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Özet— Makine öğrenmesi ve özellikle derin öğrenme modellerinin gerçek-zamanlı saha uygulamalarında operasyona 

alınması için üç ana kriterin aynı anda optimizasyonu gerekmektedir. Bunlar modelin tahmin doğruluğu, eğitim-test 

süreleri ile dosya boyutu olup ilgili çalışmalarda sadece iki kriter (örnek: doğruluk-süre) beraber göz önüne alınmıştır. 

Ancak, modellerin tahmin doğruluğunu artırmak için oluşturulan derin sinir ağlarının (DSA) eğitim süresi ve boyutunu 

artırdığı, boyutunu küçültmek için yapılan çalışmaların ise doğruluğunu düşürdüğü gözlemlenmiştir. Bu üç kriter arasında 

bir ödünleşme yapılması gerekmektedir. 

Farklı optimizasyon tekniklerinin modelin performansına etkisini göstermek için, bu makalede DSA araştırma alanında 

sıklıkla kullanılan ResNet50, ResNet101, VGG16, VGG19 ve EfficientNet ön-eğitimli modellerini CIFAR10, CIFAR100 

görsel veri kümeleriyle test ettik. Google Colab Pro ve Tensorflow sistemi üzerinde yaptığımız başarım çalışmalardan 

elde edilen önemli sonuçların arasında ağırlık quantizasyonun çok-boyutlu optimizasyonunda şu ana kadarki en başarılı 

teknik olduğu, ağırlık kümeleme ve transfer öğrenimi tekniklerinin ise ancak 2-boyutta fayda sağladıkları söylenebilir. 

Çalışmamızda ayrıca, literatürde ilk defa DSA’lar için bir operasyonel skor ve modelden-modele katman aktarımı 

metodunu tasarlayıp, sınadık. Oluşturulan çerçevenin, yeni geliştirilen DSA modellerinin operasyona sokulmadan önce 

çok-boyutlu değerlendirilebilmeleri için bir referans teşkil etmesi umuyoruz.  

   

Anahtar Kelimeler— operasyonel makine öğrenmesi, derin öğrenme, derin sinir ağları, ön-eğitimli modeller, ResNet, 

VGG, CIFAR, doğruluk, eğitim süresi. 
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Accuracy, Time and Size 
 

Abstract— Machine Learning and especially deep learning models need to be optimized over three main criteria 

concurrently, to be operationalized in real-time field applications. These criteria are model’s accuracy, training-testing 

times and file size. Related work only considers two criteria (e.g. accuracy-time) together. However, it is observed that 

deep neural networks (DNN) designed to improve model accuracy can increase training time and size, while efforts to 

reduce model size can lead to lower accuracy. A trade-off needs to be made among these three criteria.  

In this paper, to demonstrate the effects of different optimization techniques on model performance, we tested ResNet50, 

ResNet101, VGG16, VGG19, EfficientNet pre-trained models with CIFAR10, CIFAR100 image datasets, which are 

commonly utilized in the DNN research field. Important performance results obtained over Google Colab Pro and 

TensorFlow system show that weight quantization is the most successful technique so far in multi-dimensional 

optimization, while weight clustering and transfer learning techniques remain useful in 2-dimensions. In addition, we 

designed and tested a new DNN operational score and model-to-model layer transfer method for the first time in literature. 

We hope that our framework will constitute a multi-dimensional evaluation reference for DNN models before they are 

operationalized. 
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1. INTRODUCTION  

Machine Learning (ML) models can be broadly 

categorized as supervised or unsupervised: supervised 

models are trained and tested over labelled data, whereas 

unsupervised models depend on purely statistical 

properties and patterns in the datasets. Classifier models 

fall under supervised category, whereas clustering 

algorithms are unsupervised. In this paper, we focus on 

Deep Neural Network (DNN)-based classifier models, 

which have a high potential for use in real-time 

applications including autonomous vehicles [1], industrial 

quality control & maintenance [2], automated financial 

trading [3], IT security [4], Natural Language Processing 

(NLP) [5] and many more [6].   

In ML classifiers, three performance criteria that need to 

be optimized simultaneously to achieve the highest 

operational efficiency are model accuracy, training-testing 

times, and file size. Figure 1 illustrates our framework for 

Operational Machine Learning (OpML), where the 

hypothetical optimal point for all three criteria would be 

the <A:0, T:0, S:0> point, which represents the highest 

accuracy ratio obtained (1.0-accuracy) with minimal 

training–testing times (0.0 sec) and smallest model size (0 

MB). For example, a random prediction that requires no 

training or state-keeping, would meet the time and size 

criteria, but have very low accuracy. As illustrated in 

Figure 1 with dashed arrows, trying to improve model 

accuracy usually results in increased model complexity 

followed by more training and testing times. In addition, 

trying to reduce the model size (e.g. by weight clustering 

or quantization) reduces accuracy, if not handled carefully. 

Finally, to improve model testing times researchers use 

more data, which increases the corpus size as well as model 

size, while also carrying the risk of model overfitting. 

When designing new models and/or tuning pre-trained 

models, the operational goal should be to stay within the 

inner triangles in Figure 1, while pushing the limits on 

either one of these criteria.  

We can combine 3-dimensions into a simple, but efficient 

operational score (OpScore) as shown in Equation 1: 

𝑂𝑝𝑆𝑐𝑜𝑟𝑒 = − log10(1 (1 − 𝐴𝑐𝑐)⁄ ) + log10 𝑇𝑖𝑚𝑒  +
log10 𝑆𝑖𝑧𝑒(𝑀𝐵)                                                              (1)  

where the optimal score is close to zero and between [0,5] 

for most practical cases (see Sec.4). Note that, increasing 

accuracy in Equ. 1 decreases the score, whereas increasing 

model time and size values increase the score, denoting 

increasing operational costs. The operational score can be 

used separately for training and testing times, a weighted 

average or total of both depending on the operational 

scenario. We will discuss model training, testing (or 

inference) and even pre-training (tuning & pruning) times 

in this paper to understand their implications on real-time 

field applications. While OpScore is directly applicable to 

different DNN models, a value-based comparison is done 

over the same dataset for fairness.  

 
Figure 1. Dimensions of model performance criteria to be 

optimized concurrently are model accuracy, time and size. 

We use this scheme as a reference to compare novel DNN 

models and optimization techniques in terms of their 

operational efficiency. 

Figure 2 illustrates the general structure and components of 

a DNN classifier model. As an example, the image of an 

animal such as a cat or a dog is passed through the DNN to 

generate a correct classification “cat” in text format. The 

depth of a DNN model is measured by the number of 

hidden layers. As DNN models get deeper they contain 

hundreds of convolutional layers as well as activation, 

pooling, regularization, attention, normalization, and dense 

layers that carry thousands of functions and millions of 

weights. These facts are valid for Convolutional Neural 

Networks (CNN), Recurrent Neural Networks (RNN), and 

their hybrids called R-CNN.  

 

Figure 2. DNN, CNN or RNN models have layered 

structures containing millions of weights, which account 

for 100s of millions of floating-point operations over 

multiple epochs of training and testing. 

