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Abstract

In this paper, we prove some existence and umniqueness results for a class of boundary valued problems
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1. Introduction

In recent years, fractional calculus has proven to be a very valuable method for addressing the complexity
structures from different branches of science and engineering. It concerns the generalization of the integer
order differentiation and integration of a function to non-integer order, and its theory and application are
solid and growing works [1, 2, 8] [7, 13} 14 [15], 20, 211, 22) 23] 24]. The authors of [16] Bl 6, 12] explored
the existence, stability and uniqueness of solutions for various problems with fractional differential equation
and inclusions concerning retarded or advanced arguments. In this paper, many of the properties of the
special functions k-gamma and k-beta introduced by Diaz et al. in [10] are included. Several findings and
generalizations for various fractional integrals and derivatives based on these properties can also be found
in [I7, [8 I8]. In [27], Sousa et al. introduce another so-called ¢-Hilfer fractional derivative with respect to
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another function and gave some important properties concerning this type of fractional operator. We direct

readers to the papers [25], 26, 4] and the references therein for further results based on this operator.
Motivated by the above papers, we consider the boundary valued problem for the nonlinear implicit

k-generalized -Hilfer type fractional differential equation involving both retarded and advanced arguments,

(Fpirva) () = 1 (tan(), (FDIV2) (1))t € (acbl, 1)
o (TH9M) (@) + 0o (T2 ) () = @
2(t) = w(t), t€la—Aa], A>0, 3)
2(t) = (1), te [b,bm}, x>0, (4)

where kH Dgfw and jakil_g)’k”p are, respectively, the k-generalized -Hilfer fractional derivative of order
¥ € (0,k) and type r € [0,1] defined in Section 2, and k-generalized 1-fractional integral of order k(1 — &)

defined in [19], where & = L(r(k — 0) + ), k> 0, f : [a,b] x C ([—)\, X} ,R) « R — R is a given function,
and ai,as,a3 € R such that a1 + ag # 0, and w(t) and @(t) are, respectively, continuous functions on
[a — A, a] and [b, b+ 5\} . For each function x defined on [a - \b+ 5\} and for any t € (a,b], we denote by
x¢ the element defined by

() =2(t+71), TE [—)\,;\} .

The paper is arranged as follows. In Section 2, some notations are introduced and we recall some
preliminaries about the y-Hilfer fractional derivative, the functions k-Gamma and k-Beta, and some auxiliary
results. Further, we give the definition of the k-generalized i-Hilfer type fractional derivative and some
essential theorems and lemmas. In Section 3, we present two existence and uniqueness results for the

problem — that are founded on the Banach contraction principle and Schauder’s fixed point theorem.
In the last section, we give two examples to illustrate the viability of our results.

2. Preliminaries

First, we present the weighted spaces, notations, definitions, and preliminary facts which are used in
this article. Let 0 < a < b < 0o, J = [a,b], ¥ € (0,k), r € [0,1], k> 0 and £ = £(r(k — 9) + V). By C(J,R)
we denote the Banach space of all continuous functions from J into R with the norm

[2]loo = sup{|z(t)] : ¢ € J}.

AC™(J,R) and C"(J,R) denote the spaces of n-times absolutely continuous and n-times continuously differ-
entiable functions on J, respectively.

Let C ({—)\, 5\} ,R), C=C(a—\a],R) and C = C ([b,b—k 5\} ,]R) be the spaces endowed, respectively,
with the norms

ol =sup {lz(t)] : t e -]},

[zlle = sup{lz(®)] : t € [a = A, a]},

and )
|zl = sup {|x(t)\ te [b,b+ )\] } .
Consider the weighted Banach space

Ce o (J) = {a: (@b = Rt = Wt a)(t) € O, ]R)} ,
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where ¢ (t,a) = (¥(t) — ¥(a))' ¢, with the norm

