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Abstract

This manuscript aims to investigate the existence, uniqueness, and stability of non-local random impulsive
neutral stochastic di�erential time delay equations (NRINSDEs) with Poisson jumps. First, we prove the
existence of mild solutions to this equation using the Banach �xed point theorem. Next, we prove the
stability via continuous dependence initial value. Our study extends the work of Wang and Wu [15] where
the time delay is addressed by the prescribed phase space B (de�ned in Section 3). An example is given to
illustrate the theory.
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1. Introduction

For the last few decades, interest in the study of integrodi�erential and stochastic di�erential equations
has grown among the scienti�c community. We know that the presence of noise and/or stochastic pertur-
bations can be unavoidable when formulating a phenomenon. In such cases, stochastic models tend to o�er
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better performance over their deterministic counterparts. The power of stochastic approaches is seen in
the formulation and analysis of phenomena, such as population dynamics, stock prices, heat conduction in
materials, etc.

Poisson jumps have also become a prevalent modeling component in economics, �nance, physics, biology,
medicine, and other sciences. It is natural and necessary to include a jump term in the stochastic di�erential
equation. Moreover, many practical systems (such as sudden price variations/jumps due to stock-market
crashes, earthquakes, epidemics, and so on) may undergo some jump-type stochastic perturbations. The
sample paths of such systems are not continuous and it is more appropriate to consider stochastic processes
with jumps to describe such models. In general, these jump models are derived from Poisson random
measures. The sample paths of such systems are right continuous and have left limits (càdlàg in short). For
more details, see the monographs [1, 3, 4], papers [5, 6], and references therein.

On the other hand, impulsive di�erential equations also attracted the attention of researchers (see
[7, 8, 9]). Di�erential equations with �xed moments of impulses have become a natural framework for
modeling processes in economics, physics, and population dynamics processes. The impulses in usual exist
at deterministic or random points. The properties of �xed type impulses are established in many articles
[8, 9, 10, 11]. Wu and Meng [12] was the �rst to consider a random impulsive ordinary di�erential system
and established boundedness of solutions to the model by Liapunov's direct function. Moreover, Anguraj
and Vinodkumar [16] investigated the existence and uniqueness of neutral functional di�erential equations
with random impulses. Vinodkumar et al. [17] established the existence and stability results on random
impulsive neutral partial di�erential equations. Recently, Li Zihan et al. [18] studied the existence of so-
lutions for Sturm�Liouville di�erential equation with random impulses and boundary value problems using
Green functions and Dhage's �xed point theorem. Li Zihan et al. [19] also discussed the existence of upper
and lower solutions to second order random impulsive di�erential equation with boundary value problem.
The later part of the manuscript involves to construct the sum of two monotonic iterative sequences and
prove that they are convergent and thus they conclude that the system has upper and lower solutions. Very
recently, Guo Yu [20] obtained the existence of solutions for �rst-order Hamiltonian random impulsive dif-
ferential equations with Dirichlet boundary conditions.By using the variational method, they �rst obtained
the corresponding energy functional and by using Legendre transformation, they obtained the conjugation of
the functional. Then the existence of critical point was obtained by mountain pass lemma. Finally, authors
asserted that the critical point of the energy functional is the mild solution of the �rst order Hamiltonian
random impulsive di�erential equation. Existence and exponential stability of mild solutions for second-
order neutral stochastic functional di�erential equation with random impulses in Hilbert space was studied
by Shu Linxin [21] using Mönch �xed point theorem. Then the mean square exponential stability for the
mild solution of the considered equations is obtained by establishing an integral inequality.

Various disturbance factors from random inputs in�uence stochastic di�erential equations (SDEs). By
the interaction of stochastic processes and mathematical models, the real-world system can be interpreted.
Several systems are modeled using stochastic functional di�erential equations with impulses. In general,
impulses appear at random time points, i.e., impulse time and impulsive functions are random variables.
SDEs with random impulses are widely used in medicine, biology, economy, �nance, and so on. Wang and
Wu [15] considered the random impulsive SDEs with stock prices model of the form:

d[S(t)] = αSdt+ βS(t)dB(t), t ≥ 0, t ̸= τk,

S(τk) = akS(τ
−
k ), k = 1, 2, ...,

S(0) = S0.

