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Abstract

Let G = (V,E) be a graph. The double vertex graph F2(G) of G is the graph whose
vertex set consists of all 2-subsets of V (G) such that two vertices are adjacent in F2(G) if
their symmetric difference is a pair of adjacent vertices in G. The super–connectivity of a
connected graph is the minimum number of vertices whose removal results in a disconnected
graph without an isolated vertex. In this paper, we determine the super–connectivity of the
double vertex graph of the complete bipartite graph Km,n for m≥ 4 where n≥ m+2.

1. Introduction

Throughout this paper, let G be a simple finite graph, where V (G) and E(G) denote the set of vertices and the set of edges,
respectively. A set S⊂V (G) is a vertex–cut of G, if G−S is disconnected or has only one vertex. The neighbourhood of a
vertex v is the set NG(v) = {u ∈V (G) : uv ∈ E(G)}. The degree of a vertex v, denoted by degG(v), is the cardinality of NG(v).
Let δ (G) denote the minimum vertex degree in G. Two paths are internally disjoint if they have no common vertex except the
end vertices. A set of paths is called internally disjoint if these paths are pairwise internally disjoint.

The double vertex graph F2(G) of G is the graph whose vertex set consists of all the 2-subsets of V (G) and two vertices are
adjacent in F2(G) if their symmetric difference is a pair of adjacent vertices in G. That is, the vertices {u,v} and {x,y} of
F2(G) are adjacent if and only if |{u,v}∩{x,y}|= 1 with u = x and vy ∈ E(G) (See Fig 1.1 for an example).

The notion of double vertex graph was introduced and studied by Alavi et al. [1]-[3]. The same concept was used by Rudolph
to study the graph isomorphism problem under the name of symmetric power of a graph [4]. Later, Rudolph et al. [5] defined
symmetric kth power of a graph G as a generalization of symmetric power. In 2012, Fabila-Monroy et al. [6] introduced the
notion of k–token graphs, which was a redefinition of symmetric kth powers of graphs. The k–token graph Fk(G) of G (or,
symmetric kth power of a graph G) is the graph whose vertices are all k–subsets of V (G), where two vertices are adjacent if
their symmetric difference is an edge in E(G). Obviously, double vertex graphs correspond to 2–token graphs.

Note that if G is a connected graph, then its double vertex graph is bipartite if and only if G is bipartite. Also note that the
degree of a vertex ω = {x,y} in F2(G) is given by

degF2(G)ω =

{
degG(x)+degG(y), if xy /∈ E(G),

degG(x)+degG(y)−2, if xy ∈ E(G).
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Figure 1.1: (a) Complete bipartite graph K2,4 (b) Double vertex graph of K2,4

Token graphs have been extensively studied especially in terms of the combinatorial parameters such as connectivity, diameter,
cliques, chromatic number, Hamiltonian paths and Cartesian product (see [7]-[14] and the references therein).

The connectivity, κ(G), of a graph G is the minimum number of vertices whose removal from G results in a disconnected
graph or an isolated vertex. It is an important factor to determine the fault–tolerance of a network. In 1983, Harary introduced
conditional connectivity as a generalization of the classical connectivity concept by imposing some conditions on the remaining
graph. Let G be a connected graph, and let P be a given graph-theoretical property. The conditional connectivity of a graph
G is the size of a minimum vertex–cut S of G (if it exists), where G−S is disconnected and every component of G−S has
the property P [15]. Motivated by this definition, various types of conditional connectivity have been extensively studied
in literature. The case when the condition is that the remaining graph does not have an isolated vertex corresponds to the
super-connectivity notion.

The super–connectivity, κ ′(G), of a graph G is the size of a minimum vertex–cut S such that the resulting graph G−S has
no isolated vertices. If such a vertex–cut exists, it is referred to as a super vertex–cut; otherwise we write κ ′(G) = +∞. The
super–connectivity has been studied for various families of graphs, including circulant graphs [16], hypercubes [17, 18],
product graphs [19]-[21].