After training, the models are serialized and saved in 

storage systems using special Hierarchical Data Formats 

(HDF) [7] or Open Neural Network Exchange (ONNX) [8] 

file formats. ONNX is becoming the de facto standard for 

easily converting and sharing pre-trained models. These 

models can be uploaded to public model repositories called 

“model zoo” [9] for online sharing. They are later 

downloaded locally, possibly in edge or Internet of Things 

(IoT) devices and operationalized by deserializing the 

model file into the memory. Next, every input (e.g. image) 

gets turned into a matrix of float-type variables by the input 

layer and passed through model layers to deliver correct 

classification results at the output layer. Convolutional 

layers generate feature maps from the input. Pooling layers 

(average or max pooling) down sample feature maps to 

provide translational invariance. In between these two, 
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there are activation functions (ReLU, Sigmoid, etc.) that 

are used to introduce nonlinearity. It takes millions of 

sample images to train accurate models. DNN models can 

take days to train over traditional Central Processing Units 

(CPU). Fortunately, massively parallel Graphical 

Processing Unit (GPU) and novel Tensor Processing Units 

(TPU) [10, 11] come to rescue to reduce these model 

training times to hours and minutes.  

One potential caveat in model training is over-fitting, 

where the model strictly and only learns the training data. 

To avoid over-fitting, techniques such as data cross-

validation and activation functions are used. Models may 

need to be retrained with new data in the field for 

continuous improvement, yet mobile edge devices [12] are 

usually not as powerful as the central servers or cloud 

resources. Therefore, field success depends on 

optimization of model training time as well as its accuracy 

and size, concurrently. Model testing does not require 

weight updates and therefore it is faster than model 

training. However, since inference time effects field 

performance it must be measured and optimized carefully. 

Contributions of our paper are as follows: 

 We develop a 3D framework and a score for 

evaluation and ranking of DNN model to be 

operationalized in the field, 

 We present a detailed multi-dimensional evaluation of 

commonly used DNN models including ResNet, VGG 

and EfficientNet with different datasets, 

 We calculate an OpScore and rank models using the 

same unified metric, 

 We evaluate the performance effects of modern CPU 

accelerator chips, including GPU and TPU over DNN 

training and testing times,  

 We quantify the cost of model optimization techniques 

such as weight clustering, 

 We report on sensitivity of model accuracy over 

increasing number of dense & hidden layers 

“unfrozen” to be retrained,  

 We test a new method that we call “model-to-model 

layer transfer”. 

The rest of the paper is organized as follows. Section 2 

gives the background on DNN models and their Key 

Performance Indicators (KPI) including model accuracy, 

training and testing times as well as size reduction 

techniques. Section 3 describes our methodology including 

experimental setup, datasets and the concept of transfer 

learning. Section 4 presents the detailed performance 

assessment of several DNN models and optimization 

techniques including model quantization and clustering 

using proposed tradeoff assessment scheme. Most of the 

contribution listed above are realized in this section. 

Section 5 discusses related work on model optimizations in 

comparison to our proposed framework and findings. 

Section 6 concludes the paper also describing future work. 

 

2. BACKGROUND 

In this section, we first give a quick background on KPI for 

OpML (model accuracy, time, size). Next, we describe 

properties of reference DNN models used in this research.  

2.1. Model Accuracy  

When a set of N inputs are fed into a classifier, the four 

possible outcomes of the classification are True Positive 

(TP), True Negative (TN), False Positive (FP), and False 

Negative (FN), thus N=(TP+FP+TN+FN). Accuracy 

(Eq.2) is simply measured as the ratio of “truly classified” 

instances over N. Model’s accuracy, recall, precision and 

F1-measure formulas are given below by Equations 2-5, 

respectively. 

Accuracy = (TP+TN)/N   (2) 

Recall= TP/(TP+FN)   (3) 

Precision = TP/(TP+FP)   (4) 

F1-score = 2/(1/Precision+1/Recall) (5) 

These are commonly used for model accuracy measures 

but have small semantic differences and implications. In 

cases where the items to catch are extremely rare (e.g., a 

medical test to detect a rare cancer type) precision and 

recall should also be employed. Recall (Eq.3) focuses on 

model’s ability to correctly detect (i.e., “not miss” or make 

“False Negative”) items that should be placed in the 

selected class, while Precision (Eq.4) denotes model’s 

ability “not to misplace or confuse” (FP) items belonging 

to other sets into the selected class. F1-score (Eq.5) is the 

harmonic average of recall and precision values, giving a 

unified view of both success metrics.  

2.2. Model Training and Testing Time 

NN are difficult to deploy on IoT and embedded systems 

with limited resources since they are both compute and 

memory intensive. Most of the recent R&D efforts in 

OpML focus on reducing model training and testing (a.k.a. 

inference, serving) times. CPU-GPU manufacturers also 

produce ML-accelerator chips such as Tensor Processing 

Units (TPU) to speed up floating point operations in DNN. 

In cases where a model contains mixed-precision values 

(float16, float32, float64) together, chip-level support for 

mixed-precision operations [13] is also crucial for high 

performance. Otherwise, every arithmetic-logic operation 

also requires a value conversion (among float16-32) 

having a diverse performance effect.  

2.3. Model Size Reduction Techniques 

Modern pretrained DNN model files generally range 

between 10 Megabytes (MB) to 1 Gigabytes (GB) in size. 

We compared two techniques for model size reduction in 

this paper, namely quantization [l4, 15] and weight sharing 

(a.k.a weight clustering) [16]. Quantization is a technique 
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to reduce model size by reducing the number of bytes used 

for each NN weight value. For example, if we use a float16 

value (2-bytes) instead of float32 (4-bytes) the model size 

should be approximately reduced by half. However, since 

the weights are highly tuned to make accurate predictions 

and reducing weight precision could also result in loss of 

accuracy.  

In weight sharing technique [16], all the weights in a model 

are clustered using K-means algorithm (or alike) and 

centroid values of each cluster are used as a single, shared 

value for the weights that belong to that cluster. Thus, the 

number of DNN weights to maintain is reduced from 

millions to thousands. Potentially, this also results in 

caching of weight values in L1-L2-L3 caches, which could 

speed up model training and testing times. However, like 

quantization, replacing thousands of values with their 

shared value also results in loss of model accuracy. We test 

this hypothesis and present comparative results in Sec. 4. 

2.4. Models: ResNet50-101, VGG16-19, EfficientNet 

Most image classification DNN models including 

ResNet50, ResNet101 and VGG were originally trained 

over the ImageNet dataset [17], but they can be retrained 

and used with other datasets. Table 1 shows their original 

and quantized sizes as well as layer counts. We can 

generally observe the 2x reduction in size due to float32 to 

float16 type change over all models. ResNet50 consists of 

176 layers, which are inside 50 blocks (hence the name 

ResNet50) each consisting of a sequential group of <Conv-

2D, Batch-Normalization, ReLU> layers, whereas 

ResNet101 consists of 346 layers inside 101 such 

carefully-engineered blocks. ResNet50 original model file 

is 103 MB whereas ResNet101 model is 180 MB, which is 

approximately proportional to the number of layers. Since 

we used the CIFAR datasets, which were different from the 

ImageNet dataset that was originally used to pretrain 

ResNet50-101 models, we had to retrain and test them. 