I

qucg,k;w = iup ‘\Ij?(tv a)x(t)
eJ
and
Cla(T) = {w e 0 L(J) 2™ ¢ cg,k;wu)} neN,
Otk (J) = Ce g (),
with the norm )
lellcg,, = 3 1e@lloo + 2 g -
i=0
Next, we consider the Banach space
F={o:|a=Ab+A] > Rial, g €C aly,y €C
and () € Cf,k;w(J)}

with the norm
z]|x = max {||lz]lc, |llg; %]l ce puy }-

Consider the space XfZ(a, b), (ce R, 1< p < o0) of those real-valued Lebesgue measurable functions g on
[a, b] for which ||¢g|| X7, < 00, where the norm is defined by

oy = ([ qz/<t>rg<t>|pdt)’g ,

where 9 is an increasing and positive function on [a,b] such that ¢ is continuous on [a,b] with ¢(0) = 0. In
particular, when v (x) = z, the space Xf;(a, b) coincides with the L,(a,b) space.

Definition 2.1. ([I0}]) The k-gamma function is defined by
o tk
Ii(a) = / t*lem®dt,a > 0.
0

When k — 1 then T'(a) = Tx(c), and some other useful relations are Tj(o) = k% T (%), Tk(atk) = al'g(w)
and T'i(k) =T(1) = 1. Furthermore, the k-beta function is defined as,

I a1 B_1q
B(a, ) = ¢ L (1—t)r="dt

) (a)T
so that B(«, 8) = %B (%, %) and Bi(a, B) = I’Zio(‘iéfé)ﬁ)
Now, we give all the definitions to the different fractional operators used throughout this paper.
Definition 2.2. ([19]) (k-generalized 1)-fractional integral) Let g € Xf;(a, b) and [a,b] be a finite or infinite
interval on the real aris R = (—o00,00), ¥(t) > 0 be an increasing function on (a,b] and ¥'(t) > 0 be

continuous on (a,b), and 9 > 0. The generalized k-fractional integral operators of a function f (left-sided
and right-sided) of order 9 are defined by

t
T (1) = / T (1, )/ (5)g(s)ds,

,k; b_ k
T a0 = [ 05 .00 (has)ds.
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wit > and U5Y(t,s) = so in [18], Ndpoles Valdés defined more generalize
th k> 0 and U5V ( Al [18], Ndpoles Valdés defined lized

fractional integral operators by

9k V' (s)g(s)ds
TEEL (1) = m /G et

9 kst 9(5)8
Jap-olt) = krk /G (@), 2y’

where G(z,9) € AC|a,b].

Theorem 2.3. ([18]) Let g : [a,b] — R be an integrable function, and take ¥ >0 and k > 0. Then jg’gipg
ezists for all t € [a, b].
Theorem 2.4. ([18]) Let g € Xf;(a, b) and take ¥ > 0 and k > 0. Then jgffg € C([a,b],R).

Lemma 2.5. Let 9 > 0, r > 0 and k > 0. Then, we have the following semigroup properties given by
9,k; k; 19 k; Sk 19 ks
Tt TS (0) = T () = TV T 1)

and

J’ﬂ k,l/JJTk’Ll)f( ) 19+7‘kwf( ) %Tik,wjbli,k,wf(t)

Proof. By [27, Lemma 1] and the property of the k-gamma function, for ¥ > 0, » > 0 and k£ > 0, we get

v r
Db ki) (7)) pE R
t
j \-7a+ f( ) kQPk(ﬁ)Pk(T) a+ “a+ f( )
INEAINEA Do) T
R N rag/ gL
k2kr— T (%)kr—T(%)
1 2y
= amlad )
9+r,k;
- an kwf(t)a
where Ifjrw is the fractional integral defined in [27]. We have also,
LRT(E) 2w
19’“12 Tkw k- k) iR ey
j f( ) k:21“k(19)1“k(r) at+ “a+ f( )
P(OT(R)  aw 2w
Ik’ Ik’
"R
ﬂlfj wf( t).