Considering the connectivity aspect of token graphs, it is known that if G is a k–connected graph, then F2(G) is (2k− 2)–
connected, where k ≥ 3 [3]. In 2012, Fabila-Monroy et al. [6] presented several families of graphs of order n which are
t–connected and have k–token graphs with connectivity exactly k(t− k+1) whenever k ≤ t. They also conjectured that Fk(G)
is at least k(t− k+1)–connected for all k ≤ t. In 2018, Leaños and Trujillo-Negrete [22] proved that their conjecture is true.
In [23], Leaños and Ndjatchi proved an analogous result for edge connectivity; they showed that if G is t–edge connected
for t ≥ k, then Fk(G) is at least k(t− k+1)–edge connected. Later Fabila-Monroy et al. [24] proved that if G is a tree, then
the connectivity of Fk(G) is equal to the minimum degree of Fk(G). Although the connectivity of k–token graphs has been
studied in several papers, super–connectivity of this class has not yet been investigated. Recently, we fully determined the
super–connectivity of Johnson graphs, which corresponds to a special case of k–token graphs [25]. More precisely, if G is
the complete graph on n vertices, then k–token graph corresponds to the Johnson graph J(n,k). In this paper, we continue to
investigate token graphs by determining the super–connectivity of 2–token graph of complete bipartite graphs.

In the rest of the paper, a vertex ω of F2(G) corresponding to the 2-subset {x,y} ∈V (F2(G)) will be denoted by ω = xy. While
constructing the paths, it is assumed that the subscripts of the vertices are taken modulo n or m, depending on the size of the
set we consider.
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2. Main results

Let Km,n be the complete bipartite graph with partition V = A∪B such that A = {x1, . . . ,xm} and B = {y1, . . . ,yn}, where
m≤ n. Letting G = F2(Km,n), we have a bipartite graph G with partition V (G ) = A ∪B such that

A = {xiy j ∈V (G ) : xi ∈ A and y j ∈ B} and B = B1∪B2,

where

B1 = {xix j ∈V (G ) : i 6= j} and B2 = {yiy j ∈V (G ) : i 6= j}.

It is easy to see that δ (G ) = min{2m,2n,m+n−2}. Since κ(Km,n) = m when m≤ n, we know that the graph G is (2m−2)–
connected for n ≥ m ≥ 2. We know that the connectivity of a graph is at most the minimum degree of it. Thus, we have
2m−2≤ κ(G )≤ 2m when n≥m+2. Moreover, if m= n, then κ(G ) = 2m−2 and if m= n−1, then 2m−2≤ κ(G )≤ 2m−1.
It is quite natural to ask whether every minimum vertex–cut of a graph G corresponds to the neighbourhood of a vertex. If the
answer is yes, then every vertex–cut isolates a vertex in G and thus the super–connectivity of G is strictly greater than the
connectivity.

Both the Remark 2.1 and the explanation before it are given in [25]. Although it is easy to observe, it plays an important role in
the proof of our main result.

Let S be a minimum super vertex–cut S of a connected graph G. Note that S contains a vertex v having at least one neighbour in
the resulting graph G−S for otherwise G would be disconnected. Let C be a component of G−S and suppose that v does not
have a neighbour in C. Now consider the set T = S−{v}. Since C is a component of G−T , it is obvious that T is a vertex–cut
of G which does not isolate a vertex. Thus, T is a super vertex–cut of G and this contradicts the minimality of S. Hence, the
remark below follows.

Remark 2.1. [25] Let G be a connected graph. A minimum super vertex–cut S of G contains a vertex having at least a
neighbour in every component of G−S. Moreover, if a vertex v in a minimum super vertex–cut S of G has a neighbour in one
component of G−S, then it has at least one neighbour in every component of G−S.

We now prove our main result on the super–connectivity of the double vertex graph of complete bipartite graphs.

Theorem 2.2. Let G be the double vertex graph of the complete bipartite graph Km,n, where n ≥ m+ 2 and m ≥ 4. Then
κ ′(G ) = 3m+n−4.

Proof. Let S be a super vertex–cut of G = F2(Km,n) where n≥ m+2 and m≥ 4. By Remark 2.1, we know that there exists
a vertex, say ω , in S having at least a neighbour in every component of G −S. Let C1 and C2 be two components of G −S.
Consider a neighbour of ω from each of the components C1 and C2, say u1 ∈C1 and u2 ∈C2. Since S is a super vertex–cut,
each component of the resulting graph G −S has at least two vertices. Thus, each of u1 and u2 has at least a neighbour in C1
and C2, respectively. Let v1 ∈C1 and v2 ∈C2 such that v1 ∈ NG (u1) and v2 ∈ NG (u2). Note that the intersection v1∩u2 = /0,
otherwise there will be an edge between the components C1 and C2. Similarly, u1∩ v2 = /0. Since G is a bipartite graph, ω is
either in A or in B.