Here Bt is a Brownian motion or Wiener process, S(t) represents the price of the stock at time t, {τk}
represents the release time of the important information relating to the stock. S(τ−k ) = limt→τk−0 S(t) and
S(0) ∈ R. In reality, {τk} is a sequence of random variables, which satis�es 0 < τ1 < τ2 < · · · . Very recently,
Anguraj et al. [14] investigated the stability of SDEs with random impulsive and Poisson jumps. However,
to the best of our knowledge, so far, no work has been reported in the literature about NRINSDEs with
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Poisson jumps. Inspired by the above-mentioned works, this paper aims to �ll this gap by examining the
existence, uniqueness, and stability of NRINSDEs with Poisson jumps.

The considered NRINSDEs with Poisson jumps is of the form:

d[x(t) + h(t, xt)] = f(t, xt)dt+ g(t, xt)dw(t) +

∫
U
p(t, xt, u)Ñ(dt, du), t ̸= ξk, t ≥ 0, (1)

x(ξ−k ) = bk(δk)x(ξ
−
k ), k = 1, 2, ..., (2)

x(0) + q(x) = x0 = ϕ, −δ ≤ θ ≤ 0, (3)

where δk is a random variable de�ned from Ω to Dk =def (0, dk) with 0 < dk < +∞ for k = 1, 2, .... Suppose
that δi and δj are independent of each other as i ̸= j for i, j = 1, 2, .... Let us de�ne C([−δ, 0],L2(Ω,Rd)).
Here, suppose T ∈ (t0,+∞), f : [t0,T] × C → Rd, g : [t0,T] × C → Rd×m, h : [t0,T] × C → Rd, p :
[t0,T] × C × U → Rd, q : C → C and bk : Dk → Rd×d, and xt is Rd-valued stochastic process such that
xt ∈ Rd, xt = {x(t+ θ) : −δ ≤ θ ≤ 0}. The impulsive moments ξk from a strictly increasing sequence,
i.e., ξ0 < ξ1 < · · · < ξk < · · · < limk→∞, and x(ξ−k ) = limt→ξk−0 x(t). We assume that ξ0 = t0 and
ξk = ξk−1 + δk for k = 1, 2, .... Obviously, {ξk} is a process with independent increments. We suppose that
{N(t), t ≥ 0} is the simple counting process generated by {ξk}, and {w(t) : t ≥ 0} is a given m-dimensional

Wiener process. We denote ℑ(1)
t the σ-algebra generated by {N(t), t ≥ 0}, and denote ℑ(2)

t the σ-algebra

generated by {w(s), s ≤ t}. We assume that ℑ(1)
∞ ,ℑ(2)

∞ and ξ are mutually independent. In (1)-(3), Ñ(dt, du) =
N(dt, du)− dtv(du) denotes the compensated Poisson measure independent of w(t) and Ñ(dt, du) represents
the Poisson counting measure associated with a characteristic measure v.
Highlights:

1. This work extends the work of Wang and Wu [15]

2. Time delay of NRINSDEs with Poisson jumps is taken care of by the prescribed phase space B

The arrangement of the rest of the paper is as follows. In Section 2, some preliminaries and results
applied in the latter part of the paper are presented. Section 3 is devoted to studying the existence and
uniqueness of mild solutions of the system (1)-(3). In Section 4, the stability of the mild solution of the
system (1)-(3) is studied.

2. Preliminaries

Let (Ω,ℑ,P) is a probability space with �ltration {ℑt}, t ≥ 0 satisfying ℑt = ℑ(1)
t ∨ ℑ(2)

t . Let L2(Ω,Rd)
be the collection of all strongly measurable, ℑt measurable, Rd-valued random variables x with norm ∥x∥L2 =(
E ∥x∥2

) 1
2
, where the expectation E is de�ned by Ex =

∫
Ω xdP. Let δ > 0 denote the Banach space of all

piecewise continuous Rd-valued stochastic process
{
ξ(t), t ∈ [−δ, 0]

}
by C([−δ, 0],L2(Ω,Rd)) equipped with

the norm

∥ψ∥C = sup
θ∈[−δ,0]

(
E ∥ψ(θ)∥2

) 1
2
.

