations contain nonlinear functions. 
Therefore, it is suggested to use the Dragonfly Algorithm, 
which is one of the metaheuristic methods, in this study. 

 

3.  Dragonfly Algorithm (DA) 

Dragonfly algorithm (DA) was proposed by Mirjalili [14] 
inspired by dragonflies' hunting and migrating behavior 
in nature. Hunting is called a static swarm while 
migration is called a dynamic swarm. In the static swarm, 
dragonflies fly in a narrow space to hunt in small groups. 
In the dynamic swarm, however, dragonflies migrate in 
large groups towards one direction over great distances. 
These movements are very similar to the exploration and 
exploitation phases in metaheuristic methods. While the 
movement of dragonflies in the static swarm forms the 
basis of the exploration phase, the movement in the 
dynamic swarm supports the exploitation phase. 

The behavior of the dragonflies depends on the following 
five corrective patterns, namely separation, alignment, 
cohesion, attraction, and distraction. 

Separation: It is a mechanism applied by an individual to 
stay away from other neighboring individuals. The 
separation of the individual i is computed by following: 

( )
1=

= − −
N

i j

j

S X X

 
(4) 

where; X  shows the position of the current individual, 

jX  stands the position of neighboring individual j, and 

N  indicates the number of neighboring individuals. 

Alignment: It shows how an individual matches its 
velocity with the velocity of other neighboring 
individuals. The alignment of the individual i is calculated 
as follows: 

1=
=


N

j

j

i

V

A
N  

(5) 

where; 
jV  represents the velocity of the neighboring 

individual j. 

Cohesion: It indicates the tendency of individuals 
towards the neighboring center of mass. The cohesion of 
the individual i is calculated as follows: 

1=
= −


N

j

j

i

X

C X
N  

(6) 

Attraction: It refers the tendency of individuals towards 
a food source. The food search of the individual i is 
computed by: 

+= −iF X X  (7) 

where; X +
 stands the position of the food source. 

Distraction: It refers the tendency of individuals 
outwards an enemy. The position of enemy for the 
individual i is calculated by: 

−= −iE X X  (8) 

where; −X  stands the position of the enemy. 

The step vector defining the direction of the movement 
for the dragonflies is defined as follows: 

( )1+ = + + + + + t i i i i i tX sS aA cC fF eE w X
 

(9) 

where;  

s : separation weight,  

a : alignment weight, 

c :  cohesion weight,  

f : food factor,  

e : enemy factor, 

w : inertia weight.  

These weights enable the DA to achieve different 
exploration and exploitation behaviors during 
optimization.  
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 The new position of the dragonfly is computed by 
following: 

1 1+ += + t t tX X X
 (10) 

where; t  indicates the current iteration. 

If there are no neighboring individuals, the dragonfly's 
new position will be updated using Levy Flight in order 
to improve the dragonfly's randomness, stochastic 
behavior and global search capability. In this case, the 
new position is calculated as follows: 

1 ( )+ = +t t tX X Levy d X
 (11) 

where; d defines the dimension of the position vectors. 
The Levy flight is computed by Eq. (12): 

2

1

1/   
( ) 0.01

| |

r
Levy x

r
=




 (12) 

where; 1r  and 2r  indicate the random numbers in [0,1]. 

 is a constant and   is calculated by: 
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where; (.)  is the gamma function. 

The DA starts by randomly generating the initial 
population. The algorithm updates the following until a 
termination criterion is satisfied for each iteration. At 
first, each individual in the population is assessed by 
using the objective function. Then, ,  ,  ,  ,  i i i i iS A C F E  are 

updated using Equations (5)-(9). The step vector and the 
new position are subsequently updated utilizing the 
Equations (10)-(14). Finally, the best solution obtained 
in the last iteration becomes the solution of the 
considered problem. 