First, we suppose that ω is in A . Without loss of generality, let ω = x1y1. For the vertices u1 and u2, there are three cases to
consider:

(1) Both of u1 and u2 are in B1,

(2) One of them is in B1 and the other one is in B2,

(3) Both of u1 and u2 are in B2.

Next, we suppose that ω is in B. Then, either ω ∈B1 or ω ∈B2. In both of these two cases, we get the same subcases for the
vertices u1,v1 ∈C1 and u2,v2 ∈C2. Thus, it is enough to consider only one of them, say ω ∈B1. Without loss of generality,
we assume that ω = x1x2. Consider the neighbours of ω in the resulting graph G −S , in particular u1 ∈C1 and u2 ∈C2. Due
to the shared index of u1 and u2, there are three cases to consider:

(4) u1∩u2 ⊂ A,

(5) u1∩u2 ⊂ B,

(6) u1∩u2 = /0.

Let us assume that ω = x1y1 and consider the first three cases (1-3) given below.

Case 1. Without loss of generality, assume that u1 = x1x2 and u2 = x1x3. Since we have v1∩u2 = /0 and u1∩ v2 = /0, we let
v1 = x2yk and v2 = x3y`. Without loss of generality, we assume that k = 1. Thus, we have either `= k or ` 6= k. In the
latter case we let, without loss of generality, `= 2.
First we investigate the common paths that can be constructed when either `= k or ` 6= k.
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• u1 ∼ x1y j ∼ u2 for all j ∈ {1, . . . ,n}

• v1 ∼ x2x3 ∼ v2

• v1 ∼ x2x j ∼ y2x j ∼ x3x j ∼ v2 for all j ∈ {4, . . . ,m}

Note that if `= k, then the vertices v1 and v2 have common neighbours, and the additional paths that can be constructed
particularly in this case are given in (a). Similarly, the additional paths constructed only when `= 2 are given in (b).

(a) If `= k, then consider the extra paths given below:
• v1 ∼ y1y j ∼ v2 for all j ∈ {2, . . . ,n}

• u1 ∼ x2y j ∼ y jy j+1 ∼ x3y j ∼ u2 for all j ∈ {2, . . . ,n}
When j = n, use the vertex y jy j+2 instead of y jy j+1 since y1yn is used already.

(b) If ` 6= k (note that ` is assumed to be 2 above), then consider the extra paths given below:
• u1 ∼ x2y2 ∼ y2y3 ∼ v2 and u1 ∼ x2y3 ∼ y3y4 ∼ x3y3 ∼ u2

• v1 ∼ y1y2 ∼ v2 and v1 ∼ y1y3 ∼ x3y1 ∼ u2

• v1 ∼ y1y j ∼ x3y j ∼ u2 for all j ∈ {4, . . . ,n}

• u1 ∼ x2y j ∼ y2y j ∼ v2 for all j ∈ {4, . . . ,n}

Thus, in both cases, we have constructed 3n+m−4 internally disjoint paths.

Case 2. Without loss of generality, we let u1 = x1x2 and u2 = y1y2. Since we have v1∩u2 = /0 and u1∩ v2 = /0, we assume that
v1 = x1y3 and v2 = x3y1. Consider the following paths:

• u1 ∼ x1yi ∼ y2yi ∼ xiy2 ∼ u2 for all i ∈ {4, . . . ,m}

• u1 ∼ x2y j ∼ y1y j ∼ v2 for all j ∈ {4, . . . ,n}

• v1 ∼ x1xi ∼ xiy1 ∼ u2 for all i ∈ {4, . . . ,m}

• v1 ∼ y3yi ∼ xiy3 ∼ x3xi ∼ v2 for all i ∈ {4, . . . ,m}

• u1 ∼ x2y3 ∼ x2x3 ∼ v2 and v1 ∼ y2y3 ∼ x3y2 ∼ u2

• u1 ∼ a∼ u2 for each a ∈ {x1y1,x1y2,x2y1,x2y2}

• v1 ∼ x1x3 ∼ v2 and v1 ∼ y1y3 ∼ v2

Thus, we have constructed 3m+n−4 internally disjoint paths.

