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Abstract
Characterizing the wind speed distribution properly is essential for the satisfactory pro-
duction of potential energy in wind farms, being the mixture models usually employed in
the description of such data. However, some mixture models commonly have the unde-
sirable property of non-identifiability. In this work, we present an alternative distribution
which is able to fit the wind speed data decently. The new model, called Normal-Weibull-
Weibull, is identifiable and its cumulative distribution function is written as a composition
of two baseline functions. We discuss structural properties of the class that generates the
proposed model, such as the linear representation of the probability density function, mo-
ments and moment generating function. We perform a Monte Carlo simulation study to
investigate the behavior of the maximum likelihood estimates of the parameters. Finally,
we present applications of the new distribution for modelling wind speed data measured
in five different cities of the Northeastern Region of Brazil.
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1. Introduction
The concern about the emission of greenhouse gases and environmental contamination

from conventional energy generation procedures like coal and oil power plants encourages
research on alternative resources. A smaller impact on the environment is an advantage
of cleaner and sustainable energy production techniques, such as solar, geothermal and
wind, over the combustion of fossil fuels.

The installed capacity of wind power in Brazil increased from 29 Megawatt in 2005 to
roughly 16,000 Megawatt (9% of the total capacity of electricity generation) in 2020 [3].
The suitable choice of the wind turbine must match with the wind behavior at the site
of installation. Perkin et al. [25] mention that inadequate turbine selection results in a
financially sub-optimal investment. Thus, setting the probability distribution appropri-
ately to model the wind speed is essential. Eltamaly [11] used the two-parameter Weibull
distribution in a new computer program to perform the calculations required to precisely
design the wind energy system and to seek the compatibility between sites and turbines.

Ilhan and Kantar [15] declare that despite the wide acceptance of Weibull distribution
[18, 26, 29, 30], it may sometimes be poor to model all wind speed data available in na-
ture. Hereupon, they propose using two possible models, namely, the skewed generalized
error distribution [5] and the skewed t distribution [13]. Some other distributions used for
wind speed and power modelling are Rayleigh [26], gamma [21], normal [29], generalized
extreme value [18] and Birnbaum-Saunders [20]. Additionally, applications of nonpara-
metric methods to wind speed modelling are also found in the literature [12,14,27].

Oftentimes, one requires more flexibility from the probability density function (pdf),
as in case of bimodality [17] or calm winds regime [9]. In general, finite mixture models
are more flexible than the typical single ones. Akdag et al. [1] compared the usual
biparametric Weibull and the two-component mixture Weibull distribution in a study
focused on wind regimes presenting nearly zero percentage of null speeds; they concluded
that the mixture is more suitable to describe such wind conditions. Carta and Ramírez
[8] used three different methods to estimate the parameters of the two-component mixture
Weibull, namely, the method of moments, maximum likelihood and least squares; they
verified that there is no significant difference among them.

The mixture density can be written as:

f(x;ψ) =
d∑

i=1
wifi(x;θi) (1.1)

where the vector ψ = (w1, . . . , wd−1,η>)> contains the unknown parameters of the mix-
ture model and the vector η contains all the distinct parameters in θ1, . . . ,θd. Since
w1, . . . , wd are positive and sum up to one, the presence of wd in ψ is unnecessary. The
general definition of identifiability states that a family of densities {f(x;ψ) : ψ ∈ Ψ} is
identifiable if:

f(x;ψ) = f(x;ψ⋆) ⇔ ψ = ψ⋆ . (1.2)

It is not seldom that (1.2) fails when two or more component densities in (1.1) belong to
the same parametric family. Such is the case of the mixture of normal densities. Consider
d = 2, f1 and f2 are normal densities, w1 = 0.5 in (1.1) and let η1 = (µ1, σ1, µ2, σ2)> and
η2 = (µ2, σ2, µ1, σ1)>, where µ1 6= µ2, σ1 6= σ2. We have ψ = (w1,η>

1 )> 6= (w1,η>
2 )> =

ψ⋆ ⇒ f(x;ψ) = f(x;ψ⋆). That is, (1.1) may be invariant under certain permutations of
the elements in the parametric vector. McLachlan and Peel [19] mention an alternative
definition of identifiability for mixture models, such that the mixture of d normal densities
would be identifiable under specific conditions. Nonetheless, they remark that it does not
overcome the complications due to the interchanging of component labels.
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Models like the mixture of normal or Weibull densities are quite flexible tools, although
the parametric estimation is only credible if the distribution under study is identifiable. We
present in this paper a class, whose submodels may be feasible alternatives to mixtures of
two components from the same parametric family. The class is derived using the method of
generating classes of probability distributions of [6]. Its cumulative distribution function
(cdf) is formulated as a composition of two baselines and under certain conditions, it
satisfies (1.2), even if both baselines belong to the same parametric family.

The cdf of the general class is given by:

F (x) = ζ(x)
n∑

j=1

∫ Uj(x)

Lj(x)
dH(t) − ν(x)

n∑
j=1

∫ Vj(x)

Mj(x)
dH(t) (1.3)

where H is a cdf, n ∈ N, ζ, ν : R 7→ R and Lj , Uj , Mj , Vj : R 7→ R ∪ {±∞} are special
functions that will be discussed in the next section.

The major contributions of this work are cited below:
• Few classes were created based on the normal distribution, like the notable one

proposed by [4]. The class presented here is based on the normal distribution,
which plays a significant role in statistical theory.

• The new class does not demand the inclusion of additional parameters. In this
way, parsimony is taken for granted, since the only parameters in the generated
submodels are brought by the baselines.

• Since the proposed class was created using the multibaseline method [6], it is
possible to generate distributions using either continuous or discrete baselines.

• Parametric estimation of convex mixture models can be tricky and oftentimes
requires a substantial computational cost, especially when the expectation maxi-
mization (EM) algorithm [24] is in action. In contrast, the proposed class can be a
feasable alternative to describe data usually modelled by two-component mixture
models. The estimation of the parameters of a submodel generated by the afore-
mentioned class can be carried out using a method of optimization simpler than
the EM algorithm, such as the limited memory Broyden-Fletcher-Goldfarb-Shanno
with boundaries (L-BFGS-B) algorithm [7].