Lemma 2.6. Let 9,r > 0 and k > 0. Then, we have

k9, )
ja+ w\P7lf7¢(t>a) = \I/ﬁjr/}r(t CL)

and
TIEOTES (b, 1) = TLY (b,1).
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P(s) — ¥(a)
P(t) —p(a)

Proof. By Definition and using the change of variable y = , where t > a, we get

t7

TP (0) = [ U5 (0,90 () B (s s
- ¥(s) — ¥(a)
= [ - G

1
Tl T -1 r_
= Up¥(t, a)TEV (2, a)/o [1— )%t et

A
k

-1
] W/ (5)FE (5, a)ds

Using the Definition [2.1] of the k-beta function and the relation with the gamma function, we have

3,k 3k, gk
Ja+ w\IIT w(t7a) - \Ilﬁjfr(t’a)'

9
Theorem 2.7. Let 0 < a <b<o00,9>0,0<E<1, k>0 andx e Cgpy(J). If% > 1—¢, then

(Jf;k;d)x) (a) = lim (jf+’k;¢m) (t) =0.

t—a™t

Proof. x € C¢ j.¢(J) means that \llép(t, a)x(t) € C(J,R). Then there exists a positive constant R such that
for t € (a,b] we have

WE (t, a)z(t)| < R,

thus,
()] < RUy(kE)| T (t, a). (5)

Now, we apply the operator jfjrk;w() on both sides of Equation (D and we use Lemma , so that we have

(7)) < Brw(ke)
= RT (k&) Uyt (t a).

¢,k T,k
ja+ wakfw(ta a)‘

Then, we have the right-hand side approaches zero, as x — a, and

lim <‘7ff;¢x) (t) = (JfJ’Fk;wx) (a) = 0.

t—a™t

We are now able to define the k-generalized 1-Hilfer derivative as follows.

Definition 2.8. (k-generalized 1)-Hilfer derivative) Let n — 1 < Z <n withn € N, J = [a,b] an interval
such that —oo < a < b < oo and g,¢ € C"([a,b],R) two functions such that v is increasing and ' (t) # 0,
for all t € J. The k-generalized 1-Hilfer fractional derivatives (left-sided and right-sided) kHDgfw(-) and
kHDg’f;w(-) of a function g of order ¥ and type 0 <r < 1, with k > 0 are defined, respectively, by

Hoydrito oy arlen—oyks (L A\ 0 (1) (kn—) i
folrve ) = (7 () (8 7))
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_ (ja-g-kn 9),k; ’l’(gn (knja(_lfr)(knfﬁ),k;wg>> (t)

and

kHDgLT,'gZJg() (jbkn 9) de( wll(t) C;i) ( n\7b7 )(kn— 19)k¢g)> (t)

<jr(kn ), kb (_1)n5n (k"j(l r)(kn— ﬁ)kwg)) ),

1 d\"
U}h@re 5,¢ = <’¢’(t)dt> .

9
Lemma 2.9. Lett >a, 0 < T <1,0<r<1,k>0. Thenf0r0<§<1;52%(7‘(1{:—19)%—19), we have

[,CHDgi;w (q/g(s,a)>_1] (t) = 0.

Proof. From Definitions 2.2] and 2.8 we have

1 t_ -
j(l T‘ k 19) k; d)k (\ij( )) — / k\IJz’;(p(t’ S) (W?(S, (l)) wl(S)dsv
where X =

(1 —r) (k — ). Now, we make the change of the variable by p = to obtain

=

s (szio) - UG [ Lo woea)

Then, by the definition of the k-beta function

Ir(a)Tk(8)

Y g1, _
Bk<a,ﬁ>—k/0t (1—0f = LA

and we have

(1—r) (k=) ;9 -1 RDyR(kE)
Tat k ( ¢ (t,a)) = m = kT (kE).

Then,

<j<1 kD (g (M))l) _

)
Theorem 2.10. If f € C’gk;w[a, bl,n—1< T <n,0<r <1, wheren € N and k > 0, then
<jﬂ,k;w HDﬁ,r;wf) (t)

e—i
Zk% ThE 5(—)1)+ iy L (7 ) }

where

E=—(r(kn—19)+19).