4.  The Monte Carlo Simulation Study  

This section presents a Monte Carlo simulation study to 
demonstrate the efficiency of the DA algorithm in the ML 
parameter estimations for the three-parameter Weibull 
distribution. In this study, various real parameter values 
of [2,2,2] = , [4,3,2] =  and [5,2,3] =  for the three-

parameter Weibull distribution and various sample sizes 
(n) of 100, 500, 1000, and 2500 are taken similar to 
studies of Abbasi et al. [6] and Örkcü et al. [8]. Also, the 
population size (N) is considered to be 50 and 100 

judging by other studies such as Örkcü et al. [8] and 
Acıtaş et al. [12]. The mathematical expressions of  Mean 
values, Bias, Mean Square Error (MSE) and Deficiency 
(Def) criteria used in comparisons are defined as follows  
[15]: 

1

ˆ ˆ ˆ( ) /
k

i

i

Mean k
=

= =    (14) 

ˆ ˆ ˆ ˆ ˆ( ) ( )Bias E= − = −      (15) 

2MSE Var Bias= +ˆ ˆ ˆ( ) ( ) ( ( ))    (16) 

Def MSE MSE MSE= + +ˆ ˆˆ ˆˆ ˆ( , , ) ( ) ( ) ( )       (17) 

All the simulations are based on 1000 Monte Carlo runs. 
Simulation results obtained using the DA for the various 
parameter of the three-parameter Weibull distribution 
are given in Tables 1-6. 

Table 1: The results of the DA for the parameters 
2 2 2= =( , , ) ( , , )     and population size(N)=50 

n Results ̂  ̂  ̂  

100 

Mean 2.0216 1.9650 1.9932 
Bias 0.0216 -0.0350 -0.0068 
MSE 0.0502 0.0785 0.1410 
Def 0.2697 

500 

Mean 2.0165 1.9765 1.9712 
Bias 0.0165 -0.0235 -0.0288 
MSE 0.0232 0.0321 0.0461 
Def 0.1014 

1000 

Mean 2.0124 1.9812 1.9737 
Bias 0.0124 -0.0188 -0.0263 
MSE 0.0168 0.0225 0.0297 
Def 0.0690 

2500 

Mean 2.0045 1.9926 1.9886 
Bias 0.0045 -0.0074 -0.0114 
MSE 0.0153 0.0196 0.0243 
Def 0.0592 

Table 2: The results of the DA for the parameters 
2 2 2= =( , , ) ( , , )     and population size(N)=100 

n Results ̂  ̂  ̂  

100 

Mean 2.0277 1.9541 1.9767 
Bias 0.0277 -0.0459 -0.0233 
MSE 0.0553 0.0836 0.1517 
Def 0.2907 

500 

Mean 2.0149 1.9792 1.9798 
Bias 0.0149 -0.0208 -0.0202 
MSE 0.0136 0.0207 0.0306 
Def 0.0650 

1000 

Mean 2.0150 1.9790 1.9710 
Bias 0.0150 -0.0210 -0.0290 
MSE 0.0126 0.0174 0.0250 
Def 0.0549 

2500 

Mean 2.0101 1.9867 1.9805 
Bias 0.0101 -0.0133 -0.0195 
MSE 0.0088 0.0117 0.0157 
Def 0.0363 
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Table 3: The results of the DA for the parameters 
4 3 2= =( , , ) ( , , )     and population size (N)=50 

n Results ̂  ̂  ̂  

100 

Mean 4.0409 2.9361 1.9739 
Bias 0.0409 -0.0639 -0.0261 
MSE 0.1493 0.2167 0.1603 
Def 0.5263 

500 

Mean 4.0226 2.9608 1.9693 
Bias 0.0226 -0.0392 -0.0307 
MSE 0.0897 0.1132 0.0635 
Def 0.2663 

1000 

Mean 4.0150 2.9737 1.9741 
Bias 0.0150 -0.0263 -0.0259 
MSE 0.0673 0.0851 0.0474 
Def 0.1997 

2500 

Mean 4.0009 2.9936 1.9905 
Bias 0.0009 -0.0064 -0.0095 
MSE 0.0662 0.0821 0.0435 
Def 0.1918 

 

Table 4: The results of the DA for the parameters 
4 3 2= =( , , ) ( , , )     and population size (N)=100 

n Results ̂  ̂  ̂  

100 

Mean 4.0595 2.9151 1.9697 
Bias 0.0595 -0.0849 -0.0303 
MSE 0.0948 0.1540 0.1184 
Def 0.3673 

500 

Mean 4.0524 2.9338 1.9468 
Bias 0.0524 -0.0662 -0.0532 
MSE 0.0203 0.0344 0.0246 
Def 0.0792 

1000 

Mean 4.0430 2.9448 1.9518 
Bias 0.0430 -0.0552 -0.0482 
MSE 0.0188 0.0271 0.0180 
Def 0.0639 