• A theorem establishing necessary conditions to assure the identifiability of gener-
ated distributions is formulated and demonstrated (2.1).

2. The Normal-(G1, G2) class and some structural properties
The method [6] states that if H, ζ, ν : R 7→ R and Lj , Uj , Mj , Vj : R 7→ R ∪ {±∞}

for j = 1, 2, 3, . . . , n are monotonic and right continuous functions such that:
(c1) H is a cdf and ζ and ν are non-negative;
(c2) ζ(x), Uj(x) and Mj(x) are non-decreasing and ν(x), Vj(x), Lj(x) are non-increasing

∀j = 1, 2, 3, . . . , n;
(c3) If lim

x→−∞
ζ(x) 6= lim

x→−∞
ν(x), then lim

x→−∞
ζ(x) = 0; or

lim
x→−∞

Uj(x) = lim
x→−∞

Lj(x) ∀j = 1, 2, 3, . . . , n, and lim
x→−∞

ν(x) = 0; or
lim

x→−∞
Mj(x) = lim

x→−∞
Vj(x) ∀j = 1, 2, 3, . . . , n;

(c4) If lim
x→−∞

ζ(x) = lim
x→−∞

ν(x) 6= 0, then lim
x→−∞

Uj(x) = lim
x→−∞

Vj(x) and
lim

x→−∞
Mj(x) = lim

x→−∞
Lj(x) ∀j = 1, 2, 3, . . . , n;

(c5) lim
x→−∞

Lj(x) ≤ lim
x→−∞

Uj(x) and if lim
x→−∞

ν(x) 6= 0, then
lim

x→+∞
Mj(x) ≤ lim

x→+∞
Vj(x) ∀j = 1, 2, 3, . . . , n;

(c6) lim
x→+∞

Un(x) ≥ sup{x ∈ R : H(x) < 1} and lim
x→+∞

L1(x) ≤ inf{x ∈ R : H(x) > 0};
(c7) lim

x→+∞
ζ(x) = 1;
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(c8) lim
x→+∞

ν(x) = 0 or lim
x→+∞

Mj(x) = lim
x→+∞

Vj(x) ∀j = 1, 2, 3, . . . , n and n ≥ 1;
(c9) lim

x→+∞
Uj(x) = lim

x→+∞
Lj+1(x) ∀j = 1, 2, 3, . . . , n − 1 and n ≥ 2;

(c10) H is a cdf without points of discontinuity or all functions Lj(x) and Vj(x) are con-
stant at the right of the vicinity of points whose image are points of discontinuity
of H, being also continuous in that points. Moreover, H does not have any point
of discontinuity in the set{

lim
x→±∞

Lj(x), lim
x→±∞

Uj(x), lim
x→±∞

Mj(x), lim
x→±∞

Vj(x)
}

for some j = 1, 2, 3, . . . , n;

then Equation (1.3) is a cdf.
Let n = 1, H(t) = Φ(t), namely, the standard normal cdf, ζ(x) = 1, ν(x) = 0, U1(x) =

G1(x)/[1 − G1(x)] and L1(x) = log[1 − G2(x)], where G1(x) and G2(x) are cdfs. The
function in Equation (1.3) turns into:

FG1,G2(x) =
∫ G1(x)

1−G1(x)

log[1−G2(x)]
dΦ(t). (2.1)

We took U1 and −L1 from the table of differentiable and monotonically non-decreasing
functions presented in the well-known paper [2], whose method was used to create gen-
eralized distributions of the T-X family. We have intentionally picked the two simplest
functions from the cited table; alternative (and more complicated) choices for U1 and
L1 would naturally give rise to different classes. Defining M1(x) and V1(x) is not rel-
evant, since ν(x) = 0. Also, for obvious reasons, there is no need to verify (c4), (c5)
and (c9). The conditions (c1), (c7), (c8) and (c10) are straightforward. As U1(x) and
ζ(x) are non-decreasing and L1(x) is non-increasing, (c2) is true. It is easy to verify
that lim

x→−∞
U1(x) = 0 = lim

x→−∞
L1(x); and since lim

x→−∞
ν(x) = 0, (c3) is satisfied. The

condition (c6) is also true because lim
x→+∞

U1(x) = +∞ = sup{x ∈ R : Φ(x) < 1} and
lim

x→+∞
L1(x) = −∞ = inf{x ∈ R : Φ(x) > 0}.

Thereby, in agreement with the method exposed above, Equation (2.1) is a cdf. As
already mentioned, it can be viewed as a composite function of two baselines. Henceforth,
let it be denoted by Normal-(G1, G2) class of probability distributions.

Since ϕ(t) = 1√
2π

e−t2/2, and Φ(x) =
∫ x

−∞ ϕ(t)dt, one can write Equation (2.1) as follows:

FG1,G2(x) = Φ
(

G1(x)
1 − G1(x)

)
− Φ (log[1 − G2(x)]) . (2.2)

In case of continuous G1(x) and G2(x), one can take the derivative of Equation (2.2) with
respect to x to obtain the following pdf:

fG1,G2(x) = ϕ

(
G1(x)

1 − G1(x)

)
g1(x)

[1 − G1(x)]2
+ ϕ (log[1 − G2(x)]) g2(x)

1 − G2(x)
, (2.3)

where gi(x) is the pdf of the random variable whose cdf is Gi(x), for i ∈ {1, 2}.
At this point, we need to define properly the support of the distributions that emerge

from the new class. Submodels of classes that may be written as a composite function of
one single baseline usually have the same support of the baseline. However, characterizing
the support of a submodel from (2.1) is not so straightforward, especially if the two
baselines have different supports. As previously mentioned, given that U1(G1(x), G2(x)) =
G1(x)/[1 − G1(x)], L1(G1(x), G2(x)) = log[1 − G2(x)] and SH = R, namely, the support
of H(t) is R, we have that:

(a) SH is a convex set;
(b) U1(1, 1) = U1(G1(+∞), G2(+∞)) = +∞ = sup{x ∈ R : Φ(x) < 1}, L1(1, 1) =

L1(G1(+∞), G2(+∞)) = −∞ = inf{x ∈ R : Φ(x) > 0}, U1(G1(x), G2(x)) and
L1(G1(x), G2(x)) are monotonic functions.
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According to the Theorem (T4) in [6], (a) and (b) entail that the support of a distribution
from (2.1) is the union of the supports of G1 and G2.