The initial data

x0 = ϕ = x(0) + q(x) = {ϕ(θ) : −δ ≤ θ ≤ 0} , (4)

is an ℑt0 measurable, [−δ, 0] to Rd-valued random variable such that E ∥ζ∥2 <∞.
Poisson Jumps Process:

Let p(t), t ≥ 0, be an H-valued, σ-�nite stationary ℑt-adapted Poisson point process on (Ω,ℑ,ℑt,P). The

counting random measure Np de�ned by Np((t1, t2] × Λ)(ω) =
∑

t1<s<t2

IΛ(p(s)) for any Λ ∈ Bσ(H) is called

the Poisson random measure associated with the Poisson point process p. De�ne the measure Ñ by

Ñ(dt, du) = Np(dt, du)− dtv(du),
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where v is the characteristic measure on H called the compensated Poisson random measure associated with
the Poisson point process p.

De�nition 2.1. For a given T ∈ (t0,+∞), a R−d-valued stochastic process x(t) on t0− δ ≤ t ≤ T is called a
solution to (1)-(3) with the initial data (4) if for every t0 ≤ t ≤ T, x(t0) = ϕ, {xt}t0≤t≤T is ℑt-adapted and

x(t) =

∞∑
k=0

[ k∏
i=1

bi(δi)[ϕ(0)− q(x) + h(0, ϕ)]−
k∏

i=1

bi(δi)h(t, xt)

+

k∑
i=1

k∏
j=i

bj(δj)

∫ ξi

ξi−1

f(s, xs)ds+

∫ t

ξk

f(s, xs)ds

+

k∑
i=1

k∏
j=i

bj(δj)

∫ ξi

ξi−1

g(s, xs)dw(s) +

∫ t

ξk

g(s, xs)dw(s)

+

k∑
i=1

k∏
j=i

bj(δj)

∫
U

∫ ξi

ξi−1

p(s, xs, u)Ñ(ds, du) +

∫
U

∫ t

ξk

p(s, xs, u)Ñ(ds, du)

]
I[ξk,ξk+1)(t), (5)

where
k∏

j=i

bj(δj) = bk(δk)bk−1(δk−1) · · · bi(δi),

and I(A)(.) is the index function, i.e.,

IA(t) =

{
1, if t ∈ A,

0, if t /∈ A.

Lemma 2.2. [2] For any r ≥ 1 and for arbitrary L0
2- valued predictable process Φ(.)

sup
s∈[0,t]

E
∥∥∥∥∫ s

0
Φ(u)dw(u)

∥∥∥∥2r
X
= (r(2r − 1))r

(∫ t

0
(E ∥Φ(s)∥2rL0

2
)ds

)r

3. Existence and Uniqueness

In order to derive the existence and uniqueness of the system (1)-(3), we shall impose the following
assumptions:

(H1) The functions f : [t0,T]×C → Rd, g : [t0,T]×C → Rd×m and h : [t0,T]×C → Rd satis�es the Lipschitz
condition such that there exist constants Lf = Lf(T) > 0, Lg = Lg(T) > 0 and Lh = Lh(T) > 0 such
that,

E ∥f(t, xt)− f(t, yt)∥2 ≤ LfE ∥x− y∥2t ,
E ∥g(t, xt)− g(t, yt)∥2 ≤ LgE ∥x− y∥2t ,
E ∥h(t, xt)− h(t, yt)∥2 ≤ LhE ∥x− y∥2t ,

for x, y ∈ C, t ∈ [t0,T].
(H2) The functions p : [t0,T]× C× U → Rd satis�es the Lipschitz condition such that there exist constants

Lp = Lp(T) > 0 such that,

(i)

∫
U
E ∥p(t, xt, u)− p(t, yt, u)∥2 v(du)ds ∨(∫
U
E ∥p(t, xt, u)− p(t, yt, u)∥4 v(du)ds

) 1
2

≤ LpE ∥x− y∥2t ,

(ii)

(∫
U
E ∥p(t, xt, u)∥4 v(du)ds

) 1
2

≤ Lp ∥x∥2t .
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(H2) For all t ∈ [t0,T], it follows that f(t, 0), g(t, 0), h(t, 0) and p(t, 0, u) ∈ L2, such that,

E ∥f(t, 0)∥2 ≤ κf, E ∥g(t, 0)∥2 ≤ κg, E ∥h(t, 0)∥2 ≤ κh, E ∥p(t, 0, u)∥2 ≤ κp,

where κf, κg and κh are constants.