2500 

Mean 4.0307 2.9605 1.9653 
Bias 0.0307 -0.0395 -0.0347 
MSE 0.0127 0.0175 0.0112 
Def 0.0414 

 

Table 5: The results of the DA for the parameters 
5 2 3= =( , , ) ( , , )     and population size (N)=50 

n Results ̂  ̂  ̂  

100 

Mean 4.3818 2.6256 4.1209 
Bias -0.6182 0.6256 1.1209 
MSE 2.1395 2.2511 6.8280 
Def     11.2186 

500 

Mean 4.5067 2.5042 3.8277 
Bias -0.4933 0.5042 0.8277 
MSE 1.6739 1.7567 4.7200 
Def     8.1506 

1000 

Mean 4.4788 2.5337 3.8656 
Bias -0.5212 0.5337 0.8656 
MSE 1.7057 1.7905 4.7485 
Def     8.2447 

2500 

Mean 4.5646 2.4439 3.7090 
Bias -0.4354 0.4439 0.7090 
MSE 1.4960 1.5685 4.0293 
Def     7.0938 

 

 

Table 6: The results of the DA for the parameters 
5 2 3= =( , , ) ( , , )     and population size (N)=100 

n Results ̂  ̂  ̂  

100 

Mean 4.6182 2.3827 3.7077 
Bias -0.3818 0.3827 0.7077 
MSE 1.3470 1.4176 4.3767 
Def      7.1413 

500 

Mean 4.7924 2.2089 3.3459 
Bias -0.2076 0.2089 0.3459 
MSE 0.6585 0.6972 1.9154 
Def      3.2711 

1000 

Mean 4.8439 2.1561 3.2478 
Bias -0.1561 0.1561 0.2478 
MSE 0.5454 0.5767 1.5084 
Def      2.6306 

2500 

Mean 4.8846 2.1152 3.1755 
Bias -0.1154 0.1152 0.1755 
MSE 0.4727 0.4998 1.3133 
Def      2.2858 

 

As can be seen from Tables 1-6, the ML estimates 
obtained from the DA are generally close to the actual 
parameter values, and the MSE and Def values of the 
estimates decrease as the number of samples increases. 
This demonstrates the suitability of using the Dragonfly 
Algorithm for the Maximum Likelihood parameter 
estimation of the three-parameter Weibull distribution. 
The DA gives better results for population size(N)=100 
than for population size(N)=50 in most cases, except for 

2 2 2( , , ) =  and n=100. However, it is undesirable to 

have a large population size as the computation time 
increases as the population size increases. It is also noted 
from these tables that when the value of shape parameter 
  is high, estimates with higher MSE and Def values are 

obtained. This may be due to the shape of the function. 

This study also compares the parameter estimation 
results of the DA with those of the SA by  [6], the DE [8] 
and the PSO [9] as shown in Table 7.  

It can be clearly seen from Table 7 that PSO and DE 
methods produced better parameter estimates than DA, 
while DA gave better parameter estimates than SA 
according to the MSE criterion. DE gives the best 
parameter estimates for the actual parameter values of 

[2,2,2] =  and [4,3,2] =  while PSO gives the best 

parameter estimates for [5,2,3] = . As a result, it is not 

possible to talk about a general method that is good for 
all parameter values considered. Therefore, the methods 
discussed in this study, except SA, can be tried as an 
alternative. 

Detailed results of the SA, DE and PSO are not included in 
the result tables in order not to take up too much place. 
Readers can see detailed parameter estimation results 
from [6-9].  

 

 



Aynur Yonar Nimet Yapıcı Pehlivan 
Parameter Estimation Based on Maximum Likelihood Estimation Method for Weibull Distribution Using Dragonfly Algorithm 

 

89 

 

Table 7: The average ML parameter estimates of the DA, 
SA, DE and PSO for various real parameter vector 
= ( , , )     for population size (N)=100 

= ( , , )     Met
hod 

 
̂  ̂  ̂  

2 2 2= ( , , )  
DA 

Mean 2.0277 1.9541 1.9767 
MSE 0.0553 0.0836 0.1517 
Def 0.2907   

SA 
[6] 

Mean 1.9963 1.9828 2.1448 
MSE 0.0515 0.0788 0.2190 
Def 0.3493   

DE 
[8] 