In the following lines, we demonstrate that, under specific conditions, the distributions
generated by (2.2) enjoy the attractive property of identifiability. It is important because
it assures the uniqueness of the estimates of the parameters.

Theorem 2.1. Let G1(x|θ1) and G2(x|θ2) be the baseline cdfs of the normal-(G1, G2)
cdf FG1,G2(x|θ) (2.2), θ1 = (θ1, . . . , θr) ∈ Θ1, θ2 = (θr+1, . . . , θr+m) ∈ Θ2 and θ =
(θ1, . . . , θr, θr+1, . . . , θr+m) ∈ Θ, where Θ1, Θ2 and Θ are the parametric spaces associ-
ated with G1, G2 and FG1,G2 respectively. If G1 and G2 are identifiable, then FG1,G2 is
identifiable.

Proof. Assume that Φ
(

G1(x|θ1)
1−G1(x|θ1)

)
= Φ

(
G1(x|θ⋆

1)
1−G1(x|θ⋆

1)

)
,

where {θ1,θ⋆
1} ⊂ Θ1 and θ1 6= θ⋆

1. Since Φ is injective, G1(x|θ1)
1−G1(x|θ1) = G1(x|θ⋆

1)
1−G1(x|θ⋆

1) ⇒
G1(x|θ1) = G1(x|θ⋆

1); it is a contradiction, because it denies the identifiability of G1.
Therefore, if θ1 6= θ⋆

1 then Φ
(

G1(x|θ1)
1−G1(x|θ1)

)
6= Φ

(
G1(x|θ⋆

1)
1−G1(x|θ⋆

1)

)
. Analogously, it is easy to ver-

ify that for {θ2,θ⋆
2} ⊂ Θ2, if θ2 6= θ⋆

2 then Φ (log[1 − G2(x|θ2)]) 6= Φ (log[1 − G2(x|θ⋆
2)]).

Now consider {θ,θ⋆} ⊂ Θ such that θ 6= θ⋆ and assume that FG1,G2(x|θ) = FG1,G2(x|θ⋆).
If θ1 = θ⋆

1 and θ2 6= θ⋆
2, then we can infer from (2.2) that G2(x|θ2) = G2(x|θ⋆

2), namely,
an absurd. Likewise, if θ1 6= θ⋆

1 and θ2 = θ⋆
2, we get to similar contradiction. If θ1 6= θ⋆

1
and θ2 6= θ⋆

2, then the assumption fails since FG1,G2(x|θ) 6= FG1,G2(x|θ⋆) for almost all
values of x within the support. Therefore, FG1,G2 is identifiable. �

2.1. Series representation
The normal cdf can be written in terms of the error function erf as follows:

Φ(z) = 1
2

[
1 + erf

(
z√
2

)]
, (2.4)

where erf(z) = 2√
π

∫ z
0 e−t2dt. Since erf(z/

√
2) may be linearly represented by:

erf
(

z√
2

)
= 2√

π

∞∑
n=0

(−1)n · (z/
√

2)2n+1

n!(2n + 1)

=
√

2
π

·
∞∑

n=0

(
−1

2

)n z2n+1

n!(2n + 1)
, (2.5)

replacing Equation (2.5) in Equation (2.4), we get to:

Φ(z) = 1
2

+ 1√
2π

∞∑
n=0

(
−1

2

)n z2n+1

n!(2n + 1)
. (2.6)

Now using the result of Equation (2.6) in Equation (2.2), we have:

FG1,G2(x) =
∞∑

n=0

(−1/2)n

n!(2n + 1)
√

2π


(

G1(x)
1 − G1(x)

)2n+1

︸ ︷︷ ︸
A1

− (log[1 − G2(x)])2n+1︸ ︷︷ ︸
A2

 . (2.7)

A well-known result on power series raised to a positive integer N states that:

( ∞∑
k=0

akyk

)N

=
∞∑

k=0
ckyk , (2.8)
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where c0 = aN
0 , ck = 1

ka0

∑k
s=1(sN −k+s)asck−s for k ≥ 1 and N ∈ N. Setting N = 2n+1,

y = G1(x) and ak = 1 for all k ≥ 0, we can use the result in Equation (2.8) to rewrite A1
in Equation (2.7):

A1 = G1(x)2n+1
( 1

1 − G1(x)

)2n+1
= G1(x)2n+1

( ∞∑
k=0

G1(x)k

)2n+1

= G1(x)2n+1
∞∑

k=0
c1,k · G1(x)k =

∞∑
k=0

c1,k · G1(x)k+2n+1 , (2.9)

such that c1,0 = 1 and c1,k = 1
k

∑k
s=1(2s[n + 1] − k)c1,k−s for k ≥ 1. Equation (2.8) also

allows us to rewrite A2 in Equation 2.7 as follows:

A2 =
(

−
∞∑

m=1

G2(x)m

m

)2n+1

= −
( ∞∑

k=0

G2(x)k+1

k + 1

)2n+1

= −G2(x)2n+1
( ∞∑

k=0

G2(x)k

k + 1

)2n+1

= −G2(x)2n+1
∞∑

k=0
c2,k · G2(x)k

= −
∞∑

k=0
c2,k · G2(x)k+2n+1 (2.10)

where c2,0 = 1 and c2,k = 1
k

∑k
s=1

2s(n+1)−k
s+1 c2,k−s for k ≥ 1. Now inserting (2.9) and

(2.10) in (2.7), we have:

FG1,G2(x) =
2∑

i=1

∞∑
n,k=0

ci,n,k · Gi(x)k+2n+1 (2.11)

where c1,n,k = (−1/2)n

n!(2n+1)
√

2π
c1,k and c2,n,k = (−1/2)n

n!(2n+1)
√

2π
c2,k. Using Fubini’s theorem on

differentiation we can write the derivative of (2.11) as follows:

fG1,G2(x) =
2∑

i=1

∞∑
n,k=0

ci,n,k · gi,k+2n+1(x) (2.12)

where gi,k+2n+1(x) = (k+2n+1)gi(x)Gi(x)k+2n is the pdf of a random variable from the
exponentiated family [22]. Thus, we can say that (2.12) is the Normal-(G1, G2) pdf (2.3)
expressed as a linear combination of pdfs of exponentiated distributions.