This would be the case with any operational ML scenario 

when pretrained models are employed in field applications. 

Note that the architecture of models (blocks and layers) are 

not affected by weight quantization techniques.  

VGG16 was the winner of ImageNet classification 

competition in 2014 [18]. While it doesn’t have as many 

layers as ResNet, it has very wide convolutional layers that 

carry a total of 138 Million parameters that reflect its 

original model size of 528 MB. VGG19 model is very 

similar in structure to VGG16 except 3 more convolutional 

layers in the middle, which increases VGG19 size to 

549MB for a slightly better accuracy. When we 

downloaded models into Keras [19], we omitted the top-

layers of the pretrained models, therefore Table 1 reports 

smaller model sizes without the top layers, obtained before 

transfer learning. 

EfficientNet [20,21] studies model scaling issues and 

identifies that “carefully balancing network depth, width, 

and resolution can lead to better performance”. They 

proposed a method that uniformly scales all dimensions 

using a compound coefficient using which they designed a 

range of EfficientNet from B0B7. They demonstrated 

effectiveness of this method up to 6x in speed and 8x in size 

over ResNet50-101-152. Table 1 shows the modest size of 

B0 compared to ResNets and VGG. We’ll compare their 

time-accuracy performances in Section 4. 

3. METHODOLOGY 

This section describes our methodology for tradeoff 

assessment of different DNN models over different 

benchmark datasets. Compared techniques include 

quantization, weight sharing (clustering), transfer learning 

using top (dense + hidden) layer unfreezing (Top-1, Top-

10), and direct model-to-model layer-based reuse of 

weights (e.g., from ResNet101 to ResNet50). We trained 

each model for 10 Epochs, which allowed for accuracy 

convergence.  

3.1. Experimental Systems and Software 

We used Google Colab Pro cloud system [10], TensorFlow 

[11] Keras [19] and Scikit-learn [22] Python libraries to 

calculate our model accuracies, training times and sizes. 

Google Colab Pro provides Intel Xeon® CPU @ 2.30GHz  

16-core 32GB DRAM machines with different GPU 

generations: NVIDIA Tesla Pascal (P100) PCIE-16GB and 

Volta (V100) SXM2-16GB. A major difference between 

these two GPU’s is that the newer V100 supports mixed-

precision operations, while P100 does not. We will discuss 

the effects of system differences in performance. 

3.2. Datasets: CIFAR10 and CIFAR100 

Canadian Institute For Advanced Research (CIFAR) has 

published labelled image datasets that have become the de-

facto benchmark for image classification models. 

CIFAR10 and CIFAR100 include 60,000 32x32 bit color 

images, belonging to 10 different classes and 100 different 

classes, respectively. Image contents exclusively show 

animals (bird, cat, dog, horse, etc.), vehicles (automobiles, 

planes, ships, trucks), flowers, vegetables, trees and 

people. CIFAR10 has 6000 images from each of 10 class 

types, whereas CIFAR100 has 600 images from each of 

100 types. In both datasets, 50,000 images are used for 

training and 10,000 for testing purposes. These datasets are 

identically and independently distributed (IID) [23], 

basically having no label and quantity skews. Since we 

compare models over a centralized system architecture in 

this paper, having non-IID datasets would be equivalent to 

Table 1: Originally used and quantized model sizes (MB). 
Model Name Original Size 

(MB) 

Quantized 

Size (MB) 

Number 

of Layers 

ResNet50 103 48 176 

ResNet101 180 86 346 

VGG16 59 29 16 

VGG19 80 40 19 

EfficientNet-B0 16 8 238 
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leaving some classes out of the question and render our 

results incomparable with respect to other related work in 

this domain. Yet, we included a sensitivity analysis having 

different splits (Table 3: 50-50%, 70-30%, 90-10%) for 

training and testing CIFAR datasets. In another study [24], 

we currently tested models with non-IID datasets with 

respect to their impact on distributed, federated learning 

scenarios.  

3.3. Unfreezing Model Layers for Transfer Learning 

Transfer learning allows a model, pretrained with a former 

dataset, to be unfrozen and retrained with the new dataset 

at hand. Top layers are the ones closer to the model output, 

which are also the fully-connected, dense layers. Since the 

input layers are the same for all models (ingesting 32x32 

bit images), the output layer and the hidden layers are of 

utmost importance in improving model performance. 

Therefore, we start by retraining models’ weights from 

Top-to-Bottom, where Top denotes the model output. We 

used the term “unfreeze” to denote the number of layers to 

be retrained. For example, when we "unfreeze” Top-1 

(dense) layer the dense layer is retrained, but hidden layers 

are not affected, whereas when we unfreeze Top-10 layers, 

we update and adapt 1 dense layer + 9 hidden layers. 

VGG16-VGG19 models we used had 2 fully-connected 

(dense) layers [25] and 13-16 hidden layers, respectively. 

For fairness, we unfroze and retrained the same number of 

dense & hidden layers in each model type.  

After downloading selected pretrained models into Keras 

for transfer learning, we initialized models’ top layers with 

Keras’ default Glorot (Xavier) uniform initializer. This 

initializer is known to fix the exploding & vanishing 

gradient problems associated with random initialization 

[26]. We can regard our new model-to-model layer transfer 

strategy as a coarse-granularity initialization technique 

where the top-layers of successor models (e.g. ResNet101 

to ResNet50) are transferred with the presumptions that (a) 

there is an evolutionary relation between the two model 

generations which guarantees input-output compatibility 

(2) the successor model has higher accuracy and the 

predecessor model has smaller size. We report the results 

in Section 4. 

4. RESULTS AND DISCUSSION 

In this section, we first present comparisons of the baseline 

ResNet50-ResNet101 models over selected datasets. We 

start by comparing their accuracies and continue with 

training-testing times over two different GPU systems. 

Then, we compare different model optimization techniques 

in terms of their impact on model accuracy, time, and size. 

We fix both training and testing epochs at 10 for all 

experiments for reference. While training models for 10 

epochs provides weight updates and accuracy 

convergence, testing models for 10 epochs serves a 

statistical validation for accuracy and inference timing 

measurements.   

4.1. Analysis and Comparison of Model Accuracies 

Figure 3 shows the comparison of classification accuracies 

for ResNet50-101 models over CIFAR10 and CIFAR100 

datasets while retraining Top-1 (Dense) and Top-10 (1 

Dense + 9 Hidden) layers. First, we observe in Figure 3a-

3b that retraining of even the last (Top-1) layer in both 

ResNet50 and ResNet101 results in a significant 

improvement of accuracy. Since original models were 

trained using ImageNet, this case shows the immediate 

benefits of transfer learning for both CIFAR10 (from 

~0.78-to-0.96) and CIFAR100 (from ~0.5-to-0.95).  