1
k

In particular, if n = 1, we have

j(lrkzﬁ ,¢f()

(7 FDrr) () = OB o P a4
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Proof. From Definition 2.8/ and Lemma we have
(j(imp HDﬁrzpf) (t) = ( 19k1/; ja+kn 9) kwén (knj(l—r)(kn—ﬂ),k;zpf)) (t)
_ <\7a4(rlm 19)+19kw5n (knl(l 7)(kn—19) k;wf>> (t)
= [k {55 (kg ) s
Integrating by parts, we obtain
(T2 o)

_ —(WZ)F;(Q&(;Z))E ' {5371 (knj( r)(kn—9) kwf( ))}

I8, o et O (0 19) s

Using the proprieties of the gamma and k-gamma functions, we get
(jjf v Dy wf) (t

_Z W(Zi;rgga))gl {5" 1 (knj (1=r) (kn—0) k;¢f(a)>}

+ kfl“(;—l)/a (w(t)wij() T {5 (k:”ja+ =ik g )>} N

So, with integration by parts n times, we obtain
(7 o) @)
- @) —v(e)t n ) (kn—9), kst
- SO g )

1 ! V' (s) (=r)(kn—0)k% ¢ 2\ g
+ké—nr(§— )/a OO = ole) 5(*7 f( ))d

D (5 ()

+ ka(k(lg - n)) /at (p(t) — ((i)))n—i-l ¢ (ja(i_r)(kn_ﬁ)’k;wf(s)) ds
E—i
‘Z k- nrk -)z)+ oy {80 (77T (@) §

+\7a+ kwI(l ) (kn—9) iwf()

Then by using Lemma [2.5] we obtain
(Jfﬁ“” HDMf) (1

Z - an _ )Z)i;)) {5n (j(l(i—r)(kn—ﬂ)yk;iﬁf(a)) } .
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Lemma 2.11. Let 9 > 0,0 <r <1, and x € C’gkw(J), where k > 0. Then for t € (a,b],
(D2 gve) (1) = a(t).
Proof. We have from Definition and Lemma [2.5 . 5| that, for & = +(r(k — 9) + V),
9,r; 9,k; k; (1—r)(k—9),k; 9,k;
(Foire gk )< ) = (GRS (kg gl ) ) @)
_ (jkg 9 ki) 51 (k:j(l ) (k—9)+9, k5 ))(t)
kE—9,k k—k&+9,k;
_ (jaf w51 (kja+ &, %)) (1),

and then, we obtain

e NP L O N I A 1 i ﬁ]ds
(¥ ) /awm— | (¥(s) = 9(r)*F

X . 6
WL (R — D)KL — €) +9) )
On other hand, by integrating by parts, we have

/8 ' (T)x(T)dT _ 1
o ((s) —o(r)EF  1-E+7

w(a) ($(s) — v(a)) ~EHE

and then, by applying 6} . we get

oy [ POy o) —wapyrE [T )
w/a (W(s) — (7)) Tk /a (1(s) — (7)) *

Now, substituting into Equation @, and by Dirichlet’s formula and the properties of the k-gamma
function, we get

9,r; 9, k;
(Ko glive) @

1
~ kD (kE — O)Th(k(1 — €) + 0)

L [ ¥ (s)dr ]
+ [ Z/(t)dt . -1 .
/a / (W (1) = ()7 (h(s) —9p(r)*TF

¥(s) —¢(a)
P(t) —p(a)

the variable in the integral from s to ¢, then we have
H~Y,r; 9, k;
(o glive) @)

— [/atx(a)%//(s) (0(s) — ¥(a)) &+

Making the following change of variables pu = in the integral from a to ¢ and similarly changing