Mean 2.0433 1.9696 1.9806 
MSE 0.0227 0.0372 0.0907 
Def 0.1505   

PSO 
[9] 

Mean 1.9890 2.0031 2.0339 
MSE 0.1842 0.2238 0.3128 
Def 0.7208   

4 3 2= ( , , )  
DA 

Mean 4.0595 2.9151 1.9697 
MSE 0.0948 0.1540 0.1184 
Def 0.3673   

SA 
[6] 

Mean 3.2764 3.8260 2.6195 
MSE 1.4024 1.6886 1.0067 
Def 4.0977   

DE 
[8] 

Mean 4.0199 2.9652 2.0323 
MSE 0.0459 0.0895 0.0709 
Def 0.2063   

PSO 
[9] 

Mean 4.0990 2.8653 1.9442 
MSE 0.0528 0.1023 0.0692 
Def 0.2242   

5 2 3= ( , , )  
DA 

Mean 4.6182 2.3827 3.7077 
MSE 1.3470 1.4176 4.3767 
Def  7.1413   

SA 
[6] 

Mean 3.8283 3.2298 4.8877 
MSE 2.8376 3.0540 7.3209 
Def 13.2125   

DE 
[8] 

Mean 4.8360 2.1668 3.3550 
MSE 0.2033 0.2343 0.8636 
Def 1.3011   

PSO 
[9] 

Mean 5.0401 1.9444 2.9258 
MSE 00666 0.0834 0.2805 
Def 0.4305   

 

5.  A Real Data Application 

A real data application is conducted to demonstrate the 
implementation of the DA for the ML parameter 
estimation of the three-parameter Weibull distribution. 
The data set which contain the failure times of 24 
mechanical parts is given in Table 8 [16]: 
 

Table 8: Data set for failure times of 24 mechanical parts  

P.No F.time P.No F.time P.No F.time P.No F.time 

1 30.94 7 19.08 13 27.47 19 19.40 

2 18.51 8 49.56 14 14.70 20 14.97 

3 16.62 9 17.12 15 14.10 21 22.57 

4 51.56 10 10.67 16 29.93 22 12.26 

5 22.85 11 25.43 17 27.98 23 18.14 

6 22.38 12 10.24 18 36.02 24 18.84 

The ML estimates of parameters of the Weibull 
distribution are obtained by SA, DE, PSO, and DA 
algorithms. The values of the ML estimates and lnL are 
given in Table 9. Furthermore, it is tested whether this 
data is distributed as Weibull or not via the Kolmogorov-
Smirnov (K-S) test. The K-S test statistic values and p-
values of the K-S test statistics are also presented in Table 
9.  
 

Table 9: Parameter estimates, lnL values, K-S test 
statistics, and p-values of the K-S test statistics.   

P.No ̂  ̂  ̂  
ln L K-S 

test 
p-value 
of K-S 

SA 9.1453 30.7047 1.1806 -92.9171 0.3881 0.0014 

DE 10.0661 13.6261 1.1782 -84.8908 0.0940 0.9831 

PSO 10.1104 13.4418 1.1474 -84.8938 0.1028 0.9613 

DA 8.0078 16.1042 1.4021 -86.0894 0.1007 0.9678 

It is clear from Table 9 that the distribution of data set for 
failure times is Weibull distribution except for the SA 
with p-value=0.0014, since p-values of the K-S test 
statistics are greater than .=α 0 05 . As a result, DE, PSO, 
and DA can be used to obtain the parameter estimation 
of the considered failure times data. 

The histogram and fitted densities of data set for failure 
times is shown in Figure 1. 

 
Figure 1: Histogram and fitted densities of data set for 

failure times 

 

It is seen that the histogram and fitted densities 
presented in Figure 1 also support the above mention 
results. 

6.  Conclusion 

In this study, Maximum Likelihood (ML) estimates of the 
parameters for the three-parameter Weibull distribution 
are obtained via Dragonfly Algorithm (DA). Monte-Carlo 
simulation results show that the Dragonfly Algorithm 
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(DA) provides accurate estimates and it can be more 
preferable than Simulated Annealing (SA) for the 
parameter estimation of the three-parameter Weibull 
distribution.  

Furthermore, the implementation of the DA is 
demonstrated by a real data analysis. In future studies, 
various approaches can be applied to improve the 
performance of the DA in order to obtain parameter 
estimates of different distributions. 
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