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Numerical Method for Approximate Solution of Fisher’s Equation 

Melike KARTA1  

ABSTRACT: In this paper, Fisher's reaction diffusion equation has been solved numerically by Strang 

splitting technique depending on collocation method with cubic B-spline. For our purpose, the initial 

and boundary value problem consisting of Fisher's equation is split into two sub-problems to be one 

linear and the other nonlinear such that each one contains the derivative in terms of  time. Then, the 

whole problem is reduced to the algebraic equation system using finite element collocation method 

combined with the cubic B-spline for spatial discretization and the convenient classical finite difference 

approaches for time discretization. The effective and efficiency of the newly given method have been 

shown on the four examples. In addition, the newly obtained numerical results are shown in formats 

graphical profiles and tables to compare with studies available in the literature. 
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INTRODUCTION 

In this manuscript, we are going to consider one dimensional non-linear Fisher's equation 

𝑈𝑡 = 𝛾𝑈𝑥𝑥 + 𝜇𝑈(1 − 𝑈), 𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑅 ,    𝑡 ≥ 0                                                                        (1) 

with conditions given at the boundaries and the initial time 

 𝑈(𝑥, 0) = 𝑈0(𝑥),     𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑅 

 𝑈(𝑥𝐿 , 𝑡) = ℎ0(𝑡) ,     𝑈(𝑥𝑅 , 𝑡) = ℎ1(𝑡)                                                                                       (2) 

 𝑈𝑥(𝑥𝐿 , 𝑡) = 𝑓0(𝑡),     𝑈𝑥(𝑥𝑅, 𝑡) = 𝑓1(𝑡) 

Fisher's equation has influential implementations in many fields such as science and engineering. 

Firstly, Fisher's equation is investigated theoretically by (Kalmogoroff et.al., 1937; Canosa, 1973). 

Outside of theoretical  works, the approximate solution of Fisher's equation has been handled by lots of 

authors. (Gazdag and Canosa, 1974 ) used a pseudo-spectral approach for equation. The numerical work 

of Fisher's equation has been described by a moving mesh method by (Qiu and Sloan, 1998). (Zhao and 

Wei, 2003) solved equation by discrete singular convolution (DSC) algorithm. The wavelet-Galerkin 

approach using complex harmonic wavelets has been presented by (Cattani and Kudreyko, 2008). (Mittal 

and Arora, 2010) applied equation finite difference method with cubic B-spline. The approximate 

solution of the equation  has been  investigated using Galerkin method with quadratic B-spline by (Dağ 

et al., 2010).  (Mittal and Jain, 2012) proposed finite element collocation method with cubic B-spline to 

approximate the non-linear parabolic partial differential eqation with Neumann's boundary conditions. 

The numerical approach of equation has been  given via collocation  method with modified cubic B-

spline by (Mittal and Jain, 2013).  Also, to find solutions of the equation, collocation method with the 

extended cubic B-spline has been used by (Ersoy and Dag, 2015). (Dag and Ersoy, 2016) applied 

exponential B-spline collocation method for the equation. The approximate solution of equation with a 

new method ''extend modified cubic B-spline differential quadrature method ''(EMCB-DQM) has been 

introduced by (Shukla and Tamsir, 2016). For Fisher's equation, (Tamsir et al., 2018) suggested an 

exponential modified cubic B-spline differential quadrature algorithm. They used Runge-Kutta method 

for this purpose. (Kapoor et al., 2020) proposed Hyperbolic B- spline based on differential quadrature 

method for the nonlinear Fisher's equation.  

In this paper, we employ Strang splitting technique using collocation method with cubic B-spline 

for the numerical approach of given equation. For this purpose, firstly, in section 2, the finite element 

collocation method with cubic B-spline is explained and Fisher's equation split into two sub-equations 

and then the obtained sub-equations are applied Strang splitting technique with help of collocation 

method utilizing cubic B- spline with the proper conditions given at the boundaries and the initial time 

of problem. After that, the initial vector is formed using the condition at initial time and the conditions 

at the boundaries. In section 3, Fisher's equation is applied to four test problems and  the error norms  

𝐿2 and 𝐿∞ are computed and then compared with existing studies in literature. In section 4, a brief 

conclusion is given.  