9
k

(tb(t) — (s))¢ F ds

t t 9 9
+/ $’(t)dt/ W(5) (W) = () 7 (W(s) = (r) " dr
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y 1
KDk (kE — )T (k(1 — &) +9)
1 1 _£+ﬁ ﬁ—Q—l t /
= |7 [ p TR —p) R dp) (@(a) + [ 2 (t)dt
k Jo a
» 1
Lpp(k§ — D)L(k(1 = &) + )
1 1 t
= [k/ P11 st du] (:L‘(a) +/ x’(t)dt)
0 a
» 1
Ly(k§ — 9)0k(k(1 — &) + )
Then by the definition of the k-beta function, we obtain
; ; Ly (k€ — D) Lk(k(1 — &) + )] !
Hpyrst 0k iy / (t)dt
t
= x(a) +/ o' (t)dt
= z(t).
O
3. Main Results
We consider the following fractional differential equation
(FDYra) (1) = olt), te (b, (®)
where 0 < ¥ < k,0 <r <1, with the conditions
on (T (@) + g (TR0 () = as, )
z(t) =w(t), t€fa—Aal, A>0, (10)
2(t) = a(t), te [b,b+5\}, >0, (11)
where £ = W, k >0, aj,a9, a3 € R such that a; + as # 0 and where () € C(J,R), w(:) € C
and @ (-) € C.

The following theorem will be used in a result for the existence of a unique solution for the problem

®)-(11).

Theorem 3.1. x satisfies — if and only if it satisfies
k(1— 9,k;

ag — Qg <\7a-|(—1 o, ’w<P> (b)

(01 + )T (k) WY (¢, a)
w(t), te€fa—N\a,

(1), te [b,b+5\} .

\

+ (ale) @), te (ab),

(12)
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Proof. For both directions of the proof, and are trivially satisfied.

Assume that x satisfies the equations @D By applying the fractional integral operator \719 k’w( ) o

on
both sides of the fractional equation , we have
9 ks 9 9k
(72 Hlra) (6) = (7255 %) @),
and using Theorem [2.10] we get
T k(1-€) ks z(a) 8
a(t) = =k + (7). (13)

W (t,a)Tr(ke)
Applying Ja+1 ks w( -) on both sides of , using Lemma , Lemma and taking t = b, we have

(779802 ) (b) = a9 a(a) + (T4 ) (). (14)
Multiplying both sides of by ag, we get

ar (T2 ) () = a1 a(a) + 4y (TTIT) ).
Using condition @, we obtain
s (Jakf_f)’k;%) (0) =az —ax (ja+( kst ) (a™).
Thus
az — o (jaJ(rl ke ) (a™) = ag aJ(rl DKV 2 (a) + a (jf£1_5)+ﬂ’k;wg0> (b).

Then

(jf_s(_lfg)’k;wx) (a*) = a3 o (jakJ(rlfS)H?,k;w(p) (b). (15)

apt+az o1+ oo
Substituting into , we obtain .
For the converse, let us now prove that if = satisfies equation , then it satisfies —. Applying

the fractional derivative operator kH Dﬁ m/J( -) on both sides of the fractional equation 1} then we get

B F(1—€)+0, kit
Hpor,) gy — Hpdrb ag — Qg (Ja+ SO) (b)
kDo ) (1) = kDol ¥

(a1 + a2)l' (k&) W, (t, a)

(Hpﬂ m/}jﬁ s > ().

Using Lemma and Lemma we obtain equation (ED Now we apply the operator jakilfg)’k;w(-) to
equation , to obtain

( jk;(l—s),k;wx) (t) = JFa-Ok A8 T2 (j at ‘P) (5)
(a1 + ag) Ty (k€)W (¢, )

(T ORI ) (@),

Now, using Lemma [2.5] and [2.6] we get

(1-€),k;0 . as _ a2 k(1—&)+9,k;y
(a9 a) (1) = e - (0 ?) ()
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k(1—€)+9,k;
+ (O (). (16)
Using Theorem [2.7) with t — a, we obtain
k(1=¢),ksp ) ¥ Q2 ( k(1-8)+9,k;% > b 17
(") @ty = e - () o) (b). (a7)
Next, taking t = b in , we have
(a9 a) ) = 2 = (] 0)
k(1—€)+0,k;
+ (O (b). (18)
From and , we obtain @ This completes the proof. O