2.2. Raw moments, incomplete moments and moment generating func-
tion

Given that X is a random variable following a distribution from the normal-(G1, G2)
class, we can use (2.12) to write the r-th raw moment of X as follows:

E(Xr) =
2∑

i=1

∞∑
n,k=0

ci,n,k

∫ ∞

−∞
xrgi,k+2n+1(x)dx (2.13)

=
2∑

i=1

∞∑
n,k=0

ci,n,kE(Y r
i,k+2n+1) (2.14)
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where Yi,k+2n+1 follows the exponentiated distribution whose pdf is gi,k+2n+1.

Let Qi be the quantile function of the baseline Gi. Replacing x in (2.13) by Qi

(
v1/k+2n+1

)
we can also represent (2.14) as:

E(Xr) =
2∑

i=1

∞∑
n,k=0

ci,n,k

∫ 1

0

[
Qi

(
v1/k+2n+1

)]r
dv .

Similarly, one can write the r-th incomplete moment of X as follows:

mr(z) =
∫ z

−∞
xrfG1,G2(x)dx =

2∑
i=1

∞∑
n,k=0

ci,n,km⋆
r(z)

=
2∑

i=1

∞∑
n,k=0

ci,n,k

∫ [Gi(z)]k+2n+1

0

[
Qi

(
v1/k+2n+1

)]r
dv

where m⋆
r(z) is the r-th incomplete moment of Yi,k+2n+1 mentioned above.

The moment generating function (mgf) of X is denoted by MX(t) = E
(
etX

)
. It can

be determined from (2.12) as:

MX(t) =
2∑

i=1

∞∑
n,k=0

ci,n,k

∫ ∞

−∞
etxgi,k+2n+1(x)dx

=
2∑

i=1

∞∑
n,k=0

ci,n,kMYk+2n+1(t) ,

where MYk+2n+1(t) is the mgf of Yi,k+2n+1.

2.3. Estimation and inference
Let X = (x1, . . . , xn) be a complete random sample of size n from the random vari-

able X ∼ normal-(G1, G2). Given that θ1 = (θ1, . . . , θr)> is the r × 1 parametric
vector associated with G1(x) = G1(x|θ1), θ2 = (θr+1, . . . , θr+m)> is the m × 1 para-
metric vector associated with G2(x) = G2(x|θ2) and fG1,G2(x) = fG1,G2(x|θ) where
θ = (θ1, . . . , θr, θr+1, . . . , θr+m)>, we can write the log-likelihood function of X as fol-
lows:

ℓ(θ|X) =
n∑

i=1
log

{
ϕ

(
G1(xi)

1 − G1(xi)

)
g1(xi)

[1 − G1(xi)]2
+ ϕ (log[1 − G2(xi)])

g2(xi)
1 − G2(xi)

}
.

The solution of the system of equations U(θ|X) = 0r+m provides the maximum likelihood
estimates (MLEs) for θ, where 0r+m is an (r + m) × 1 vector of zeros and U(θ|X) =
∇θℓ(θ|X) is the score vector. The elements of U(θ|X) = (uj)1≤j≤r+m are:

uj =
n∑

i=1

1
fG1,G2(xi)

ϕ

(
G1(xi)

1 − G1(xi)

) 1
(1 − G1(xi))2

[
∂

∂θj
g1(xi)

+ g1(xi)
1 − G1(xi)

(
2 − G1(xi)

[1 − G1(xi)]2
)

∂

∂θj
G1(xi)

]
, for 1 ≤ j ≤ r
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and

uj =
n∑

i=1

1
fG1,G2(xi)

ϕ (log[1 − G2(xi)])
1 − G2(xi)

[
∂

∂θj
g2(xi)

+ (1 + log[1 − G2(xi)])
g2(xi)

1 − G2(xi)
∂

∂θj
G2(xi)

]
, for r < j ≤ r + m .

For testing hypotheses and constructing confidence intervals for θ, the information ma-
trix J(θ|X) is needed. The expectation of J(θ|X), denoted by Iθ, is the expected Fisher
information matrix. Given that certain conditions of regularity are fulfilled, the quantity√

n(θ̂ − θ) follows approximately a multivariate normal distribution Nr+m(0r+m, I−1
θ ).

The appendix A brings the expression for J(θ|X).

3. The proposed model

The Weibull cdf is given by GW (x|k, λ) = 1 − e−(x/λ)k , for x ≥ 0, k > 0 and λ > 0.
Replacing G1 and G2 in (2.2) by GW (x|k1, λ1) and GW (x|k2, λ2) respectively, we get to
the cdf of the Normal-Weibull-Weibull distribution (NWW, for short):

FNW W (x|θ) = Φ
(
e(x/λ1)k1 − 1

)
− Φ

(
−
(

x

λ2

)k2
)

,

where θ = (k1, λ1, k2, λ2)>. The corresponding pdf can be obtained using (2.3):

fNW W (x|θ) = ϕ
(
e(x/λ1)k1 − 1

) k1
λ1

(
x

λ1

)k1−1
e(x/λ1)k1 + ϕ

(
−
(

x

λ2

)k2
)

k2
λ2

(
x

λ2

)k2−1
.

The associated hazard rate function (hrf) becomes

hNW W (x|θ) =
ϕ
(
e(x/λ1)k1 − 1

)
k1
λ1

(
x
λ1

)k1−1
e(x/λ1)k1 + ϕ

(
−
(

x
λ2

)k2
)

k2
λ2

(
x
λ2

)k2−1

1 −
{

Φ
(
e(x/λ1)k1 − 1

)
− Φ

(
−
(

x
λ2

)k2
)} .