MATERIALS AND METHODS 

For the numerical behavior of Equation (1), we consider the solution domain  [𝑥𝐿 , 𝑥𝑅]  and define 

𝑥𝐿 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑁 = 𝑥𝑅 as uniform partition of the solution range by the nodal points 𝑥𝑚 with  

ℎ = 𝑥𝑚+1 − 𝑥𝑚 =
𝑥𝑅−𝑥𝐿

𝑁
, 𝑚 = 0,1, … , 𝑁. An approximate solution corresponding to the analytical 

solution  U(x, t) can be given as  
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 𝑈𝑁(𝑥, 𝑡) = ∑ 𝛿𝑚(𝑡)𝜑𝑚
𝑗+1
𝑚=𝑗−1                                                                                                       (3) 

where 𝛿𝑚(𝑡)  are unknown time-dependent parameters obtained using the boundary conditions and 

equation (1). It is presented cubic B-spline functions on the domain [𝑥𝐿 , 𝑥𝑅]  in terms of nodal points  

𝑥𝑚 by (Prenter , 1975) as follows 

𝜑𝑚(𝑥) =
1

ℎ3

{
 
 

 
 
(𝑥 − 𝑥𝑚−2)

3 ,                                                                                           [𝑥𝑚−2, 𝑥𝑚−1]

ℎ3 + 3ℎ2(𝑥 − 𝑥𝑚−1) + 3ℎ(𝑥 − 𝑥𝑚−1)
2 − 3(𝑥 − 𝑥𝑚−1)

3,         [𝑥𝑚−2, 𝑥𝑚−1]

ℎ3 + 3ℎ2(𝑥𝑚+1 − 𝑥) + 3ℎ(𝑥𝑚+1 − 𝑥)
2 − 3(𝑥𝑚+1 − 𝑥)

3,            [𝑥𝑚−2, 𝑥𝑚−1]

(𝑥𝑚+2 − 𝑥)
3,                                                                                            [𝑥𝑚−2, 𝑥𝑚−1]

 0,                                                                                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

           (4) 

where {𝜑1, 𝜑0, … , 𝜑𝑁 , 𝜑𝑁+1} is a base on the domain [𝑥𝐿 , 𝑥𝑅] . Equation (1) contains the  term  𝑈𝑚, the 

first and second derivatives of 𝑈𝑚.  So, we need the values of the 1st 𝑈𝑚
′  , the 2nd 𝑈𝑚

′′   with respect 
to space variable 𝑥 and the values 𝑈𝑚 in terms of cubic B-spline functions using the approximations  

(3), (4) and time-dependent parameters 𝛿(𝑡). These values are obtained as follows  

𝑈𝑚 = 𝑈(𝑥𝑚) = 𝛿𝑚−1 + 4𝛿𝑚 + 𝛿𝑚+1    

𝑈𝑚
′ = 𝑈′(𝑥𝑚) = (3/ℎ)(−𝛿𝑚−1 + 𝛿𝑚+1 )                                                                                              (5) 

𝑈𝑚
′′ = 𝑈′′(𝑥𝑚) = (

6

ℎ2
) (𝛿𝑚−1 − 2𝛿𝑚 + 𝛿𝑚+1).           

The time split form of Equation (1) is as follows 

𝑈𝑡 − 𝛾𝑈𝑥𝑥 − 𝜇𝑈 = 0,                                                                                                                                (6)    

𝑈𝑡 + 𝜇𝑈𝑈 = 0                                                                                                                                             (7)      

By substituting the values 𝑈𝑚, 𝑈𝑚
′   and 𝑈𝑚

′′   in system (5) in equations (6) and (7), we obtain the 1st 

order system of ODE as follows: 

 �̇�𝑚−1 + 4�̇�𝑚 + �̇�𝑚+1 −
6

ℎ2
𝛾(𝛿𝑚−1 − 2𝛿𝑚 + 𝛿𝑚+1) − (𝛿𝑚−1 + 4𝛿𝑚 + 𝛿𝑚+1) = 0                 (8) 

 �̇�𝑚−1 + 4�̇�𝑚 + �̇�𝑚+1 + 𝑧𝑚(𝛿𝑚−1 + 4𝛿𝑚 + 𝛿𝑚+1) = 0.                                                                  (9) 

Here ‘’.’’ denotes derivative in terms of  time variable 𝑡 and for linearization form, the value of  𝑧𝑚 is 

taken as 

𝑧𝑚 = (𝛿𝑚−1 + 4𝛿𝑚 + 𝛿𝑚+1). 