Case 3. Without loss of generality, we let u1 = y1y2 and u2 = y1y3. Since we have v1∩u2 = /0 and u1∩v2 = /0, we let v1 = xky2
and v2 = x`y3. Without loss of generality, we assume that k = 1. Thus, we have either have `= k or ` 6= k. In the latter
case we let, without loss of generality, `= 2.
First we investigate the common paths that can be constructed when either `= k or ` 6= k

• u1 ∼ xiy1 ∼ u2 for all i ∈ {1, . . . ,m}

• v1 ∼ y2y3 ∼ v2

• v1 ∼ y2yi ∼ x1yi ∼ y3yi ∼ v2 for all i ∈ {4, . . . ,n}

Note that if `= k, then the vertices v1 and v2 have common neighbours, and the additional paths that can be constructed
particularly in this case are given in (a). Similarly, the additional paths constructed only when `= 2 are given in (b).

(a) If `= k, then consider the extra paths given below:

• v1 ∼ x1xi ∼ v2 for all i ∈ {2, . . . ,m}

• u1 ∼ xiy2 ∼ xixi+1 ∼ xiy3 ∼ u2 for all i ∈ {2, . . . ,m}.
When i = m, use the vertex xixi+2 instead of xixi+1 since x1xm is used already.

(b) If ` 6= k (` is assumed to be 2 above), then consider the extra paths given below:

• u1 ∼ x2y2 ∼ x2x3 ∼ v2 and v1 ∼ x1x3 ∼ x1y3 ∼ u2

• u1 ∼ x3y2 ∼ x3x4 ∼ x3y3 ∼ u2

• u1 ∼ x4y2 ∼ x2x4 ∼ v2 and v1 ∼ x1x4 ∼ x4y3 ∼ u2

• v1 ∼ x1x2 ∼ v2

• u1 ∼ xiy2 ∼ xi−1xi ∼ xiy3 ∼ u2 for all i ∈ {5, . . . ,m}
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• v1 ∼ x1xi ∼ xiy4 ∼ x2xi ∼ v2 for all i ∈ {5, . . . ,m}

Thus, in both cases, we have constructed 3m+n−4 internally disjoint paths.

Now we assume that ω = x1x2 in order to consider the latter three cases (4-6) given below.

Case 4. Let u1∩u2 ⊂ A, say u1∩u2 = {x1}. Since both of u1,u2 ∈A , without of loss of generality, we assume that u1 = x1y1
and u2 = x1y2. Since we have v1∩u2 = /0 and v2∩u1 = /0, we have either |v1∩ v2|= 1 or |v1∩ v2|= 0. Let v1 = y1yk
and v2 = y2y`. Note that k, ` /∈ {1,2}. Thus, without loss of generality, we let k = 3.

(a) If `= k, then the paths here can be constructed similarly as in Case 3(a), such that the vertices {x1,y1,y2,y3} of
this case correspond to the vertices {x1,y2,y3,y1} of Case 3(a), respectively.

(b) If ` 6= k, then we have ` /∈ {1,2,3}. Thus, without loss of generality, we let `= 4.
Consider the following paths:
• u1 ∼ x1xi ∼ u2 for all i ∈ {2, . . . ,m}

• u1 ∼ y1y2 ∼ u2

• u1 ∼ y1y4 ∼ x1y4 ∼ v2

• v1 ∼ x1y3 ∼ y2y3 ∼ u2

• u1 ∼ y1yi ∼ x1yi ∼ y2yi ∼ u2 for all i ∈ {5, . . . ,n}

• v1 ∼ xiy1 ∼ xixi+1 ∼ xiy2 ∼ v2 for all i ∈ {2, . . . ,m}
When i = m, use the vertex xixi+2 instead of xixi+1 since x1xm is used already.

• v1 ∼ x2y3 ∼ y3y4 ∼ x2y4 ∼ v2

• v1 ∼ xiy3 ∼ y3yi+2 ∼ x2yi+2 ∼ y4yi+2 ∼ xiy4 ∼ v2 for all i ∈ {3, . . . ,m}

Thus, in both of the cases, we have constructed 3m+n−4 internally disjoint paths.

Case 5. Let u1∩u2 ⊂ B, say u1∩u2 = {y1}. Since both of u1,u2 ∈A , without of loss of generality, we assume that u1 = x1y1
and u2 = x2y1. Since v1 ∩ u2 = /0 and v2 ∩ u1 = /0, we have either |v1 ∩ v2| = 1 or |v1 ∩ v2| = 0. Let v1 = x1xk and
v2 = x2x`. Note that k, ` /∈ {1,2}. Thus, without loss of generality, we let k = 3.