Figure 1 displays some plots of the NWW pdf for different values of the parameters. The
distribution is able to fit unimodal right-skewed data (top-left chart) and also left-skewed
data (top-right chart). Notice the different shapes of the bimodal curves in the remaining
charts. For instance, in the bottom-left chart, the vertical distance between the modes
and the local minimum in the purple curve is much greater than in the green one. We
may also notice that λ1 and λ2 somehow behave like shape parameters, as in the original
Weibull baselines, controlling the shape of the “bells” (compare purple and gray curves to
see the effect of varying λ1; same for blue and red curves concerning λ2).
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Figure 1. Plots of the NWW pdf

The hrf (Fig.2) can accommodate increasing, decreasing, S-shaped, upside-down bath-
tub, bathtub, and other shapes.

Figure 2. The hrf of the NWW distribution

Figures 3 and 4 show the behavior of skewness and kurtosis of the NWW distribution
for some pairs of parameters.
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Figure 3. The skewness of the NWW distribution

Figure 4. The kurtosis of the NWW distribution

4. Simulation
Performing Monte Carlo simulation studies is considerably relevant whenever one wants

to test and confirm assumptions on new statistical methods. In this work, we want to
investigate the behavior of the estimates of the parameters of the NWW distribution
under the method of maximum likelihood. For this purpose, we used the software R
version 3.4.4 [28].

Initially, we employed the Von Neumann’s acceptance-rejection method [23] to generate
pseudo-random samples from the NWW distribution; this simple method requires only the
corresponding pdf y = f(x), a minorant and a majorant for x and a majorant for y. The
procedure was replicated 10,000 times and at each replication, six different sample sizes
were considered, namely, n = 15, 30, 50, 100, 200 and 500. We examined scenarios with
four different values of the parametric vector θ = (k1, λ1, k2, λ2)>, which are presented
from the second to fifth columns of Tables 1, 2 and 3.

For each scenario, we calculated the bias and the mean squared error (MSE) as follows:

Biasi = 1
10000

10000∑
j=1

(
θ̂ij − θi

)
, MSEi = 1

10000

10000∑
j=1

(
θ̂ij − θi

)2

where θi is the i-th element of θ and θ̂ij is the estimate for θi at the j-th replication.
The global maximum of the log-likelihood function was found by using the L-BFGS-B

algorithm. It is based on the gradient projection and uses a limited memory BFGS matrix
to approximate the Hessian of the objective function [7].

Besides presenting small values, the desired behavior for both bias and MSE is to
decrease inasmuch as the sample size increases. According to Tables 2 and 3, the values of
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Table 1. Parameter estimates under the maximum likelihood method for the
NWW model

Actual value Estimates

n k1 λ1 k2 λ2 k̂1 λ̂1 k̂2 λ̂2

15 1.3 2 1.5 1.8 2.32486 1.76022 2.53552 1.76879
3 1.5 2.8 2.5 3.04782 1.83043 3.86394 2.30280
2 2.2 6.5 4.1 2.36468 2.30808 8.07782 3.92074

1.4 1.6 4.8 5.1 1.48950 1.58997 6.01459 4.96175
30 1.3 2 1.5 1.8 1.92763 1.86712 1.92300 1.72723

3 1.5 2.8 2.5 2.74367 1.73779 3.18720 2.38999
2 2.2 6.5 4.1 2.17105 2.29667 7.36049 4.01863

1.4 1.6 4.8 5.1 1.46719 1.59943 5.40679 5.06024
50 1.3 2 1.5 1.8 1.73308 1.93138 1.72891 1.70956

3 1.5 2.8 2.5 2.77118 1.66219 3.00589 2.42949
2 2.2 6.5 4.1 2.09837 2.26229 7.01746 4.05036

1.4 1.6 4.8 5.1 1.44390 1.59971 5.14961 5.08213
100 1.3 2 1.5 1.8 1.55192 1.97899 1.60034 1.72567

3 1.5 2.8 2.5 2.86621 1.55322 2.90938 2.48081
2 2.2 6.5 4.1 2.04535 2.23250 6.76158 4.07480

1.4 1.6 4.8 5.1 1.43147 1.59866 4.98942 5.09417
200 1.3 2 1.5 1.8 1.43420 1.98859 1.55542 1.75702

3 1.5 2.8 2.5 2.93080 1.51561 2.85893 2.49575
2 2.2 6.5 4.1 2.01272 2.21137 6.66010 4.09431

1.4 1.6 4.8 5.1 1.42094 1.59690 4.88342 5.09672
500 1.3 2 1.5 1.8 1.36029 1.98180 1.52928 1.78791

3 1.5 2.8 2.5 2.97256 1.50148 2.80837 2.49915
2 2.2 6.5 4.1 1.99838 2.20363 6.57981 4.10146

1.4 1.6 4.8 5.1 1.40897 1.59913 4.83454 5.09864

bias and MSE for all the estimated parameters are small and the greater the sample size,
the smaller the values. Thus, the results presented in this section indicate that the MLEs
of the parameters of the NWW distribution are well-behaved when calculated using the
L-BFGS-B algorithm.