As a consequence of Theorem we have the following result.

r(k—19)+9

Lemma 3.2. Let £ = A

me0<ﬁ<kaMOSrﬁlef:JxC(P&XLR)xR%Rbe

a continuous function, and let w(-) € C and @(-) € C. Then x € F satisfies the problem — if and only

if x is the fized point of the operator T : F — F defined by

a3 — g (jakJ(rl_OJrﬁ’k;w@) (b)
(a1 + o) T (k) WY (¢, )
w(t), t€a—A\al,

(T) (1) =

&(t), te [b,b+ X} :

\

where p 1s o function satisfying the functional equation

o(t) = f(t, z:(-), (1)).

+(THe) 0, e (@b,

We may employ Theorem to easily demonstrate that for x € F, we have Tx € F, where T is the

operator defined in ([19)).

The following hypotheses will be used in the sequel :
(Az1) The function f:J x C ({—/\, 5\] ,R) x R — R is continuous.

(Az2) There exist constants ¢; > 0 and 0 < (2 < 1 such that

[f(t 2, yn) = f( 22, 92)| < Gllen =22y 5) + Clyr — v2

for any x1,29 € C ([—)\,5\} ,R)7 y1,y2 € R and t € (a,b].
(Az3) There exist functions g1, g2, q3 € C(J,Ry) with
qi =supqi(t), g5 =supqa(t), g3 = supgs(t) <1,
teJ teJ ted

such that
Ft2.0) < a0) + @)l 5 + asOly]

for any x € C([—/\,S\} ,]R), y € Rand t € (a,b].
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We are now in a position to state and prove our existence result for the problem — based on Banach’s
fixed point theorem [11].

Theorem 3.3. Assume (Ax1) and (Ax2) hold. If

o G0) =)' [ ol L1
1-¢G a1 + ao[De (kTR (2k — kE +0) — Ti(9 + k)
<1, (20)

then the problem — has a unique solution in F.

Proof. We show that the operator 7 defined in has a unique fixed point in F.
Let z,y € F. Then for any ¢t € [a — A\, a] U [b,b+5\], we have

[ Ta(t) = Ty(t)| =
Thus
ITx = Tylle = T2 = Tylle = 0. (21)
Further, for t € (a, b] we have

T OTHE 01 (5) = ea(s)]) (8)
a1 + o[ (k) W (¢, a)

(4
3
19k
+ (7 101(5) = 25 (0,

where 1 and ¢ be functions satisfying the functional equations

o] (4,
Ta(t) = Ty()] <

By (Az2), we have

[ (E, 2, 01(8) = f(E 0, p2(1))]

[p1(t) — @2(t)| =
< Gllze = yelloy 5y + Gler(t) = w2(2)].

Then,
G
1—-¢

lp1(t) — pa(t)] < e = ell_x 5

Therefore, for each t € (a, b]

Ta(t) - Ty(t)
Gilaz! (TN o =yl _zy) ®)
<
(1= Go)lot + | Pk (K WE (¢, a)

g (T2 e =l asg)

k(1=8)+0 k¢
L Glle gl [loal (%577 <1>)(b)+(
To1l-G o + a2 |Tk (k) W (¢, a)

_l’_
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By Lemma we have
Gilas| ((b) — ¥(a))'~¢F
(1= Go)lon + | DR (kT (k(1 = &) + 9 + k) UL (t,a)

G () — (a)
(1—-)Ty(V+ k)

[ Ta(t) - Ty <

_|_

Iz — ylle-

Hence

Cilao] (1b(b) — (a)) ¢ E
(1= C2)|on + ag|TR(RET(2k — k& +9)