When it is written   
𝛿𝑚
𝑛+1+𝛿𝑚

𝑛

2
   instead of the parameter 𝛿𝑚  and  

𝛿𝑚
𝑛+1−𝛿𝑚

𝑛

∆𝑡
   instead of the �̇�𝑚 ,  we have 

the following equations 

 𝑣1𝛿𝑚−1
𝑛+1 + 𝑣2𝛿𝑚

𝑛+1 + 𝑣3𝛿𝑚+1
𝑛+1 = 𝑣4𝛿𝑚−1

𝑛 + 𝑣5𝛿𝑚
𝑛 + 𝑣6𝛿𝑚+1

𝑛                                                            (10) 

 𝑧1𝛿𝑚−1
𝑛+1 + 𝑧2𝛿𝑚

𝑛+1 + 𝑧3𝛿𝑚+1
𝑛+1 = 𝑧4𝛿𝑚−1

𝑛 + 𝑧5𝛿𝑚
𝑛 + 𝑧7𝛿𝑚+1

𝑛                                                             (11) 

respectively and here 

𝑣1 = 1 −
3𝛾∆𝑡

ℎ2
−
𝜇∆𝑡

2
,    𝑣2 = 4 +

6𝛾∆𝑡

ℎ2
− 2𝜇∆𝑡,    𝑣3 = 1 −

3𝛾∆𝑡

ℎ2
−
𝜇∆𝑡

2
,    

𝑣4 =  1 +
3𝛾∆𝑡

ℎ2
+
𝜇∆𝑡

2
, 𝑣5 = 4 −

6𝛾∆𝑡

ℎ2
+ 2𝜇∆𝑡,   𝑣6 = 1 +

3𝛾∆𝑡

ℎ2
+
𝜇∆𝑡

2
 ,  
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𝑧1 = 1 +
𝜇𝑧𝑚∆𝑡

2
,   𝑧2 = 4 + 2𝜇𝑧𝑚∆𝑡,   𝑧3 = 1 +

𝜇𝑧𝑚∆𝑡

2
,    

𝑧4 = 1 −
𝜇𝑧𝑚∆𝑡

2
,   𝑧5 = 4 − 2𝜇𝑧𝑚∆𝑡,   𝑧6 = 1 −

𝜇𝑧𝑚∆𝑡

2
. 

Systems (10) and (11) contain (N + 1)  equations and (N + 3)  unknowns 𝛿𝑚 parameters, m =

0,1, . . . , N + 1 . We have to exterminate 𝛿−1  and 𝛿𝑁+1 to obtain a solvable system using the boundary 

conditions 𝑈𝑥(𝑥𝑅 , 𝑡) = 𝑓0(𝑡),   𝑈𝑥(𝑥𝑅 , 𝑡) = 𝑓1(𝑡)  for the systems (10) and (11) . Thus, we obtain the 

following equations 

 𝛿−1 = 𝛿1 −
ℎ

3
𝑈𝑥(1),   𝛿𝑁+1 = 𝛿𝑁−1 +

ℎ

3
𝑈𝑥(𝑁 + 1)                                                                          (12) 

The parameters  𝛿−1  and 𝛿𝑁+1 are eliminated in systems  (10) and (11)  using the equation (16) and 

eventually obtained a three diagonal (N + 1)x(N + 1) band matrix.  A unique solution of these systems 

is obtained using Thomas algorithm. We need the initial parameters 𝛿𝑚
0  to solve ones. For this, the initial 

parameters U(x, 0) = 𝑈0(𝑥) are firstly obtained. The initial vector  𝛿𝑚
0   can be found out using the 

following IC and BCs 

U(x, 0) = 𝑈0(𝑥), 

                                                     𝑈𝑥(𝑥𝐿 , 𝑡) = 𝑓0(𝑡),       𝑈𝑥(𝑥𝑅 , 𝑡) = 𝑓1(𝑡)                   

Thus, the initial vector  𝛿𝑚
0   is obtained as follows 

 

Namely, it is written in the form of 𝐴∗𝛿0 = 𝐵∗ .  From here, the dimensional band matrix (𝑁 +

1)𝑥(𝑁 + 1) for  parameters 𝛿𝑚
0  is found. 