(H3) The functions q : C → C is continuous, and there exists some constant Lq > 0 such that

(i)E ∥q(t, xt)− q(t, yt)∥2 ≤ LqE ∥x− y∥2t ,
(ii)E ∥q(t, xt)∥2 ≤ Lq ∥x∥2t .

for x, y ∈ C, t ∈ [t0,T].

(H4) The condition E

max
i,k

{
k∏

j=i

∥bj(δj)∥}

 is uniformly bounded. That is, there exist constant C > 0 such

that,

E

max
i,k

{
k∏

j=i

∥bj(δj)∥}

 ≤ C

for all δj ∈ Dj , j = 1, 2, 3...

Theorem 3.1. Let the hypotheses (H1)-(H3) be hold. Then there exists a unique continuous mild solution
to the system (1)-(3) for any initial value (t0, ϕ) with t0 ≥ 0 and ϕ ∈ B.

Proof: Let B be the phase space B = C([t0 − δ,T],L2(Ω,Rd)) endowed with the norm

∥x∥2B = sup
t∈[t0,T]

∥xt∥2C ,

where ∥xt∥C = sup
t−δ≤s≤t

E ∥x(s)∥2.

We de�ne the operator Φ : B → B by

(Φx)(t) =



ϕ(t)− q(x), t ∈ (+∞, t0];∑∞
k=0

[∏k
i=1 bi(δi)[ϕ(0)− q(x) + h(0, ϕ)]−

∏k
i=1 bi(δi)h(t, xt)

+

k∑
i=1

k∏
j=i

bj(δj)

∫ ξi

ξi−1

f(s, xs)ds+

∫ t

ξk

f(s, xs)ds

+

k∑
i=1

k∏
j=i

bj(δj)

∫ ξi

ξi−1

g(s, xs)dw(s) +

∫ t

ξk

g(s, xs)dw(s)

+

k∑
i=1

k∏
j=i

bj(δj)

∫
U

∫ ξi

ξi−1

p(s, xs, u)Ñ(ds, du) +

∫
U

∫ t

ξk

p(s, xs, u)Ñ(ds, du)

]
I[ξk,ξk+1)(t), t ∈ [t0,T].
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Now we have to prove that Φ maps B into itself.

∥(Φx)(t)∥2

=

∥∥∥∥ +∞∑
k=0

[ k∏
i=1

bi(δi)[ϕ(0)− q(x) + h(0, ϕ)]−
k∏

i=1

bi(δi)h(t, xt) +

[ k∑
i=1

k∏
j=i

bj(δj)

∫ ξi

ξi−1

f(s, xs)ds

+

∫ t

ξk

f(s, xs)ds

]
+

[ k∑
i=1

k∏
j=i

bj(δj)

∫ ξi

ξi−1

g(s, xs)dw(s) +

∫ t

ξk

g(s, xs)dw(s)

]

+

[ k∑
i=1

k∏
j=i

bj(δj)

∫
U

∫ ξi

ξi−1

p(s, xs, u)Ñ(ds, du) +

∫
U

∫ t

ξk

p(s, xs, u)Ñ(ds, du)

]]
I[ξk,ξk+1

(t)

∥∥∥∥2

≤ 5

+∞∑
k=0

[
k∏

i=1

∥bi(δi)∥2 ∥ϕ(0)− q(x) + h(0, ϕ)∥2 I[ξk,ξk+1)(t)

]
+ 5

+∞∑
k=0

[ k∏
i=1

∥h(t, xt)∥2 I[ξk,ξk+1)(t)

]

+ 5

max
i,k

1,
k∏

j=i

∥bj(δj)∥


2(∫ t

t0

∥f(s, xs)∥ dsI[ξk,ξk+1)(t)

)2

+ 5

max
i,k

1,
k∏

j=i

∥bj(δj)∥


2

×
(∫ t

t0

∥g(s, xs)∥ dw(s)I[ξk,ξk+1)(t)

)2 ]
+ 5

max
i,k

1,

k∏
j=i

∥bj(δj)∥


2

×
(∫ t

t0

∥p(s, xs, u)∥ Ñ(ds, du)I[ξk,ξk+1)(t)

)2

≤ 10

[
max
k

{
k∏

i=1

∥bi(δi)∥2
}][

∥ϕ(0)− q(x)∥2 + ∥h(0, ϕ)∥2
]
+ 10

[
max
k

{
k∏

i=1

∥bi(δi)∥2
}]