G ((E) — (a) T F
(1= G)TW(0 + k)

i (ta) (Ta(t) — Ty(t))| < [

Iz = ylle,

which implies that

G ((b) — ()¢ E

|

1Tz = Tyllog . <

1 — 42 |Oél —|- a2|Fk(k£)Fk(2k — kif —|- ’19)
etz —yl
Th(0+ k) YllE-
Thus
1Tz = Tylce .y < Lllz —yllr. (22)

By and , we obtain

1Tz — Tylle = max {[|T2 — Tylle, | Tz = Tylle, ITx = Tyllce ., }
< Lz = yllr

By , the operator 7 is a contraction on F. Hence, by Banach’s contraction principle, 7 has a unique
fixed point & € IF, which is a solution to our problem —. O

Our next existence result for the problem — is based on based on Schauder’s fixed point theorem
[11].

Theorem 3.4. Assume (Ax1)-(Ax3) hold. If

B () — p(a) R L o]
¢ (®(b) = ¥(a)) Ln(0+ k) + lon + o |Uk (k)T (2k — k& + 9)

g
<1, (23)

then the problem — has at least one solution in F.

Proof. In several steps, we will use Schauder’s fixed point theorem to prove that the operator T defined in

has a fixed point.
Step 1: The operator 7T is continuous.

Let {x,} be a sequence such that x,, — x in F. For each ¢t € [a — A\, a] U [b, b+ 5\} , we have

|Txn(t) — Tx(t)] =0.
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And for t € (a,b], we have

T oo ((t) = (@)™ _k(1-&)+o.k ol
Tanlt) = Ta(o)] < 120 = VN (70 [ea(s) — £(3)1) )

g0k
+ (T Lonls) = 9(9)]) (@),
where @1 and ¢ be functions satisfying the functional equations

o(t) = f(t,ze(:), (1)),
on(t) = St wni(-), on(t))-

Since x, — z, then we get ¢,(t) — ¢(t) as n — oo for each t € (a,b], and since f is continuous, then we
have
| Tzn — Tl — 0 as n — oc.

Step 2: T(BM> C By
Let M a positive constant such that
|as| 4t

M > n Al lles l1&lls b .
_me{ml+aﬂmﬂiﬂl—@ 50D W”C”“W}

We define the following bounded closed set
By ={zeF:|zflr < M}.
For each t € [a — A, a], we have
[ Ta(t)] < [lwlle,
and for each t € [b, b+ /N\], we have
[ Tz()] < l@lle.
Further, for each t € (a, b], implies that

(a1 ,
Tato) < (OO flaal +laal (75794 (s, (5] ) 0]

+ (T s (D)) (0. (24)

By the hypothesis (Az3), for ¢t € (a,b], we have

[(8)] = 11t 21, 0(0)]
< a(t) + @)zl 5 + w @0,

which implies that

lp(t)] < g1 + a3 M + g3lo(t)],
then

g1 + M

— = A.
1—q3

p(t)] <
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Thus for ¢ € (a,b], from we get

|as| |az|A k(1-€)+0. ;)
< [ + 2T (kE) o + o T (kE) <ja+ (1)) )

A (La) (T W) ().

\\I/)5 (t,a)Tz(t)

By Lemma we have

o] (#(b) — () E
a1 + oo T (KE)Tk (2K — k€ + )

v |as|

(w(t) - wm»”*"zl |

+

Ly (9 + k)
Thus
. || VNI N S
W (t, a)T(t)] < o T oalT (0 + A (Y(b) —¢(a)) [mmm

||
|Oq + ao|Tk(kETk(2k — k& + )

}<M.

Then, for each t € {a —ANb+ 5\} we obtain

[Tl < M.