RESULTS AND DISCUSSION 

In the present section, we will consider four numerical examples to determine the effectiveness of 

the proposed approach using Strang splitting technique via collocation method with cubic B-spline for 

Fisher's equation. For our goal, we compute the error norms 𝐿2 and 𝐿∞ determined as 

 𝐿2 = ‖𝑈 − 𝑈𝑁‖2 = √ℎ∑(𝑈 − 𝑈𝑁)2
𝑁

𝑗=0

, 

𝐿∞ = ‖𝑈 − 𝑈𝑁‖∞ = max
𝑗
|𝑈 − 𝑈𝑁| 

Relative error (Madzvamuse, 2006)=
√∑ |𝑈𝑗

𝑛+1−𝑈𝑗
𝑛|
2

𝑁
𝑗=0

√∑ |𝑈𝑗
𝑛+1|

2
𝑁
𝑗=0

. 
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Example 1 

In the present  example, we are going to deal with Equation (1) with BCs  𝑈(𝑥𝐿 , 𝑡) = 𝑈(𝑥𝑅 , 𝑡) =

0 and IC  given by 

𝑈0(𝑥) = 𝑠𝑒𝑐ℎ
2(10𝑥). 

For this problem, discretization parameters are chosen as h = 0.025, ∆t = 0.05 on the domain 

[−50,50]  for 𝛾 = 0.1,  =1 as in the studies (Dağ et al., 2010) and (Dağ and Ersoy, 2016 ). Physcial 

behaviour of equation (1) has been drawn in graphical profiles.  In  Figure 1,  for different time level 

t = 0 to t = 0.5, we have seen that near x = 0, U(x, t) reachs maximum value U = 1. However, the 

peak rapidly comes down since diffusion term U(1-U) dominates over reaction. Because of the reaction 

influence, Figure 2 indicates that the peak value is gradually increasing in time  from  t = 0 to 5. Also 

it is seen that the peak value reaches until the top U = 1 in at the time levels 0,5,10,15,20,25,30,40  in 

Figure 3. Tables 1 presents a comparison of the relative error at various times and shows that our results 

are much better. 

 

 

 

 

 

Figure 3. The numerical approaches of Example 1 for  𝑡 = 0(5)40 

 

 

 

Figure 1. The numerical approaches of 

Example 1 for  𝑡 = 0(0.1)5 

Figure 2. The numerical approaches of 

Example 1 for  𝑡 = 0(1)5 
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Tablo 1.  Comparison of  relative errors for Example 1 at various times. 

Relative Error t=5 t=10 t=15 t=20 t=40 

     Present 1.383E − 2 7.835E − 3 6.029E − 3 5.067E − 3 3.417E -3 

(Dağ et al., 2010) 1.386E − 2 7.860E − 3 6.054E − 3 5.090E − 3 3.434E -3 

Example 2 

In this example, Fisher's equation is taken with local boundary condition and initial condition as 

follows: 

{
𝑒10(𝑥+1),                     𝑥 < 1
1,                     − 1 ≤ 𝑥 ≤ 1

𝑒−10(𝑥+1),                  𝑥 > 1

                                                                                                              

or this  problem, we use coefficients  = 0.1,  = 1 and parameters h = 0.025, ∆t = 0.05 as in the 

first problem over domain [−50,50] until time 40 considering to studies (Dağ et al., 2010) and (Dağ and 

Ersoy, 2016 ). In Figure 4 and 5, it is graphically performed the solutions at early times. In these figures, 

the reaction-diffusion effective is quite minor. Because the reaction effect is more effective than the 

diffusion effect.Thus, they become smooth from having sharp. Also, figure 6 shows that the top of the 

wave have risen and shown that it is getting more and more flat. Table 2 submits a comparison of the 

relative error at various times and indicates that our results are much better. 

 

 

Figure 6. The numerical approaches of Example 2 for  𝑡 = 0(5)40 

Figure 4. The numerical approaches of 

Example 2 for  𝑡 = 0(0.1)0.5 
Figure 5. The numerical approaches of 

Example 2 for  𝑡 = 0(1)5 
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Tablo 2. Comparison of relative errors for Example 2 at various times. 