Second, training accuracies are always higher than testing 

accuracies and the difference between them denotes the 

amount of overfitting (since we have IID data). Third, 

ResNet101 only has slightly higher training and testing 

 
(a) Accuracy with CIFAR10 dataset Top-1 retraining. 

 

 
(b) Accuracy with CIFAR100 dataset Top-1 retraining. 

 

 
(c) Accuracy with CIFAR100 dataset Top-10 retraining. 

 

Figure 3. Comparison of accuracies for Resnet50 and 

Resnet101 models with (a) CIFAR10 Top-1, (b) 

CIFAR100 Top-1, and (c) CIFAR100 Top-10 layers 

retraining. 
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accuracy compared to ResNet50. However, the dataset’s 

image complexity has a bigger role in the final result, i.e. 

CIFAR100 being more complex than CIFAR10 leads to 

lower accuracies (0.7 vs. 0.9). Otherwise, ResNet50-101 

models have very close validation accuracies in both 

datasets. This proves that additional efforts and complexity 

added to create ResNet101 model did not contribute 

significantly to higher accuracy while it caused 60-80% 

increase in model training time and sizes. ResNet101 takes 

1.6-1.8x the training time of ResNet50 (see Table3: P100: 

470sec vs. 840sec, V100: 280sec vs. 470sec) and increases 

model size by ~1.74x (see: Table1: 103MB180MB). We 

therefore find that operationalizing models in the field to 

train & test them over different datasets can be as important 

as offline feature and model engineering.  

In Figure 3b-3c, a comparison of models over retraining of 

Top-1 vs. Top-10 layers with CIFAR100 shows faster 

convergence in Top-10 layers (e.g., 0.9 point reached at 3 

epochs in Top-10 vs. 5 epochs in Top-1) and a slightly 

higher accuracy result with Top-10 at the end (Top-1: 0.95 

vs. Top-10:0.98). Note that we refer to unfrozen layers and 

not the probably of a class prediction being in Top-1 vs. 

Top-5 lists, since Top-5 result in an unacceptably higher 

accuracies for field applications. 

In Table 2, we briefly report different accuracy measures 

including Recall, Precision and F1 for ResNet50-

ResNet101 models over different datasets. Since these 

benchmark datasets were IID for all class types, all of the 

measures gave similar accuracy results: ~0.9 for CIFAR10 

and ~0.7 for CIFAR100. There are no label or quantity 

skews to cause reductions in precision or recall. We tested 

these issues in our recent work on distributed federated 

learning [24] where non-IID datasets [27,28] can have 

more impact on federated model performance [29]. 

While not shown here for brevity, we also tested a 

Random Model (i.e. naive reference) with CIFAR100 

dataset for cross-examination and correctness control and 

we obtained accuracy: 0.01 (1/100), recall: 0.01, 

precision: 0.01, Area Under Curve (AUC): 0.50 as 

expected.  

4.2. Model Training-Testing Times and GPU Effects 

In this part, we compare training and testing times of the 

baseline ResNet50-ResNet101 models over CIFAR100 

dataset and by unfreezing Top10 layers. As a part of our 

measurement and sensitivity analysis we run the 

experiments over two different GPUs (P100-V100) and 

change the ratio of training-testing datasets (50-50%, 70-

30%, 90-10%) to validate per mini-batch processing times. 

We used TensorFlow Keras library and its evaluate() 

function. The batch_size was 128 items for both training 

and testing.  

Table 3 shows that the training time for ResNet50 was 26.8 

sec/30,000 images (~0.9 ms/image) and for ResNet101 

42.7 sec/30,000 images (~1.4 ms/image). For example, if a 

real-time application sets the inference time limit for the 

DNN model to be 1ms, ResNet50 would be eligible for 

field deployment whereas ResNet101 would not qualify. 

Depending on the ratio of increase in training data the 

training times increase and the testing times decrease, but 

the total time remains consistent around ~53 seconds for 

ResNet50 and ~84 second for ResNet101 over P100 GPU. 

We observe that both training and testing times of 

Resnet101 are 1.6-1.8x slower than ResNet50 for all data 

sizes (e.g. Res101/Res50 testing for 90-10%: 

8.2/4.9=1.67), which is due to the model size and 

complexity.  

Training and testing times improved by ~45% for both 

models when we used Volta (V100) GPU, since it has 

~45% more GPU cores (+TPU cores), higher memory 

bandwidth as well as memory capacity (32GB vs 16GB). 

For example, Res50 50-50% was 14.5 sec vs. 26.8 sec. In 

an offline analysis, we also compared Adam or SGD 

optimizers and observed no performance impact on 

training time. The total time was similarly ~29 sec. for 

ResNet50 and ~47 sec. for ResNet101 with V100. 

 

Table 3: Effects of different GPU accelerators (P100,V100) on model training-testing time for different data ratios 

(50-50%, 70-30%, 90-10%) using CIFAR100 dataset and Top-10 layers for retraining. 

GPU Ratio (%) Train Time (sec) Test Time (sec) Total Time (sec) 

Res50 Res101 Res50 Res101 Res50 Res101 

P100 (Pascal) 50-50 26.8 42.7 27.8 40.5 64.6 83.2 

70-30 37.4 59.9 14.7 24.4 52.1 84.3 

90-10 48.1 76.9 4.9 8.2 53.0 85.1 

V100 (Volta) 50-50 14.5 23.7 15.0 22.7 29.5 46.4 

70-30 20.3 33.1 8.1 20.6 28.4 53.7 

90-10 25.9 42.5 2.7 5.2 28.6 47.7 

 

 

Table 2: ResNet50-101 accuracy values over CIFAR10-

100 datasets using Recall, Precision and F1 measures. 

Model Dataset Recall Precision F1 

CIFAR10 Res50-Top10 0.92 0.92 0.92 

Res101-Top10 0.99 0.99 0.99 

CIFAR100 Res50-Top10 0.72 0.76 0.74 

Res101-Top10 0.73 0.77 0.75 
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4.3. Comparison of Different Model Optimization 

Techniques on Accuracy  

Figure 4 shows the accuracy results for the basic Resnet50-

Resnet101 models and their optimized (quantized, weight-

clustered, transferred) versions over CIFAR10 (Fig.4a) and 

CIFAR100 (Fig.4b) datasets, respectively and in 

descending order of their accuracy achievements. We 

report the accuracies obtained after 10 epochs of retraining. 

First, we observed that unfreezing Top-10 Layers resulted 

in higher accuracy compared to unfreezing only Top-1 

layer. For Res50-cluster and Resnet101-cluster models, 

although we used a relatively large number of clusters 

K=8192 to obtain high-precision weights, the accuracy 

drop over the original model was significant (~6%) 

compared to the quantization optimization. Finally, 

transferring top layers directly from ResNet101 to the 

ResNet50 model (Res50+101 model-2-model) resulted in 

the lowest accuracy before retraining. However, this 

strategy was still more promising than the Res50-Cluster 

model after retraining with both CIFAR10 and CIFAR100. 