×
[
∥h(t, xt)− h(t, 0)∥2 + ∥h(t, 0)∥2

]
+ 10

max
i,k

1,
k∏

j=i

∥bj(δj)∥2



× (t− t0)

∫ t

t0

[
∥f(s, xs)− f(s, 0)∥2 + ∥f(s, 0)∥2

]
ds+ 10

max
i,k

1,
k∏

j=i

∥bj(δj)∥2



× (t− t0)

∫ t

t0

[
∥g(s, xs)− g(s, 0)∥2 + ∥g(s, 0)∥2

]
ds+ 10

max
i,k

1,
k∏

j=i

∥bj(δj)∥2



× (t− t0)

[ ∫ t

t0

∫
U

[
∥p(s, xs, u)− p(s, 0, u)∥2 + ∥p(s, 0, u)∥2

]
v(du)ds

]

+ 5

max
i,k

1,

k∏
j=i

∥bj(δj)∥2

× (t− t0)

[∫ t

0

∫
U
∥p(s, xs, u)∥4 v(du)ds

] 1
2

.
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Then,

E ∥(Φx)(t)∥2t
≤ 20C2

[
E ∥ϕ(0)∥2 + LqE ∥x∥2

]
+ 10C2LhE ∥ϕ∥2 + 10C2

[
LhE ∥x∥2t + κh

]
+ 10max

{
1, C2

}
(T− t0)

∫ t

t0

[
LfE ∥x∥2s + κf

]
ds+ 10max

{
1, C2

}
(T− t0)C2

×
∫ t

t0

[
LgE ∥x∥2s + κg

]
ds+ 20max

{
1, C2

}
(T− t0)

∫ t

t0

LpE ∥x∥2s ds

+ 10max
{
1, C2

}
(T− t0)

2κp

≤ 20C2
[
E ∥ϕ(0)∥2 + LqE ∥x∥2

]
+ 10C2LhE ∥ϕ∥2 + 10C2κh + 10C2LhE ∥x∥2t

+ 10max
{
1, C2

}
(T− t0)

∫ t

t0

LfE ∥x∥2s ds+ 10max
{
1, C2

}
(T− t0)

2κf

+ 10max
{
1, C2

}
(T− t0)C2

∫ t

t0

LgE ∥x∥2s ds+ 10max
{
1, C2

}
(T− t0)

2C2κg

+ 20max
{
1, C2

}
(T− t0)

∫ t

t0

LpE ∥x∥2s ds+ 10max
{
1, C2

}
(T− t0)

2κp.

Taking supremum over t, we get

sup
t∈[t0,T]

E ∥(Φx)(t)∥2t

≤ 20C2

[
E ∥ϕ(0)∥2 + Lq sup

t∈[t0,T]
E ∥x∥2

]
+ 10C2LhE ∥ϕ∥2 + 10C2κh + 10C2Lh sup

t∈[t0,T]
E ∥x∥2t

+ 10max
{
1, C2

}
(T− t0)

∫ t

t0

Lf sup
t∈[t0,T]

E ∥x∥2s ds+ 10max
{
1, C2

}
(T− t0)

2κf

+ 10max
{
1, C2

}
(T− t0)C2

∫ t

t0

Lg sup
t∈[t0,T]

E ∥x∥2s ds+ 10max
{
1, C2

}
(T− t0)

2C2κg

+ 20max
{
1, C2

}
(T− t0)

∫ t

t0

Lp sup
t∈[t0,T]

E ∥x∥2s ds+ 10max
{
1, C2

}
(T− t0)

2κp

≤ 10
[
2C2E ∥ϕ∥2 + C2L2E ∥ϕ∥2 + C2κh +max

{
1, C2

}
(T− t0)

2 (κf + C2κg + κp)
]

+ 10
[
2LqC2 + C2Lh +max

{
1, C2

}
(T− t0)

2 (Lf + LgC2 + 2Lp)
]
∥x∥2t .