(a) If `= k then the paths here can be constructed similarly as in Case 1(a), such that the vertices {y1,x1,x2,x3} of
this case correspond to the vertices {y1,x2,x3,x1} of Case 1(a), respectively.

(b) If ` 6= k, then we have ` /∈ {1,2,3}. Thus, without loss of generality, we let `= 4.
Consider the following paths:
• u1 ∼ x1x2 ∼ u2

• u1 ∼ y1yi ∼ u2 for all i ∈ {2, . . . ,n}

• u1 ∼ x1x4 ∼ x4ym ∼ v2 and v1 ∼ x3ym ∼ x2x3 ∼ u2

• u1 ∼ x1xi ∼ xiy1 ∼ x2xi ∼ u2 for all i ∈ {5, . . . ,m}

• v1 ∼ x3y1 ∼ x3x4 ∼ x4y1 ∼ v2

• v1 ∼ x1yi ∼ yiyi+1 ∼ x2yi ∼ v2 for all i ∈ {2, . . . ,n}
When i = n, use the vertex yiyi+2 instead of yiyi+1 since y1yn is used already.

• v1 ∼ x3yi ∼ yiyi+2 ∼ x4yi ∼ v2 for all i ∈ {2, . . . ,n−1}
When i = n−1, use the vertex yiyi+3 instead of yiyi+2 since y1yn−1 is used already.

Thus, in both of the cases, we have constructed 3n+m−4 internally disjoint paths.

Case 6. Let u1∩u2 = /0. Since both of u1,u2 ∈A , the vertices v1 and v2 are in B. There are three subcases to consider: (a)
Both of v1,v2 are in B1, (b) One of v1,v2 is in B1 and the other one is in B2, (c) Both of v1,v2 are in B2.

First, without loss of generality, we let u1 = x1y1 and u2 = x2y2.

(a) Assume that v1,v2 ∈B1. Since v1 ∩u2 = /0 and v2 ∩u1 = /0, we have either |v1 ∩ v2| = 1 or |v1 ∩ v2| = 0. Let
v1 = x1xk and v2 = x2x`. Note that we have k, ` /∈ {1,2}. Thus, without loss of generality, we let k = 3.
(i) If `= k, then the paths here can be constructed similarly as in Case 1(b), such that the vertices {x1,x2,x3,y1,y2}

of this case correspond to the vertices {x2,x3,x1,y1,y2} of Case 1(b), respectively.

(ii) If ` 6= k, then we have ` /∈ {1,2,3}. Thus, without loss of generality, let `= 4.
Consider the following paths:
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• u1 ∼ x1x2 ∼ u2 and u1 ∼ y1y2 ∼ u2

• u1 ∼ x1x4 ∼ x4y1 ∼ v2 and v1 ∼ x3y1 ∼ x2x3 ∼ u2

• u1 ∼ x1xi ∼ xiy1 ∼ x2xi ∼ u2 for all i ∈ {5, . . . ,m}

• u1 ∼ y1y3 ∼ x2y1 ∼ v2 and v1 ∼ x1y2 ∼ y2y3 ∼ u2

• u1 ∼ y1yi ∼ x4yi ∼ v2 for all i ∈ {4, . . . ,n}

• v1 ∼ x3yi ∼ y2yi ∼ u2 for all i ∈ {4, . . . ,n}

• v1 ∼ x1yi ∼ yiyi+1 ∼ x2yi ∼ v2 for all i ∈ {3, . . . ,n}
When i = n, use the vertex yiyi+3 instead of yiyi+1 since y1yn is used already.

• v1 ∼ x3y2 ∼ x3x4 ∼ x4y2 ∼ v2

• v1 ∼ x3y3 ∼ y3y5 ∼ x4y3 ∼ v2

Thus, in both of the cases, we have constructed 3n+m−4 internally disjoint paths.

(b) Assume that v1 ∈B1 and v2 ∈B2. Since v1∩u2 = /0 and v2∩u1 = /0, we let v1 = x1x3 and v2 = y2y3. The paths
here can be constructed similarly as in Case 2, such that the vertices {x1,x2,x3,y1,y2,y3} of this case correspond
to the vertices {x1,x3,x2,y3,y1,y2} of Case 2, respectively. Thus, we can construct 3m+n−4 internally disjoint
paths.