This technique requires more investigation by careful 

selection of the transferred blocks. 

Also, accuracies of all unmodified (Res50-Res101) and 

optimized (quantized, clustered, transferred) models are 

higher for CIFAR10 (~0.85-0.92), then CIFAR100 (~0.65-

0.75). Surprisingly, quantized versions of Res50-Res101 

from float32-to-float16 resulted in a very small decrease 

(<2%) in the accuracy, although we gained a significant 

size reduction (see Sec 4.5). 

Based on this subtle, but important difference we decided 

to conduct another sensitivity analysis of model depth over 

Resnet ad VGG. Figure 5 shows that ResNet benefited 

more as we unfroze more layers, whereas VGG did not. 

 
(a) Accuracies of models with CIFAR10 dataset. 

 
(b) Accuracies of models with CIFAR100 dataset. 

 

Figure 4. Accuracy comparison of different pre-trained DNN models and their optimized (quantized, clustered, 

transfer learning, model-to-model layer transfer) versions after retraining of Top-1 and Top-10 layers. 

 

 

Figure 5: Sensitivity of Resnet101 and VGG model 

testing accuracy over different count of Top layers 

unfrozen and retrained for 10 epochs. 
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Including dense (Top 1-3) classifier layers to transfer 

learning is generally a good idea but moving further into 

the hidden layers does not always guarantee accuracy 

gains. This may be due to the fact that model architectures 

are originally designed and fit for their initial datasets, 

which is ImageNet dataset in this case. 

4.4. Comparisons of Training-Testing Times 

Table 4 shows the total times for 10 training + 10 testing 

epochs with 50,000 training and 10,000 testing images 

(ratio ~83-17%) of original ResNet50-101 models and 

their optimized (quantized, clustered, transfer learned, and 

model-2-model layer transfer) versions over P100 and 

V100 GPUs. There are two main findings within these 

results: (1) clustering does not change the train-test times, 

but there is a preparation time cost for these models, (2) 

quantization is highly-sensitive to GPU’s mixed-precision 

support at the hardware level: if there is support (V100) the 

resulting times are 25% faster, but if not (P100) the train-

test times can be 30% slower. Resnet50+101 model-to-

model layer transfer has similar time performance to 

weight clustering.  

4.5. 3D Comparisons Including Size Reduction  

In Table 1 we showed that quantization can reduce model 

sizes by 50% (or 2x). Note that the accuracies presented in 

Figure 4 were comparable within 2% of original models. 

Quantization with mixed-precision support leads to the 

best results in multi-dimensional assessment. However, 

edge nodes currently don’t have GPUs with mixed-

precision support. These high-end GPUs are powerful, but 

expensive and energy-consuming devices. So, their 

operational use at the edge for mass scale is currently not 

feasible.  

Figure 6 shows the model inference time (X-axis) vs. 

model accuracy (Y-axis) and bigger bubble sizes refer to 

the bigger model sizes. High accuracy, small inference 

time and smallest model sizes are preferable. From Fig. 6 

we can see that EfficientNet-B0 Top-1-10 quant models 

have the highest accuracy, smallest inference time and size. 

In comparison, VGG19 models are at the outer rim of the 

chart with lower accuracy, higher inference times and 

relatively larger bubble sizes. Finally, Resnet101 models 

have relatively larger sizes and inference times compared 

to EfficientNet-B0 and Resnet50 models (respectively, 

their quant versions) although their accuracies are also 

high. For each model, we observe that quantization 

increases the inference times while it makes the model 

sizes smaller. While Fig 6. is illustrative, it cannot help us 

make a final decision in model selection. Therefore, we use 

a new operational score to combine conflicting dimensions 

and rank our selected models. Table 5 shows the model 

rankings based on OpScore. We added a fictitious MIN and 

MAX model in the table, which picks the best and worst 

values from among the analyzed models in the table. These 

values can later be used for MIN-MAX normalization 

purposes for each application. Theoretically, our OpScore 

can take negative or relatively high values, but it will be 

between [0,5] for almost all practical cases. For example, a 

very poor performing model with <Acc:0,01; Size=1GB; 

Time=100sec> has OpScore=5.0, whereas a relatively 

good model with <Acc:0,99; Size=10MB; Time=10sec> 

has OpScore=0.0. OpScore values of all the real pretrained 

models for CIFAR10 are between [0,67-2,63] in Table 5. 

 

Figure 7 shows the performance results of all models over 

CIFAR100 dataset using a bubble chart for visual 

comparison. Accuracy values have dropped for all the 

models due to classification complexity of CIFAR100 as 

expected. Yet, the general patterns and findings for 

CIFAR10 reported in Figure 6 are still valid. Inference 

times and model sizes are similar. Table 6 show the results 

ranked by OpScore, respectively. Due to the decrease in 

accuracy, OpScore values of all models with CIFAR100 

are higher between [1,15-3,10]. There are only small 

changes in the ordering of the models. 

 

Figure 8 presents the sensitivity analysis of clustering 

technique (K=51216,384) on model accuracy. Note that 

the accuracy drops from ~0.9 to ~0.6 for CIFAR10 and 

~0.7 to ~0.3 as the number of weight clusters decrease from 

K=8192 to K=1024. This is due to the immense loss of 

information in NN weights. Table 7 presents the same 

analysis for effects on model size and model clustering 

time. Note that this clustering time is a “preparation” time 

that has to be spent before the model is used for training 

and testing. Therefore, it is an additional cost. Most of the 

related work do not report their model preparation times, 

which could become a significant limit in practice. The 

main goal of clustering is to reduce model size. Table 7 

shows that this goal is achieved (103MB39MB), but at 

the expense of accuracy loss and added clustering times. 

An interesting observation is that, since Resnet101 is a 

bigger model (~50 million weights) weight sharing via 

Table 4: Training and testing times with different NVIDIA Tesla GPUs (P100-V100). 
GPU Dataset-Layers Resnet50 Res50-

Quant 

Res50-

Cluster 

Resnet101 Res101-

Quant 

Res101-

Cluster 

Res50+101 

P100 CIF10-Top1 472 630 471 842 1062 847 838 

CIF100-Top1 476 642 476 841 1048 861 841 

CIF10-Top10 528 671 540 894 1108 892 896 

CIF100-Top10 540 691 524 895 1121 898 902 

V100 CIF10-Top1 286 226 286 474 329 470 477 

CIF100-Top1 286 218 285 493 325 470 477 

CIF10-Top10 318 238 323 509 343 501 510 

CIF100-Top10 319 238 319 509 343 507 514 
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clustering reduces its accuracy more than Resnet50 (~30 

 
Figure 6. 3D Bubble chart comparison of selected DNN models with CIFAR10. 

 
Table 5. Ranking of evaluated models based on 3D KPI and unified OpScore using CIFAR10 dataset. MIN-

MAX values are obtained by selecting the best and worst value for each column and generating a score for this 

fictitious model as reference; this can be used for normalization. Note that best and worst OpScore values range 

between 0-5.  