Relative Error    t=5  t=10  t=15  t=20  t=40 

Present   9.397E − 3 6.892E − 3 5.590E − 3 4.804E − 3 3.335E -3 

(Dağ et al., 2010)   9.435E − 3 6.917E − 3 5.614E − 3 4.825E − 3 3.352E -3 

Example 3 

In the present example, we handle Eq. (1) with BCs  𝑈(𝑥𝐿 , 𝑡) = 1, 𝑈(𝑥𝑅 , 𝑡) = 0, 𝑡 ≥ 0  and the 

analytical solution given as follows: 

𝑈(𝑥, 𝑡) = [1 + exp (√
𝜇

6
𝑥 − √

5𝜇

6
𝑡)]

−2

 

In Table 3, we have firstly presented a comparison of the error norms 𝐿2 and 𝐿∞ of Equation (1) 

with discretization parameters h=1, ∆t=0.01 on range −10 ≤  x ≤ 10 for reaction-diffusion coefficients 

𝛾=1 and 𝜇=2 by considering the study (Mittal and Jain, 2012) and also, we have calculated the error 

norms  𝐿2 and 𝐿∞ for values h = 0.5, ∆t = 0.01 at times t = 5,10,15,20  in Table 4. For values h=0.25, 

∆t=0.01, t≤ 2, in Figure 7, it is shown graphically together a comparison of analytical and numerical 

scheme of Example 3. Secondly, in Table 5, we have presented a comparison of the error norms 𝐿2 and 

𝐿∞ for the numerical approach of Example 3 by taking N = 64, 150 and ∆t = 0.000005 at times t =

0.0005 ,0.0015, 0.0025, 0.0035  over region [−0.2,0.8]  with reaction-diffusion coefficient  𝛾=1, 𝜇 

=10000 taking into account some studies in literature. Table 3 shows that our results are very good and 

Table 4 indicates that we have achieved very low results. Figure 7 exhibits that the numerical scheme of  

the problem show fairly a good physical behaviours for h=0.25, ∆t=0.01 at times 𝑡 ≤2. Table 5 displays 

that results of the error norms 𝐿2 and 𝐿∞ computed by Strang splitting technique utilizing collocation 

method combined with cubic B-spline are better than in (Dağ and Ersoy, 2016), CN (Qiu and Sloan, 

1998) and close to results in (Dağ et al., 2010), ASD (Qiu and Sloan, 1998) and it shows that the results 

of DSC  (Qiu and Sloan, 1998) are better than the presented method. Also, it is seen that solution profiles 

and absolute error distributions in Figure 8 exhibit fairly accurate physical behaviors for parameters N =

200 and ∆t = 0.000005 at times t = 0.0005,0.001,0.0015,0.002, . . . , 0.0035 as in (Dağ et al., 2010). 

So, the method presented can be recommended as alternative solution to other non-linear equations such 

as the Fisher's equation.  Additionally, to indicate the effectiveness and performance of the suggested  

method, it is presented together the numerical and analytical solution graphically at different times in 

Figure 9 taking  𝜇 = 2000 and 5000 for N = 200  with ∆𝑡 = 0.00001 on the solution region 

[−0.2,0.8] as in studies (Mittal and Jain, 2013) and (Kappoor and Joshi, 2020).  

Tablo 3. Comparison of the error norms  𝐿 2 and 𝐿∞ for  ∆𝑡 = 0.01, ℎ = 1 of Example 3. 

 Present   (Mittal and Jain, 2012) 

t 𝐿2 𝐿∞  𝐿2 𝐿∞ 

0.5 1.77E-03 1.10E-03  1.76E-03 1.10E-03 

1 2.93E-03 1.75E-03  2.92E-03 1.75E-03 

1.5 3.65E-03 1.85E-03  3.67E-03 1.86E-03 

2 4.28E-03 2.93E-03  4.50E-03 3.00E-03 
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Tablo 4. The error norms  𝐿 2 and 𝐿∞ for  ∆𝑡 = 0.01, ℎ = 1  of Example 3 at some various times. 