Thus we obtain,
∥Φx∥2B ≤ m1 +m2 ∥x∥2B ,

where,

m1 = 10
[
2C2E ∥ϕ∥2 + C2L2E ∥ϕ∥2 + C2κh +max

{
1, C2

}
(T− t0)

2 (κf + C2κg + κp)
]
,

m2 = 10
[
2LqC2 + C2Lh +max

{
1, C2

}
(T− t0)

2 (Lf + LgC2 + 2Lp)
]
,



D.Chalishajar, et al., Results in Nonlinear Anal. 5 (2022), 250�262. 257

where m1 and m2 are constants. Hence Φ is bounded.
Now we have to prove that Φ is a contraction mapping. For any x, y ∈ B, we have

∥(Φx)(t)− (Φy)(t)∥2

≤ 5

[
max
k

{
k∏

i=1

∥bi(δi)∥2
}
∥q(x)− q(y)∥ I[ξk,ξk+1)

]2

+ 5

[
max
k

{
k∏

i=1

∥bi(δi)∥2
}
∥h(t, xt)− h(t, yt)∥ I[ξk,ξk+1)

]2

+ 5

max
i,k

1,
k∏

j=i

∥bj(δj)∥2


∫ t

t0

∥f(s, xs)− f(s, ys)∥ dsI[ξk,ξk+1)

2

+ 5

max
i,k

1,
k∏

j=i

∥bj(δj)∥2


∫ t

t0

∥g(s, xs)− g(s, ys)∥ dw(s)I[ξk,ξk+1)

2

+ 5

max
i,k

1,

k∏
j=i

∥bj(δj)∥2


∫ t

t0

∫
U
∥p(s, xs, u)− p(s, ys, u)∥ Ñ(ds, du)I[ξk,ξk+1)

2

E ∥(Φx)(t)− (Φy)(t)∥2

≤ 5C2E ∥q(x)− q(y)∥2 + 5C2E ∥h(t, xt)− h(t, yt)∥2 + 5max
{
1, C2

}
(T− t0)

×
∫ t

t0

E ∥f(s, xs)− f(s, ys)∥2 ds+ 5max
{
1, C2

}
(T− t0)

× C2

∫ t

t0

E ∥g(s, xs)− g(s, ys)∥2 ds+ 5max
{
1, C2

}
(T− t0)

×
∫ t

t0

E ∥p(s, xs, u)− p(s, ys, u)∥2 ds

≤ 5C2Lq ∥x− y∥2t + 5C2Lh ∥x− y∥2t + 5max
{
1, C2

}
(T− t0)

∫ t

t0

LfE ∥x− y∥2s ds

+ 5max
{
1, C2

}
(T− t0)C2

∫ t

t0

LgE ∥x− y∥2s ds

+ 5max
{
1, C2

}
(T− t0)

∫ t

t0

LpE ∥x− y∥2s ds,
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Moreover,

sup
t∈[t0,T]

E ∥(Φx)(t)− (Φy)(t)∥2

≤ 5C2Lq sup
t∈[t0,T]

∥x− y∥2t + 5C2Lh sup
t∈[t0,T]

∥x− y∥2t

+ 5max
{
1, C2

}
(T− t0)

2Lf sup
t∈[t0,T]

E ∥x− y∥2s

+ 5max
{
1, C2

}
(T− t0)

2C2Lg sup
t∈[t0,T]

E ∥x− y∥2s

+ 5max
{
1, C2

}
(T− t0)

2Lp sup
t∈[t0,T]

E ∥x− y∥2s

≤
{
5C2Lq + 5C2Lh + 5max

{
1, C2

}
(T− t0)

2[Lf + C2Lg + Lp]
}

sup
t∈[t0,T]

E ∥x− y∥2t .

Thus
∥(Φx)− (Φy)∥2B ≤ Υ(T) ∥x− y∥2B ,

with
Υ(T) = 5C2Lq + 5C2Lh + 5max

{
1, C2

}
(T− t0)

2[Lf + C2Lg + Lp]

By taking suitable 0 < T1 < T su�ciently small such that, Υ(T1) < 1. Hence Φ is a contraction on BT1

(BT1 denotes B with T substituted by T1). By Banach Contraction Principle, a unique �xed point x ∈ BT1 is
obtained for the operator Φ and therefore Φx = x is a mild solution of the system (1)-(3). The solution can
be extended to the entire interval (−δ,T] in �nitely many steps which completes the proof for the existence
and uniqueness of mild solutions on the entire interval (−δ,T].

4. Stability

The stability through continuous dependence of solutions on initial condition are investigated.