(c) Assume that v1,v2 ∈B2. Since v1 ∩u2 = /0 and v2 ∩u1 = /0, we have either |v1 ∩ v2| = 1 or |v1 ∩ v2| = 0. Let
v1 = y1yk. Note that k /∈ {1,2}. Thus, without loss of generality, we let k = 3.

Since v2 ∈B2 by the assumption, we have v2 = y2y` such that ` /∈ {1,2}. Then we have either `= k or ` 6= k.

(i) If `= k, then the paths here can be constructed similarly as in Case 3(b), such that the vertices {x1,x2,y1,y2,y3}
of this case correspond to the vertices {x1,x2,y2,y3,y1} of Case 3(b), respectively.

(ii) If ` 6= k, then we have ` /∈ {1,2,3}. Thus, without loss of generality, we let v2 = y2y4.
Consider the following paths:

• u1 ∼ x1x2 ∼ u2 and u1 ∼ y1y2 ∼ u2

• u1 ∼ x1x3 ∼ x1y2 ∼ v2 and v1 ∼ x2y1 ∼ x2x3 ∼ u2

• u1 ∼ x1xi ∼ xiy2 ∼ v2 for all i ∈ {4, . . . ,m}

• u1 ∼ y1y4 ∼ x1y4 ∼ v2 and v1 ∼ x1y3 ∼ y2y3 ∼ u2

• v1 ∼ x2y3 ∼ y3y4 ∼ x2y4 ∼ v2 and v1 ∼ x3y1 ∼ x3x4 ∼ x3y2 ∼ v2

• u1 ∼ y1yi ∼ x1yi ∼ y2yi ∼ u2 for all i ∈ {5, . . . ,n}

• v1 ∼ xiy3 ∼ y3yi+2 ∼ x2yi+2 ∼ y4yi+2 ∼ xiy4 ∼ v2 for all i ∈ {3, . . . ,m}

• v1 ∼ xiy1 ∼ x2xi ∼ u2 for all i ∈ {4, . . . ,m}

Thus, in both cases, we have constructed 3m+n−4 internally disjoint paths.

In each of the six cases above, we presented either 3m+n−4 or 3n+m−4 internally disjoint paths between C1 and C2. Since
m≤ n−2 by the assumption, this implies that there exist at least 3m+n−4 internally disjoint paths between C1 and C2. Thus,
κ ′(G )≥ 3m+n−4.

On the other hand, consider two adjacent vertices α and β of G such that α ∈A and β ∈B1. Let S = (NG (α)∪NG (β ))−
{α,β}. It is easy to see that the set S disconnects the graph without isolating a vertex, that is, S is a super–vertex cut of G .
Hence, we get κ ′(G )≤ |S|= 3m+n−4 and this finishes the proof.

3. Conclusion

In our main result, it is proved that the super–connectivity of the double vertex graph of complete bipartite graph Km,n is equal
to 3m+n−4 where m≥ 4 and n≥ m+2. This result also implies that the double vertex graph of complete bipartite graph
F2(Km,n) is super–connected, i.e., each minimum vertex–cut of F2(Km,n) isolates a vertex. It would be interesting to determine
the super–connectivity of k–token graphs for larger graph classes. Note that the well studied Johnson graph J(n,k) is a special
case of k–token graphs, where G is the complete graph Kn. In [25], we fully determined the super–connectivity of J(n,k).
Thus, the results given in [25] might be generalized by a possible study on k–token graphs of larger graph classes.
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[12] P. Jiménez-Sepúlveda, L. M. Rivera, Independence numbers of some double vertex graphs and pair graphs, (2018), arXiv:1810.06354 [math.CO].
[13] S. S. Kumar, R. Sundareswaran, M. Sundarakannan, On Zagreb indices of double vertex graphs, TWMS J. Appl. Eng. Math., 10(4) (2020), 1096-1104.
[14] J. G. Soto, J. Leaños, L. M. Rı́os-Castro, L. M. Rivera, The packing number of the double vertex graph of the path graph, Discrete Appl. Math., 247

(2018), 327-340.
[15] F. Harary, Conditional connectivity, Networks, 13(3) (1983), 347-357.
[16] F. Boesch, R. Tindell, Circulants and their connectivities, J. Graph Theory, 8(4) (1984), 487-499.
[17] W. Yang, J. Meng, Extraconnectivity of hypercubes, Appl. Math. Lett., 22(6) (2009), 887-891.
[18] W. Yang, J. Meng, Extraconnectivity of hypercubes (II), Australas. J. Comb., 47 (2010), 189-196.
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