 

Model Name Accuracy Size (MB) Training Time (sec) Inference Time (sec) Score 

MIN 0,93 8,10 27,72 6,06 0,54 

B0 Quant Top-10 0,91 8,10 31,77 6,28 0,67 

B0 Quant Top-1 0,89 8,10 27,98 6,27 0,75 

B0 Top-10 0,93 16,60 29,92 6,07 0,86 

B0 Top-1 0,89 16,60 27,72 6,06 1,05 

B0 Cluster Top-10 0,40 11,00 29,34 6,07 1,60 

Resnet-50 Quant Top-10 0,90 48,00 56,41 10,34 1,71 

B0 Cluster Top-1 0,21 11,00 27,75 6,07 1,72 

Resnet-50 Quant Top-1 0,89 48,00 51,51 10,39 1,74 

Resnet-50 Top-10 0,92 103,00 44,48 8,14 1,81 

Resnet-50 Top-1 0,90 103,00 40,09 8,14 1,91 

VGG16 Quant Top-2 0,88 29,50 136,00 28,00 2,00 

Resnet-50 Cluster Top-10 0,75 61,00 44,48 8,14 2,09 

VGG16 Cluster Top-3 0,86 39,90 118,00 23,00 2,11 

VGG16 Cluster Top-2 0,85 39,90 114,00 23,00 2,13 

Resnet-101 Quant Top-10 0,91 86,00 89,78 17,02 2,14 

Resnet-101 Quant Top-1 0,90 86,00 84,29 16,92 2,17 

Resnet-50 Cluster Top-1 0,70 61,00 40,16 8,15 2,17 

VGG16 Top-2 0,88 58,90 114,13 23,00 2,22 

VGG16 Top-3 0,88 58,90 117,78 23,00 2,22 

VGG19 Quant Top-2 0,87 40,10 167,48 34,00 2,23 

Resnet-101 Top-10 0,93 180,00 71,18 13,56 2,25 

VGG19 Cluster Top-3 0,88 54,30 144,85 29,00 2,29 

VGG19 Cluster Top-2 0,87 54,30 141,33 29,00 2,32 

Resnet-101 Top-1 0,91 180,00 67,51 13,60 2,35 

VGG16 Quant Top-3 0,73 29,50 140,00 28,00 2,35 

VGG19 Top-3 0,89 80,20 144,80 29,00 2,42 

VGG19 Top-2 0,87 80,20 141,23 29,00 2,48 

VGG19 Quant Top-3 0,77 40,10 171,31 34,00 2,50 

Resnet-101 Cluster Top-10 0,77 115,00 71,25 13,56 2,55 

Resnet-101 Cluster Top-1 0,73 115,00 67,51 13,63 2,63 

MAX 0,21 180,00 171,00 34,00 3,68 

      

 



374  BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022 

 

million weights) due to additional loss of weight 

 
Figure 7. 3D Bubble chart comparison of selected DNN models with CIFAR100. 

Table 6. Table 5. Ranking of evaluated models based on 3D KPI and unified OpScore using CIFAR100 dataset. 

MIN-MAX values are obtained by selecting the best and worst value for each column and generating a score for 

this fictitious model as reference; this can be used for normalization. Note that best and worst OpScore values 

range between 0-5. 

 

Model Name Accuracy Size (MB) Training Time (sec) Inference Time (sec) Score 

MIN 0,75 8,10 27,28 6 1,08 

B0 Quant Top-1 0,71 8,10 27,77 6,00 1,15 

B0 Quant Top-10 0,71 8,10 30,94 6,00 1,15 

B0 Top-10 0,74 16,60 29,63 6,00 1,41 

B0 Top-1 0,71 16,60 27,36 6,00 1,46 

B0 Cluster Top-10 0,12 11,00 29,59 6,00 1,76 

B0 Cluster Top-1 0,05 11,00 27,28 6,00 1,80 

Resnet-50 Quant Top-10 0,72 48,00 56,63 10,37 2,14 

Resnet-50 Quant Top-1 0,70 48,00 51,05 10,27 2,17 

Resnet-50 Cluster Top-10 0,66 61,00 44,61 8,22 2,23 

Resnet-50 Cluster Top-1 0,63 61,00 40,50 8,22 2,27 

Resnet-50 Top-10 0,74 103,00 44,47 8,11 2,34 

VGG16 Quant Top-2 0,59 29,50 136,27 28,00 2,53 

Resnet-101 Quant Top-10 0,73 86,00 88,43 16,87 2,59 

VGG16 Cluster Top-2 0,56 39,90 113,84 23,00 2,60 

Resnet-101 Quant Top-1 0,71 86,00 84,04 16,87 2,62 

VGG16 Cluster Top-3 0,54 39,90 117,50 23,00 2,62 

Resnet-101 Cluster Top-10 0,67 115,00 71,25 13,73 2,72 

VGG19 Quant Top-2 0,60 40,1 167,37 34 2,74 

VGG16 Top-2 0,59 58,90 113,92 23,00 2,74 

Resnet-101 Cluster Top-1 0,64 115,00 67,50 13,65 2,75 

VGG16 Top-3 0,56 58,90 117,63 23,00 2,77 

Resnet-101 Top-10 0,75 180,00 70,18 13,58 2,79 

Resnet-101 Top-1 0,74 180,00 67,3 13,58 2,80 

VGG19 Cluster Top-2 0,58 54,3 141,1 29 2,82 

VGG19 Cluster Top-3 0,57 54,3 144,5 29 2,83 

VGG16 Quant Top-3 0,12 29,50 139,65 28,00 2,86 

VGG19 Top-2 0,59 80,20 141,24 29,00 2,97 

VGG19 Top-3 0,59 80,20 144,92 29,00 2,98 

Resnet-50 Top-1 0,72 103,00 40,06 8,11 3,06 

VGG19 Quant Top-3 0,07 40,1 171 34 3,10 

MAX 0,07 180,00 167,37 29 3,69 
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information.  

5. RELATED WORK 

While increasing the depth in DNN, generally increases the 

accuracy of image classification, this accuracy gets 

saturated and then even drops as more layers are added. He 

et al. [17] proposed to reformulate plain or stacked layers 

as residual functions leading to deeper networks without 

increasing the costs of training. These networks were 

called Residual Networks or ResNet in short. The state-of-

the art DNN including ResNets [17], DenseNet [30], 

SqueezeNet [31] and EfficientNet [19,20] addressed 

models’ size, accuracy and inference time balance, but the 

outcomes were not operationalized in real-time field 

applications, because of resource limitations at the edge 

and the need for continuous architectural adaptation. 

Methods that only consider improvements in inference 

time, assume that model training or tuning would be done 

once at the beginning or infrequently. However, modern 

Table 7: Sensitivity of Resnet50-101 models per 

number of clusters over size (MB) and time (sec). 