5. Application
The hourly wind speed data measured at 10 m above ground level were collected by

the National Institute of Meteorology of Brazil (INMET). These data are not publicly
available, but they can be requested from the INMET [16]. The anemometers used for
measuring the wind speed (in m/s) are installed in stations located in five cities spread
in four states of the Brazilian Northeastern Region, as illustrated in Figure 5 (blue dots
indicate the geographical position of the stations).
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Table 2. Bias of the estimates under the maximum likelihood method for the
NWW model

Actual value Bias

n k1 λ1 k2 λ2 k̂1 λ̂1 k̂2 λ̂2

15 1.3 2 1.5 1.8 1.02486 -0.23978 1.03552 -0.03121
3 1.5 2.8 2.5 0.04782 0.33043 1.06394 -0.19720
2 2.2 6.5 4.1 0.36468 0.10808 1.57782 -0.17926

1.4 1.6 4.8 5.1 0.08950 -0.01003 1.21459 -0.13825
30 1.3 2 1.5 1.8 0.62763 -0.13288 0.42300 -0.07277

3 1.5 2.8 2.5 -0.25633 0.23779 0.38720 -0.11001
2 2.2 6.5 4.1 0.17105 0.09667 0.86049 -0.08137

1.4 1.6 4.8 5.1 0.06719 -0.00057 0.60679 -0.03976
50 1.3 2 1.5 1.8 0.43308 -0.06862 0.22891 -0.09044

3 1.5 2.8 2.5 -0.22882 0.16219 0.20589 -0.07051
2 2.2 6.5 4.1 0.09837 0.06229 0.51746 -0.04964

1.4 1.6 4.8 5.1 0.04390 -0.00029 0.34961 -0.01787
100 1.3 2 1.5 1.8 0.25192 -0.02101 0.10034 -0.07433

3 1.5 2.8 2.5 -0.13379 0.05322 0.10938 -0.01919
2 2.2 6.5 4.1 0.04535 0.03250 0.26158 -0.02520

1.4 1.6 4.8 5.1 0.03147 -0.00134 0.18942 -0.00583
200 1.3 2 1.5 1.8 0.13420 -0.01141 0.05542 -0.04298

3 1.5 2.8 2.5 -0.06920 0.01561 0.05893 -0.00425
2 2.2 6.5 4.1 0.01272 0.01137 0.16010 -0.00569

1.4 1.6 4.8 5.1 0.02094 -0.00310 0.08342 -0.00328
500 1.3 2 1.5 1.8 0.06029 -0.01820 0.02928 -0.01209

3 1.5 2.8 2.5 -0.02744 0.00148 0.00837 -0.00085
2 2.2 6.5 4.1 -0.00162 0.00363 0.07981 0.00146

1.4 1.6 4.8 5.1 0.00897 -0.00087 0.03454 -0.00136

Figure 5. Northeastern Region of Brazil and geographical position of the stations



820 F.V.J. Silveira et al.

Table 3. MSE of the estimates under the maximum likelihood method for the
NWW model

Actual value MSE

n k1 λ1 k2 λ2 k̂1 λ̂1 k̂2 λ̂2

15 1.3 2 1.5 1.8 4.02977 0.27152 5.66534 0.23375
3 1.5 2.8 2.5 2.88454 0.34407 11.84968 0.2658
2 2.2 6.5 4.1 2.06556 0.49107 23.48069 0.26423

1.4 1.6 4.8 5.1 0.15695 0.17709 10.54719 0.23258
30 1.3 2 1.5 1.8 1.2032 0.18892 0.91974 0.16899

3 1.5 2.8 2.5 0.55271 0.24052 2.68382 0.14055
2 2.2 6.5 4.1 0.68471 0.26764 8.42731 0.14106

1.4 1.6 4.8 5.1 0.10125 0.06775 2.92035 0.06796
50 1.3 2 1.5 1.8 0.56116 0.1402 0.40547 0.12994

3 1.5 2.8 2.5 0.37297 0.17005 0.90875 0.09217
2 2.2 6.5 4.1 0.36651 0.15461 3.74351 0.09739

1.4 1.6 4.8 5.1 0.06836 0.02677 1.23391 0.03306
100 1.3 2 1.5 1.8 0.21934 0.09554 0.17321 0.08241

3 1.5 2.8 2.5 0.20545 0.05313 0.29138 0.03336
2 2.2 6.5 4.1 0.17503 0.07261 1.43608 0.05735

1.4 1.6 4.8 5.1 0.03662 0.00872 0.49183 0.01518
200 1.3 2 1.5 1.8 0.09015 0.05808 0.09846 0.0448

3 1.5 2.8 2.5 0.10626 0.01388 0.12841 0.01236
2 2.2 6.5 4.1 0.06473 0.02238 0.58192 0.01879

1.4 1.6 4.8 5.1 0.01867 0.00388 0.21766 0.0074
500 1.3 2 1.5 1.8 0.03165 0.02462 0.04952 0.01954

3 1.5 2.8 2.5 0.04366 0.00053 0.04958 0.00315
2 2.2 6.5 4.1 0.01686 0.0035 0.19132 0.00263

1.4 1.6 4.8 5.1 0.00737 0.00146 0.08212 0.00295

Esperantina (denoted by Station 1) is located in the north part of the State of Piauí.
Jaguaruana (denoted by Station 2) is located in the mesoregion of Jaguaribe in the State
of Ceará. Cabaceiras (denoted by Station 3) and Monteiro (denoted by Station 4) are
located in the mesoregion of Borborema, State of Paraíba. Arapiraca (denoted by Station
5) is located in the mesoregion of Agreste, State of Alagoas. Table 4 brings further details
about the stations and the years of wind data available.

Table 4. Details of the regions where the wind speed was measured

Station Latitude Longitude Altitude (m) Period
1 Esperantina 3◦54′07′′S 42◦14′02′′W 59 2007–2018
2 Jaguaruana 4◦50′02′′S 37◦46′51′′W 20 2007–2018
3 Cabaceiras 7◦29′20′′S 36◦17′13′′W 382 2008–2018
4 Monteiro 7◦53′20′′S 37◦07′12′′W 599 2007–2018
5 Arapiraca 9◦45′07′′S 36◦39′39′′W 264 2008–2018

As we can see in Table 5, Station 4 has the highest value of the mean among the stations
in the study, whereas the highest value of variance belongs to Station 2.
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Table 5. Descriptive statistics

St. n mean median min max variance skewness kurtosis
1 72637 1.56472 1.5 0.1 8.8 0.96082 0.74469 0.61585
2 71797 3.09401 3 0.1 9.4 2.94352 0.25522 −0.59481
3 83953 3.21937 3.3 0.1 9.9 2.49808 −0.08484 −0.70967
4 76738 3.28302 3.3 0.1 9.6 2.60513 0.16094 −0.50692
5 72675 2.87482 2.8 0.1 9.3 2.80844 0.17049 −0.92422

Except for Station 3, whose skewness is negative, the remaining stations have different
degrees of positive skewness. On the other hand, Station 1 has the only positive value of
kurtosis and Station 5 has the lowest one. Thus, the descriptive statistics indicate that
the statistical characteristics of the wind speed differ from station to station.