De�nition 4.1. A mild solution x(t) of the system (1)-(3) with initial condition ϕ satis�es (4) is said to be
stable in the mean square if for all ϵ > 0 there exist, η > 0 such that,

E ∥x(t)− x̂(t)∥2 ≤ ϵ whenever,

E
∥∥∥ϕ− ϕ̂

∥∥∥2 ≤ η for all t ∈ [t0,T],

where x̂(t) is another mild solution of the system (1)-(3) with initial value ϕ de�ned in (4).

Theorem 4.2. Let x(t) and y(t) be mild solution of the system (1)-(3) with initial conditions ϕ1 and ϕ2
respectively. If the assumptions of theorem 3.1 gets satis�ed, the mean solution of the system (1)-(3) is stable
in the mean square.

Proof: By assumptions, x(t) and y(t) be two mild solutions of the system (1)-(3) with initial values ϕ1 and
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ϕ2 respectively.

x(t)− y(t)

=

+∞∑
k=0

[ k∏
i=1

bi(δi) [[ϕ1 − ϕ2] + [q(x)− q(y)] + [h(0, ϕ1)− h(0, ϕ2)]]−
k∏

i=1

bi(δi) [h(t, xt)− h(t, yt)]

+

k∑
i=1

k∏
j=i

bj(δj)

∫ ξi

ξi−1

[f(s, xs)− f(s, ys)] ds+

∫ t

ξk

[f(s, xs)− f(s, ys)] ds

+

k∑
i=1

k∏
j=i

bj(δj)

∫ ξi

ξi−1

[g(s, xs)− g(s, ys)] dw(s) +

∫ t

ξk

[g(s, xs)− g(s, ys)] dw(s)

+

k∑
i=1

k∏
j=i

bj(δj)

∫ ξi

ξi−1

∫
U
[p(s, xs, u)− p(s, ys, u)] Ñ(ds, du)

+

∫ t

ξk

∫
U
[p(s, xs, u)− p(s, ys, u)] Ñ(ds, du)

]
I[ξk,ξk+1)(t).

Then,

E ∥x(t)− y(t)∥2

≤ 15C2E ∥ϕ1 − ϕ2∥2 + 15C2E ∥q(x)− q(y)∥2

+ 15C2E ∥h(0, ϕ1)− h(0, ϕ2)∥2 + 5C2E ∥h(t, xt)− h(t, yt)∥2

+ 5max
{
1, C2

}
(t− t0)

∫ t

t0

E ∥f(s, xs)− f(s, ys)∥2 ds

+ 5max
{
1, C2

}
(t− t0)C2

∫ t

t0

E ∥g(s, xs)− g(s, ys)∥2 ds

+ 5max
{
1, C2

}
(t− t0)

∫ t

t0

E ∥p(s, xs, u)− p(s, ys, u)∥2 ds

≤ 15C2E ∥ϕ1 − ϕ2∥2 + 15C2LqE ∥x− y∥2t + 15C2LhE ∥ϕ1 − ϕ2∥2

+ 5C2LhE ∥x− y∥2t + 5max
{
1, C2

}
(T− t0)Lf

∫ t

t0

E ∥x− y∥2s ds

+ 5max
{
1, C2

}
(T− t0)C2Lg

∫ t

t0

E ∥x− y∥2s ds

+ 5max
{
1, C2

}
(T− t0)Lp

∫ t

t0

E ∥x− y∥2s ds

≤ 15C2E ∥ϕ1 − ϕ2∥2 [1 + Lh] + 5
[
3C2Lq + C2Lh

]
E ∥x− y∥2t

+ 5max
{
1, C2

}
(T− t0)Lf

∫ t

t0

E ∥x− y∥2s ds+ 5max
{
1, C2

}
(T− t0)C2Lg

∫ t

t0

E ∥x− y∥2s ds

+ 5max
{
1, C2

}
(T− t0)Lp

∫ t

t0

E ∥x− y∥2s ds
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Furthermore,

sup
t∈[t0,T]

E ∥x− y∥2 ≤ 15C2E ∥ϕ1 − ϕ2∥2 [1 + Lh] + 5
[
3C2Lq + C2Lh

]
sup

t∈[t0,T]
E ∥x− y∥2t

+ 5max
{
1, C2

}
(T− t0)Lf

∫ t

t0

sup
t∈[t0,T]

E ∥x− y∥2s ds

+ 5max
{
1, C2

}
(T− t0)C2Lg

∫ t

t0

sup
t∈[t0,T]

E ∥x− y∥2s ds

+ 5max
{
1, C2

}
(T− t0)Lp

∫ t

t0

sup
t∈[t0,T]

E ∥x− y∥2s ds

Thus,
sup

t∈[t0,T]
E ∥x− y∥2t ≤ βE ∥ϕ1 − ϕ2∥2

where,

β =
15C2[1 + Lh]

1−
[
5 [3C2Lq + C2Lh] + 5max(1, C2)(T− t0)2 [Lf + C2Lg + Lp]

]
Given ϵ > 0 choose η = ϵ

β such that E ∥ϕ1 − ϕ2∥2 < η. Then,

∥x− y∥2B ≤ ϵ.