Errors t=5 t=10 t=15 t=20 

𝐿2 1.66E-03 1.30E-03 1.76E-03 1.10E-03 

 𝐿∞ 0.33E-03 0.08E-03 2.92E-03 1.75E-03 

 

Figure 7. The numerical solutions of Example 3 for  𝑡 ≤ 2 (∆𝑡 = 0.01, ℎ = 0.25) 

Table 5.  Comparison of the error norms  𝐿 2 and 𝐿∞ at various times 𝑡 of Example 3 for 𝛼 = 1, 𝛽 = 10000 

Method N Error t       

      0.0005 0.0015 0.0025 0.0035 

Present 64  𝐿 2 1.50E − 3 0.21E − 1 4.99E − 2 0.79E − 1 

  𝐿∞ 6.41E − 3 0.89E − 1 2.12E − 1 3.25E − 1 

Present 150  𝐿 2 4.45E − 4 0.36E − 2 0.86E − 2 1.40E − 2 

  𝐿∞ 3.27E − 2 1.52E − 2 3.64E − 2 5.90E − 2 

Present 200  𝐿 2 0.35E − 3 0.02E − 1 0.48E − 2 0.78E − 2 

  𝐿∞ 2.84E − 3 0.83E − 2 2.00E − 2 3.27E − 2 

Dağ et.al., 2010 150  𝐿 2 6.89E − 5 1.30E − 2 1.55E − 2 8.82E − 3 

  𝐿∞ 2.57E − 4 5.65E − 2 6.63E − 2 3.93E − 2 

Dağ and Ersoy, 2016 64 𝐿∞ 1.10E − 2 1.49E − 1 3.44E − 1 5.08E − 1 

(p = 1)       
CN(Zhao and Wei, 2003) 64  𝐿 2 1.92E − 3 2.65E − 2 6.18E − 2 9.91E − 1 

  𝐿∞ 1.03E − 2 1.25E − 1 2.80E − 1 4.48E − 1 

ASD(Zhao and Wei, 2003) 64  𝐿 2 2.09E − 3 1.06E − 2 2.02E − 2 2.35E − 2 

  𝐿∞ 1.07E − 2 4.93E − 2 9.37E − 2 9.44E − 1 

DSC(Zhao and Wei, 2003) 64  𝐿 2 1.24E − 6 5.92E − 7 1.16E − 6 1.64E − 6 

     𝐿∞ 6.28E − 6 1.98E − 6 4.46E − 6 6.22E − 6 

 

Figure 8. Solution profiles and absolute errors and of Example 3 for  𝑁 = 200 
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Figure 9. The approximate solutions for  𝛽 = 2000 at times   𝑡 = 0.002,0.003,0.004,0.005,0.006,0.007 and  𝛽 = 5000 at 

times 𝑡 = 0.001,0.002,0.003,0.004,0.005  for  𝑁 = 200  of  Example 3 

Example 4 

In the last example, we get non-linear Fisher's equation given as 

        𝑈𝑡 − 𝑈𝑥𝑥 = −𝛼1𝑈
2 + 𝛽1𝑈; −∞ ≤ 𝑥 ≤ ∞, 𝑡 ≥ 0,                                                             

having the following initial and boundary conditions 

𝑈(𝑥, 𝑡) = −
𝛽1
4𝛼1

[𝑠𝑒𝑐ℎ2 (−√
𝛽1
24𝑐

𝑥) − 2𝑡𝑎𝑛ℎ (−√
𝛽1
24𝑐

𝑥) − 2], 

                                       𝑈(𝑥𝐿 , 𝑡) = 0.5 ,     𝑈(𝑥𝑅 , 𝑡) = 0.                                             

The analytical solution for the present problem is taken as 

𝑈(𝑥, 𝑡) = −
𝛽1
4𝛼1

[𝑠𝑒𝑐ℎ2 (√
𝛽1
24𝑐

𝑥 +
5𝛽1
12

𝑡) − 2𝑡𝑎𝑛ℎ (√
𝛽1
24𝑐

𝑥 +
5𝛽1
12

𝑡) − 2]. 