Step 3: T (Byy) is relatively compact.
Let 71,7 € (a,b], 1 < 72 and let © € Bys. Then

‘\Ilg’(ﬁ,a)Tx(ﬁ) — \If (72, )7':1:(72)‘
< |[wi(n,a) (Jjﬁ%(sn) () = W (r2.0) (TN (s)]) (72)]

1
</
a

+ ‘\I’?(Tg,a) (gﬁf;ﬂ@(sﬂ) (72)‘ ,

WL (r1, )5V (1, 8) = W (0, @) WS (72, )| 10/ ()05 s

By Lemma, we get
( Y1, a)Ta(r) — U (ra, )Tx(TQ))
<A/ T (71, 5) — WL (1, @) TS (7, 8) | |0 (5)] s

All'g (T2,a) (Y(2) —(11))
_l’_
To(d + k)

7_17

IS

As 7 — T, the right-hand side of the above inequality tends to zero. The equicontinuity for the other
cases is obvious, thus we omit the details. From Step 1 to Step 3, along with the Arzela-Ascoli theorem, we
conclude that 7 : F — F continuous and compact. As a consequence of Schauder’s fixed point theorem, we
deduce that 7 has a fixed point which is a solution of the problem —. O
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4. Examples

In this section, we investigate specific cases of our problem —, with J = [1,3], £ %(r(k — )+ 9)

and
1 T T2

t 1=
f( .’L‘l,iUQ) 33+31€3 t 2+$1 + 1+|$2‘

where t € J, x1 € C ([—)\,:\} ,R) and zg € R.

Example 4.1. Taking r — 0, ¢ = %, E=1,¢@)=In(t), oy =1, a0 =2, a3 =3, A = A= % and £ = %,
we obtain a boundary value problem which is a particular case of problem — with Hadamard fractional
derivative, given by

(1980} 0 = ("Dic) 0 = 1 (), ("Bhie) ) ve 13, (25)
(5 a) 2 (7)) = (26)
o) ==(0), te |31, 1)
o) =20, e [3.4] (28)
e o Cepsl) = Cy ) = o+ (1L3] o B+ Vi € CLILBY)-
Then

M\»—-

17
F=<xa: -, = —R: SU‘
22 [
Since the function f is continuous, then the condition (Ax1) is satisfied.

For each x1 € C ([—%, %} ,]R), xo € R and t € J, we have

] eC, JU‘[&%] e C and $‘(1,3} S Cé,lw(‘])}'

1
< — g .
| (T 21, 22)| < 33 7 31c5 <2+ oz + |$2\)

Then, the condition (Ax3) is satisfied

2 1
ql( ) 33 + 3163_t’ QZ( ) QS( ) 33 +31€3_t’
and
s_ 2 e a1
We have

~ In(3) 2 n 2
63 |7 3w
Then, by Theorem we deduce that the problem (25 . has at least one solution in F.

Further, for each x1,y1 € C ([ 3 %] R), x2,y2 € R (md t € J, we have

] ~ 0.0262360046401739 < 1.

1
|f(t, 21, 22) — f(t,y1,92)| < 334 315-F <||$1 - y1||[_A7;\] + [zg — yz|) ;

1
and then, the condition (Ax2) is satisfied with (1 = (3 = 674
Theorem (3.5 - are salisfied. Consequently, the problem (25))-(28) has a unique solution in F.

And since L = £, then all the assumptions of
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Example 4.2. Takingr%%,ﬁ:%, E=1,9¢{) =t a1 =1, e =0, az =0, A:X:é andfz%, we
obtain an initial value problem which is a particular case of problem — with Hilfer fractional derivative,

given by
Hoygo3¥ Hry33 Hy30s
(1980 ) 0 = ("Bie ) 0 = 1 (1, ("DE) @) e 3 (29)
<\714+’1;wx> (1) = 0. (30)
4
#(t) =0, te [3, 156] (32)
We have )
Ce k() = C3 1, (J) = {x (1,3] 5 R: (t—1)iz e C(J, ]R)} :
and then
4 16 -
F = {x : |:5, 5:| —R: :L"|[%71] eC, $|[37%] € C and $‘(173} S Ci,h?ﬁ(‘])}'
Also

7

21
63/
As all the conditions of Theorem are satisfied, then the problem — has a unique solution in F.

~ 0.0301222221161139 < 1.
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