This completes the proof.

5. An application

The considered NRINSDEs with Poisson jumps is of the form:

d

[
x(t) +

∫ 0

−δ
v1(θ)x(t+ θ)

]
=

[∫ 0

−δ
v2(θ)x(t+ θ)

]
dt+

[∫ 0

−δ
v3(θ)x(t+ θ)

]
dw(t)

+

[∫ 0

−δ

∫
U
v2(θ)x(t+ θ)

]
Ñ(dt, du), t ≥ 0, t ̸= ξk, (6)

x(ξk) = b(k)δkx(ξ
−
k ), k = 1, 2, ..., (7)

x(0) +
n∑

i=1

cix(qi, x) = x0, 0 < q1 < q2 < · · · qp < T. (8)

Let r > 0, u in R-valued stochastic process, ζ ∈ C([−δ, 0],L2(Ω,R)). δk is de�ned from Ω to Dk
def.
= (0, dk)

for all k = 1, 2, ..., Suppose that δk following Erlang distribution and δi and δj are independent of each other
as i ̸= j for i, j = 1, 2, ...t0 = ξ0 < ξ1 < ξ2 < · · · < ξk < · · · , and ξk = ξk−1 + δk for k = 1, 2, ... Let w(t) ∈ R
is a one-dimensional Brownian motions, where b is a function of k. v1, v2, v3, v4 : [−δ, 0] → R are continuous
functions. De�ne f : [t0,T]× C → Rd, g : [t0,T]× C → Rd×m, h : [t0,T]× C → Rd, p : [t0,T]× C× U → Rd,
q : C → C and bk : Dk → Rd×d by

h(t, x(t))(·) =
∫ 0

−r
v1u(t+ θ)dθ(·), f(t, x(t))(·) =

∫ 0

−r
v2u(t+ θ)dθ(·),

g(t, x(t))(·) =
∫ 0

−r
v3u(t+ θ)dθ(·), p(t, x(t))(·) =

∫ 0

−r
v4u(t+ θ)dθ(·),
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For x(t+ θ) ∈ C, we suppose that the following conditions hold:

(i).max
i,k


k∏

j=i

E ∥b(j)(τj)∥2
 <∞,

(ii).

∫ 0

−r
v1(θ)

2dθ,

∫ 0

−r
v2(θ)

2dθ,

∫ 0

−r
v3(θ)

2dθ,

∫ 0

−r
v3(θ)

4dθ <∞.

Suppose the state (i) and (ii) gets satis�ed from which we can prove that the assumptions (H1)-(H4) holds.
Thus system (1)-(3) has a unique mild solution x and is stable.

Remark 5.1. If p = 0 in (1)-(3), then the system behaves as NRINSDEs of the form:

d[x(t) + h(t, xt)] = f(t, xt)dt+ g(t, xt)dw(t), t ̸= ξk, t ≥ 0, (9)

x(ξ−k ) = bk(δk)x(ξ
−
k ), k = 1, 2, ..., (10)

x(0) + q(x) = x0 = ϕ, −δ ≤ θ ≤ 0, (11)

By applying Theorem 3.1 under the assumptions (H1)-(H4), then the above guarantees the existence of the
mild solution.

6. Conclusion

This manuscript is devoted to studying the existence, uniqueness, and stability of NRINSDEs with Poisson
jumps. We proved the existence of mild solutions to the equation using the Banach �xed point theorem.
Then, we proved the stability via continuous dependence initial value. Further, this result could be extended
to investigate the controllability of random impulsive neutral stochastic di�erential equations �nite/in�nite
state-dependent delay in the future. The fractional-order of NRINSDEs with Poisson jumps would be quite
interesting. The controllability of these systems can be studied obviously. Numerical approximation of the
given system will lead us to a new direction and be considered future work.
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