Model Name - 

Cluster# 

Size 

(MB) 

Clustering 

Time (sec) 

Res50 – Original 103 - 

Resnet50 -512 39 398 

Resnet50 -1024 42 561 

Resnet50 -2048 47 911 

Resnet50 -4096 55 1556 

Resnet50 -8192 61 2894 

Res101 – Original 180 - 

Resnet101 -512 76 1014 

Resnet101 -1024 82 1560 

Resnet101 -2048 93 2692 

Resnet101 -4096 115 4808 

Resnet101 -8192 130 7800 

 

 

(a) Sensitivity of ResNet accuracy to number of weight clusters over CIFAR10 dataset. 

 

 
(b) Sensitivity of ResNet accuracy to number of weight clusters over CIFAR100 dataset. 

Figure 8. Accuracy comparison of clustered Resnet50-101 pre-trained models over different cluster counts. 
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distributed [32] or decentralized scenarios teach us that 

frequent model updates may be necessary. Our work 

quantifies the evaluation and ranking of DNN’s for this 

purpose. 

DeepCPU [33] developed by Microsoft also focuses on 

operational models, but only addresses model serving time 

reduction. They denote, users can tolerate long training 

times since this step is offline but improving serving time 

is crucial since this makes the biggest difference between 

shippable vs. non-shippable model. Models need to 

conform to Service-Level Agreements (SLA) in real-time 

and thus must make fast and accurate predictions. 

DeepCPU proposes cache-aware partitioning to optimize 

L2-L3 data movements and weight-centric streamlining. 

Specifically, they demonstrate 10x-60x speedups in 

serving time of different NLP models. There are other 

researchers that address model performance issues at the 

hardware level. HardNet [34] aimed to reduce the traffic to 

DRAM by reducing the number of accesses to feature maps 

in CNN. This operation reduced the number of floating-

point operations (flops) and inference latency.  

In this paper, we evaluated the performance benefits and 

potential hardware dependencies of quantization. While 

our work is orthogonal to scalar and vector-based 

quantization [35], it is still useful to summarize related 

work in this group. Fixed scalar quantization of weights 

stored in floating-point variables can reduce performance 

as the amount of information is reduced. Researchers 

analyzed resilience of DNN under quantization [36] and 

effects of retraining models to alleviate this problem. 

Zhang et al. [15] developed a strategy called Learned 

Quantization Networks (LQ-Nets) that can change the 

fixed point and adapt quantization level to balance the 

tradeoff between size and accuracy. Han, et al. [16] 

reduced model sizes further via deep compression while 

also trying to address power issues. They designed a three-

stage pipeline of model pruning, trained quantization, and 

Huffman coding to reduce the storage requirement of NN 

without affecting their accuracy.  

Nath, et al. [37] claim that most of these methods suffer 

from two strict requirements, which hinder their 

operational performance: (1) they require special hardware 

to be effective or (2) they have to modify their model 

structures and/or weights via pruning [38] and retraining 

which is quite costly to handle during operation. In their 

paper titled “better together” [37], they proposed “adjoint 

networks” where a large DNN continuously acts as a 

teacher to a smaller DNN. Their approach is orthogonal to 

quantization and neural architectural search [32] methods. 

A similar approach by Shen, et al. [39] called MealV2 uses 

an ensemble of teachers for “knowledge distillation” 

coupled with a good initialization of the student model. Our 

model-to-model layer transfer method was inspired by 

these approaches, but we wanted to further minimize the 

cost of retraining by quick layer transfers and stitching 

before retraining instead of weight initialization. We could 

resemble our new approach to creation of a “Frankenstein” 

model, which borrows layers of the architecture model 

different related models. 

Other orthogonal but related work include model 

generalization issues [40,41] and DNN performance 

surveys [42,43]. Recht, et al. [40] performed a longitudinal 

study for model generalization or robustness using 

ImageNet classifiers using CIFAR10 and ImageNet 

datasets. After creating a new labelled dataset called 

CIFAR 10.1, they found that (1) there was a significant 

performance drop in all models developed during 2013-

2018 (a very active 5 years for ML research), (2) drops 

were due to models’ inability to generalize to slightly 

harder images and not due to model adaptability to new 

data (i.e. overfitting to old datasets). Zhang, et al. proposed 

adversarial auto-augmentation [41] which is a data 

augmentation technique to help target NN learn hard 

features and improve model generalization 

Li, et al. [43] gave a comprehensive survey of deep 

learning (DL) compilers. They listed properties of DL 

frameworks such as TensorFlow, PyTorch, Keras, etc. and 

DL accelerator hardware (by Google, Intel, Amazon). It is 

a useful survey for understanding general OpML issues. 

6. CONCLUSION AND FUTURE WORK 

We described a framework for multi-dimensional tradeoff 

assessment of DNN model performances based on 

accuracy, time, and size. Comparison of modern 

quantization and weight sharing (clustering) techniques 

revealed that quantization can provide size savings without 

loss of accuracy, yet it needs GPU support for mixed-

precision float operations for achieving acceptable train & 

test times. If this can be provided, then its operational 

efficiency and viability is high. Yet, these high-end GPUs 

are currently not feasible for use in edge devices, especially 

at large-scale. NN weight sharing via clustering can save 

sizes by up to 60%, but its accuracy is sensitive to number 

of clusters used. While higher cluster counts give better 

accuracy, they eventually lose benefit in size and time 

dimensions. Finally, direct layer transfers among models 

requires careful selection. Otherwise, their accuracy can be 

lower than the original models.  

In the future, we plan to extend our sensitivity analysis to 

different models and model parameters. Specifically, we 

are currently investigating the effect of decentralized, non-

IID and unbalanced datasets in distributed federated 

learning settings [44,45,46]. Our work proposes a 3D 

evaluation scheme for these and other comparable 

techniques. We hope that DNN, AI, ML, OpML 

researchers can repeat these assessments over different 

DNN models and datasets.  

REFERENCES 

[1]  F. Fabio, G. Lami, A. M. Costanza. "Deep learning in automotive 

software." IEEE Software 34(3), 56-63, 2017. 

 



BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022 377 

[2]  J. Villalba-Diez, D. Schmidt, R. Gevers, J. Ordieres-Meré, M. 

Buchwitz, W. Wellbrock, “Deep learning for industrial computer 

vision quality control in the printing Industry 4.0”. Sensors, 19(18), 

3987, 2019. 

[3]  Z. Hu, Y.Zhao, M. Khushi. "A survey of forex and stock price 

prediction using deep learning." Applied System Innovation 4(1), 9, 

2021. 

[4]  J. Kim, Y. Shin, E. Choi. "An intrusion detection model based on 

a convolutional neural network." Journal of Multimedia 

Information System 6(4), 165-172, 2019. 

[5]  Deng, L., Liu, Y. (Eds.). Deep learning in natural language 

processing. Springer, 2018. 

[6]  Bashar, A. “Survey on evolving deep learning neural network 

architectures”. Journal of Artificial Intelligence, 1(02), 73-82, 

2019. 

[7]  A. Collette, Python and HDF5, O'Reilly Media, Inc., November 

ISBN: 9781449367831, 2013. 