The coefficients in this problem are choosen as =1, 𝛼1=1, 𝛽1=0.5, c=1 for h=0.25, t=0.01 at times t=2 

and  t=4  on solution domain [-30,30] as in studies (Cattani and Kudreyko, 2008), (Mittal and Arora, 

2010) and (Mittal and Jain, 2013). Table 6 and Table 8 report a comparison of the presented  method 

solutions  with those obtained  in (Cattani and Kudreyko, 2008) and (Mittal and Arora, 2010). Also, 

Tables 7 and 9  give a comparation of the absolute error results found out by the presented method. From 

these tables, it is seen that our results are better than those of the previous studies. Figure 10 clearly 

illustrates a comparison between numerical and analytical solutions at times t = 1,2,3,4,5 and this figure 

displays that it can be found a good conformity with those given the earlier studies. 

Tablo 6.  Comparison of approximate solutions of  Example 4 at various values of  𝑥 for 𝑡 = 2
 
. 

x Cattani and Kudreyko,2008 Mittal and Arora, 2010 Present Exact 

-20 0.498681 0.498653 0.498650 0.498652 

-16 0.495130 0.495745 0.495739 0.495740 

-12 0.486758 0.486679 0.486668 0.486669 

-8 0.459576 0.459478 0.459476 0.459478 

-4 0.386681 0.386742 0.386787 0.386791 

2 0.158878 0.159011 0.158859 0.158850 

6 0.041822 0.041877 0.041852 0.041851 

10 0.006455 0.006426 0.006465 0.006465 

14 0.000750 0.000746 0.000754 0.000755 

18 7.617E-05 7.79E-05 7.91E-05 7.92E-05 
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Tablo 7.  Comparison of absolute error at various values  of 
  
𝑥 for  𝑡 = 2 of  Example 4.  

x Mittal and Arora, 2010 Present 

-20 1.52E −0 6 1.37E −0 6 

-16 4.56E − 06 1.15E −0 6 

-12 9.42E − 06 7.78E −0 7 

-8 2.39E − 07 1.24E −0 7 

-4 4.91E − 05 4.37E −0 6 

2 1.61E − 04 8.77E −0 6 

6 2.54E − 05 8.28E −0 6 

10 3.92E − 05 2.65E −0 6 

14 9.46E − 06 6.30E −0 7 

18 1.23E − 06 8.24E −0 8 

Tablo 8.  Comparison of numerical approach at various values of  𝑥  for 𝑡 = 4  of  Example 4. 

x  Cattani and Kudreyko, 2008 Mittal and Arora, 2010 Present Exact 

-20 0.498678 0.499412 0.499411 0.499413 

-16 0.498525 0.498146 0.498140 0.498142 

-12 0.494757 0.494149 0.494139 0.494140 

-8 0.481776 0.481763 0.481754 0.481756 

-4 0.445508 0.445372 0.445394 0.445398 

2 0.279025 0.280082 0.279947 0.279941 

6 0.116980 0.117196 0.116975 0.116963 

10 0.025927 0.025881 0.025967 0.025974 

14 0.003695 0.003559 0.003618 0.003622 

18 0.000409 0.000395 0.000405 0.000406 

Tablo 9. Comparison of absolute error at various values of  𝑥 for 𝑡 = 4  of  Example 4. 

x Mittal and Arora, 2010 Present 

-20 1.35E −0 6 1.93E −0 6 

-16 4.01E − 06 1.86E −0 6 

-12 8.86E − 06 1.40E −0 6 

-8 7.28E − 06 1.40E −0 6 

-4 2.53E − 05 3.51E −0 6 

2 1.41E − 04 5.96E −0 6 

6 2.33E − 04 1.20E −0 5 

10 9.30E − 05 7.02E −0 6 

14 6.29E − 05 4.20E −0 6 

18 1.12E − 05 7.45E −0 7 

 

Figure 10. Approximate and exact  solutions of Example 4 for ∆𝑡 = 0.01, ℎ = 0.25. at 𝑡 = 1 to𝑡 = 5 
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CONCLUSION 

In the current study, the approximate results of nonlinear Fisher's equation have been obtained via 

Strang splitting technique using finite element collocation method combined with cubic B-spline. To 

display  the correctness and validity of  the presented method, the four examples given with suitable the 

initial-boundary condition available in literature have been considered and computed the error norms 

𝐿2 and 𝐿∞. It has been seen that numerical results acquired with the presented method are very good.  

Consequently, we can say that the solutions of this study gotten Strang splitting technique can be both 

effectively implemented and considered as an alternative to obtain numerical results of these type of 

problems.  
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