We calculated the estimates of the parameters under the method of maximum likelihood
for five distributions. Besides fitting the proposed model (3), we fitted the Normal-Normal
mixture model (NN), the Weibull-Weibull mixture model (WW), the Normal distribution
(N) and the Weibull distribution (W) to each one of the five datasets. Table 6 presents
the MLEs along with the respective standard errors in parenthesis. The global maximum
of the log-likelihood function was found using the L-BFGS-B algorithm [7] for the distri-
bution NWW, whereas the optimization concerning the mixture models NN and WW was
performed along the lines of the EM-algorithm presented in [24]. The standard errors are
small in all scenarios, suggesting that the estimates in Table 6 are fairly accurate for the
five distributions.

Four information criteria were used to perform comparisons among the fitted models.
Generally, such criteria indicate that the best model is the one presenting the lowest
value, since they are related to the amount of information lost by a given model. We
used the well-known Akaike information criterion (AIC), consistent Akaike information
criterion (CAIC), Bayesian information criterion (BIC) and Hannan-Quinn information
criterion (HQIC). The statistics of Anderson-Darling (A∗), Cramér-von Mises (W∗) [10],
and Kolmogrov-Smirnov (D) were also used to compare the fitted models. The largest
p-value among the calculated D statistics is 2.2e-16. Since these statistics are measures of
the difference between the empirical distribution function and the real underlying cdf, it
is reasonable to say that the smaller their values, the better the fit.

Table 7 brings the aforementioned goodness-of-fit measures (except for the D statistic)
for the five cited models fitted to each station. According to Table 7, the distributions
NWW and WW present the better fits among the competing models for all stations. The
four information criteria indicate that NWW presents a higher performance over WW
concerning stations 1, 2, 4 and 5. Regarding station 3, the difference between the values
of AIC of NWW and WW is not considerable, although the AIC for NWW is slightly
smaller in such case; the same behavior states for CAIC, BIC and HQIC. Both goodness-
of-fit statistics A∗ and W∗ (see last ten rows of Table 7) agree with the information criteria
in pointing NWW and WW as the two better fits. However, they suggest that NWW
outperforms WW in fitting the datasets for all the five stations. To get more insight into
these results, plots of the fitted densities overlapping the histograms of the wind speed
data for stations 1 to 5 and the corresponding cdfs are presented in Figure 6.

According to Table 8, despite the performance of the W distribution for the D statistic,
the NWW model stands out as competitive for stations 2, 3 and 5.
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Table 6. Estimates and standard errors in parenthesis

Distr. Par. St1 St2 St3 St4 St5
NWW k1 1.09455 0.97219 0.93287 1.16262 0.92095

(0.0066) (0.0047) (0.0035) (0.0051) (0.0041)
λ1 2.44439 4.14273 5.11736 4.61159 3.26931

(0.0116) (0.0300) (0.0151) (0.0358) (0.0157)
k2 1.24356 2.21499 2.74024 2.17717 2.87659

(0.0090) (0.0181) (0.0141) (0.0232) (0.0135)
λ2 2.23302 4.82613 4.47508 4.74835 4.76046

(0.0104) (0.0129) (0.0083) (0.0187) (0.0059)
NN µ1 0.99225 1.25346 1.05246 1.52464 1.09819

(0.0088) (0.0112) (0.0135) (0.0152) (0.0091)
σ1 0.57673 0.73618 0.64260 0.80711 0.66916

(0.0051) (0.0067) (0.0077) (0.0082) (0.0056)
µ2 2.15056 3.69950 3.71423 3.78985 3.69032

(0.0121) (0.0110) (0.0094) (0.0127) (0.0118)
σ2 0.96181 1.50081 1.28725 1.42131 1.33344

(0.0038) (0.0051) (0.0054) (0.0056) (0.0063)
w 0.50577 0.24754 0.18591 0.22375 0.31460

(0.0083) (0.0041) (0.0036) (0.0054) (0.0041)
WW k1 2.46232 2.61226 3.48661 2.71890 3.63802

(0.0451) (0.0162) (0.0183) (0.0146) (0.0284)
λ1 2.10941 4.09404 4.26754 4.08741 4.41073

(0.0089) (0.0126) (0.0070) (0.0103) (0.0110)
k2 1.27757 1.20035 1.30110 1.26447 1.36100

(0.0106) (0.0088) (0.0069) (0.0118) (0.0056)
λ2 1.42208 1.54955 1.81537 1.65794 1.86015

(0.0186) (0.0392) (0.0242) (0.0526) (0.0183)
w 0.44618 0.75154 0.71389 0.83225 0.51531

(0.0183) (0.0075) (0.0046) (0.0069) (0.0056)
N µ 1.56471 3.09401 3.21937 3.28301 2.87482

(0.0036) (0.0064) (0.0054) (0.0058) (0.0062)
σ 0.98021 1.71565 1.58052 1.61403 1.67582

(0.0025) (0.0045) (0.0038) (0.0041) (0.0043)
W k 1.58959 1.77193 2.03559 2.07474 1.65091

(0.0047) (0.0054) (0.0059) (0.0061) (0.0051)
λ 1.73825 3.44821 3.59712 3.68213 3.18827

(0.0042) (0.0075) (0.0063) (0.0066) (0.0074)

It is worth pointing out that mixture models are commonly used to fit non-unimodal
datasets, such as those represented by the histograms of stations 2, 3 and 5. Nonetheless,
the results attest that the NWW accommodates such data better than the two mixture
models presented in this study. Furthermore, NWW has one parameter less than NN or
WW do.

Finally, since the NWW distribution outperforms the competing models in fitting the
wind speed data of the Northeastern Region of Brazil, according to different information
criteria and formal goodness-of-fit statistics, we have good reasons to recommend its use
to model similar data in future works. We also encourage practitioners of statistics to
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Table 7. Goodness-of-fit measures

Crit. Distr. St1 St2 St3 St4 St5
AIC NWW 189324.5 272976.1 306366.6 286607.1 268213.1

NN 197221.2 277168.5 310138.0 289011.9 273287.3
WW 189379.2 273075.2 306370.5 286647.3 268244.1
N 203235.1 281266.5 315112.0 291251.2 281292.0
W 190666.7 278737.7 319347.3 291232.9 277572.1

CAIC NWW 189365.2 273016.8 306408.0 286648.1 268253.8
NN 197272.2 277219.4 310189.7 289063.1 273338.3
WW 189430.2 273126.1 306422.2 286698.5 268295.1
N 203255.4 281286.9 315132.7 291271.7 281312.4
W 190687.1 278758.0 319368.0 291253.4 277592.5

BIC NWW 189361.2 273012.8 306404.0 286644.1 268249.8
NN 197267.2 277214.4 310184.7 289058.1 273333.3
WW 189425.2 273121.1 306417.2 286693.5 268290.1
N 203253.4 281284.9 315130.7 291269.7 281310.4
W 190685.1 278756.0 319366.0 291251.4 277590.5

HQIC NWW 189335.8 272987.4 306378.0 286618.5 268224.4
NN 197235.3 277182.7 310152.3 289026.1 273301.4
WW 189393.4 273089.3 306384.8 286661.5 268258.3
N 203240.7 281272.2 315117.7 291256.9 281297.7
W 190672.4 278743.3 319353.0 291238.6 277577.7

A* NWW 71.78 22.43 22.60 19.31 30.98
NN 181.13 51.72 54.33 27.79 78.72
WW 81.27 31.05 32.44 24.62 50.25
N 531.70 230.18 303.82 118.73 494.43
W 257.57 471.01 1117.26 337.07 784.70

W* NWW 7.73 2.33 2.94 2.58 3.36
NN 19.49 5.17 6.60 3.21 7.61
WW 9.35 3.59 4.22 3.89 4.82
N 72.08 31.04 45.14 16.72 72.83
W 33.87 62.25 164.54 46.18 108.58

Table 8. Kolmogorov-Smirnov statistics

Crit. Distr. St1 St2 St3 St4 St5
D NWW 0.7028925 0.8857891 0.9014568 0.9234669 0.8484073

NN 0.7027823 0.8857891 0.9014687 0.9234669 0.8484348
WW 0.7029200 0.8857891 0.9014925 0.9234669 0.8484348
N 0.7029200 0.8857891 0.9014925 0.9234669 0.8484348
W 0.6988862 0.8787972 0.8960609 0.9182413 0.8389405

investigate the modelling benefits of the NWW (and other submodels from the Normal-
(G1,G2) class) with respect to data describing different phenomena usually modelled by
mixtures.

6. Conclusions
An alternative distribution for modelling wind speed data is proposed and some mathe-

matical properties of the class that generates it are discussed, like the series representation
of the pdf, the moments and the moment generating function. The general cdf of the
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Figure 6. Histograms and fitted densities

Normal-(G1, G2) class is written as a composition of two baselines and its submodels are
identifiable as long as both baseline cdfs are. Such is the case of the NWW distribution.

The novel model has four parameters and high flexibility. It is able to fit right-skewed
and left-skewed data and its pdf presents unimodal and bimodal shapes.

The Monte Carlo simulation studies indicate that the MLEs of the NWW parameters
behave appropriately when the optimization is performed via the L-BFGS-B algorithm.

The modelling gains of the NWW distribution are upheld by the satisfactory results
concerning the application to the wind speed data collected in the Northeastern Region
of Brazil. The considered information criteria and the formal goodness-of-fit statistics of
Anderson-Darling and Cramér-von Mises suggest that the proposed model outperforms
other competing distributions that are commonly employed in wind speed modelling, es-
pecially the highly competitive mixture model of two Weibull components.

We hope that this work may encourage the investigation of the modelling benefits of
the NWW (and other identifiable submodels from the Normal-(G1, G2) class) with respect
to data describing other natural phenomena usually modelled by mixtures.
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Appendix A.
The information matrix cited in section 2.3 is given by J(θ|X) = −∇θ∇θ

>ℓ(θ|X) =
−(ujk)1≤j≤r+m,1≤k≤r+m where:

ujk =
n∑

i=1

1
fG1,G2(xi)

ϕ

(
G1(xi)

1 − G1(xi)

) 1
(1 − G1(xi))2

{( 2
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G1(xi)

∂

∂θj
g1(xi) + ∂

∂θj
G1(xi)

∂

∂θk
g1(xi)

)
+ ∂2

∂θj∂θk
g1(xi) − g1(xi)

(1 − G1(xi))2

×
[

∂

∂θj
G1(xi)

∂

∂θk
G1(xi)

(
3G1

2(xi)
(1 − G1(xi))2 + 4G1(xi)

1 − G1(xi)
+ 1

)
+ G1(xi)

1 − G1(xi)

× ∂2

∂θj∂θk
G1(xi)

]
+ g1(xi)G1(xi)

(1 − G1(xi))5

(
∂

∂θj
G1(xi) + ∂

∂θk
G1(xi)

)

+ 2g1(xi)
(1 − G1(xi))2

(
3 − 2G1(xi)

(1 − G1(xi))2

)
∂

∂θk
G1(xi)

∂

∂θj
G1(xi) + ∂2

∂θj∂θk
G1(xi)

× 2g1(xi)
1 − G1(xi)

}
−

n∑
i=1

1
f2

G1,G2
(xi)

ϕ2
(

G1(xi)
1 − G1(xi)

) 1
(1 − G1(xi))4

×
[

∂

∂θj
g1(xi) +

( 2g1(xi)
1 − G1(xi)

− g1(xi)G1(xi)
(1 − G1(xi))3

)
∂

∂θj
G1(xi)

]

×
[

∂

∂θk
g1(xi) +

( 2g1(xi)
1 − G1(xi)

− g1(xi)G1(xi)
(1 − G1(xi))3

)
∂

∂θk
G1(xi)

]
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for r < j ≤ r + m, r < k ≤ r + m.