[8]  Internet: Open Neural Network Exchange (ONNX), The open 

standard for machine learning interoperability, https://onnx.ai, 

24.10.202. 

[9]  Internet: Model Zoo, Open source deep learning code and 

pretrained models. https://modelzoo.co, 24.10.202. 

[10]  Internet: Google Colaboratory, https://colab.research.google.com/, 

24.10.202 

[11]  M. Abadi, P. Barham, J.Chen, Z. Chen, A. Davis, J. Dean, M. 

Devin et al. "Tensorflow: A system for large-scale machine 

learning." In 12th USENIX Symposium on Operating Systems 

Design and Implementation (OSDI), 265-283. 2016. 

[12]  Yu, R., Li, P. “Toward resource-efficient federated learning in 

mobile edge computing”. IEEE Network, 35(1), 148-155, 2021. 

[13]  M. , Paulius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, 

B. Ginsburg, et al. "Mixed precision training." arXiv preprint 

arXiv:1710.03740 (2017). 

[14]  D. Lin, T. Sachin Talathi, A. Sreekanth "Fixed point quantization 

of deep convolutional networks." In International Conference on 

Machine Learning, PMLR, 2849-2858, 2016. 

[15]  D. Zhang, J. Yang, D. Ye,, G. Hua, “LQ-Nets: Learned 

quantization for highly accurate and compact deep neural 

networks”. In Proceedings of the European Conference on 

Computer Vision (ECCV) 365-382, 2018.  

[16]  S. Han, H. Mao, W. J. Dally, “Deep compression: Compressing 

deep neural networks with pruning, trained quantization and 

Huffman coding”. arXiv preprint arXiv:1510.00149, 2015.   

[17]  K. He, X. Zhang, S. Ren, J. Sun, “Deep residual learning for image 

recognition”. In Proceedings of the IEEE conference on 

computer vision and pattern recognition (CVPR), 770-778, 

2016. 

[18]  Simonyan, K., Zisserman, A. “Very deep convolutional networks 

for large-scale image recognition”. arXiv preprint 

arXiv:1409.1556, 2014. 

[19] Internet: Keras Applications, https://keras.io/api/applications, 

24.10.202 

 

[20]  M. Tan, Q. Le. "EfficientNet: Rethinking model scaling for 

convolutional neural networks." In International Conference on 

Machine Learning (ICML), 6105-6114. PMLR, 2019. 

[21]  Tan, M., Le, Q. “EfficientNetv2: Smaller models and faster 

training”. In International Conference on Machine Learning, 

10096-10106, PMLR, 2021 

[22]  F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, 

O. Grisel, M. Blondel, et al. "Scikit-learn: Machine learning in 

Python." The Journal of Machine Learning Research V.12, 2825-

2830, 2011. 

[23]  He, Y., Shen, Z., Cui, P. “Towards non-IID image classification: A 

dataset and baselines”. Pattern Recognition, 110, 107383, 2021. 

[24]  M.B. Çamlı, I. Ari, “Sensitivity Analysis of Federated Learning 

over Decentralized Data and Communication Rounds”, 7. Ulusal 

Yüksek Basarimli Hesaplama Konferansı (BAŞARIM), no.14, 

2022 

[25]  Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H. P. “Pruning 

filters for efficient ConvNets”. arXiv preprint arXiv:1608.08710, 

2016. 

[26]  Glorot, X., Bengio, Y. “Understanding the difficulty of training 

deep feedforward neural networks”. In Proceedings of the 13th 

international conference on artificial intelligence and statistics, 

249-256, JMLR Workshop and Conference Proceedings, 2010. 

[27]  Luo, J., Wu, X., Luo, Y., Huang, A., Huang, Y., Liu, Y., Yang, Q. 

“Real-world image datasets for federated learning”. arXiv preprint 
arXiv:1910.11089, 2019 

[28]  Zhu, H., Xu, J., Liu, S., Jin, Y. “Federated Learning on Non-IID 

Data: A Survey”. arXiv preprint arXiv:2106.06843, 2021. 

[29]  Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V. 

“Federated learning with non-IID data”.arXiv preprint 

arXiv:1806.00582, 2018. 

[30]  F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell, K. 

Keutzer, “DenseNet: Implementing efficient convnet descriptor 

pyramids” arXiv preprint arXiv:1404.1869, 2014. 

[31]  F. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, K. 

Keutzer."SqueezeNet: AlexNet-level accuracy with 50x fewer 

parameters and< 0.5 MB model size." arXiv preprint 

arXiv:1602.07360, 2016. 

[32]  H.R. Roth , D. Yang, W. Li, A. Myronenko, W. Zhu, Z. Xu, X. 

Wang, D. Xu, “Technique to perform neural network architecture 

search with federated learning”, WO/2021-247338A1, WIPO 

Patent, 2021. 

[33]  M. Zhang, S. Rajbhandari, W. Wang, Y. He, “DeepCPU: Serving 

RNN-based deep learning models 10x faster”. In 2018 USENIX 

Annual Technical Conference (ATC), 951-965, 2018. 

[34]  P. Chao, C. Kao, Y. Ruan, C. Huang, Y. Lin. "Hardnet: A low 

memory traffic network" In Proceedings of the IEEE/CVF 

International Conference on Computer Vision, 3552-3561. 

2019. 

[35]  Sung, W., Shin, S., Hwang, K. “Resiliency of deep neural networks 

under quantization”. arXiv preprint arXiv:1511.06488, 2015. 

[36]  Gong, Y., Liu, L., Yang, M., Bourdev, L. “Compressing deep 

convolutional networks using vector quantization”. arXiv preprint 

arXiv:1412.6115, 2014. 



378  BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022 

 
[37]  Nath, U., Kushagra, S. “Better Together: Resnet-50 accuracy with 

13x fewer parameters and at 3x speed”. arXiv preprint 

arXiv:2006.05624, 2020. 

[38]  Ma, X., Yuan, G., Lin, S., Li, Z., Sun, H., Wang, Y. “ResNet can 

be pruned 60×: Introducing network purification and unused path 

removal (p-rm) after weight pruning”. In 2019 IEEE/ACM 

International Symposium on Nanoscale Architectures, 1-2, 

IEEE, 2019. 

[39]  Shen, Z., Savvides, M. “Meal v2: Boosting vanilla Resnet-50 to 

80%+ Top-1 accuracy on Imagenet without tricks”. arXiv preprint 

arXiv:2009.08453, 2020. 

[40]  B. Recht, R. Roelofs, L. Schmidt, L., V. Shankar, “Do Imagenet 

classifiers generalize to Imagenet?” In International Conference 

on Machine Learning, 5389-5400, PMLR, 2019. 

[41]  Zhang, X., Wang, Q., Zhang, J., Zhong, Z. “Adversarial 

autoaugment”. arXiv preprint arXiv:1912.11188, 2019. 

[42]  C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, C. Liu, “A survey on 

deep transfer learning”. In International conference on artificial 

neural networks 270-279, Springer, 2018. 

[43]  M. Li, Y. Liu, X. Liu, Q. Sun, X. You, H. Yang, Z. Luan, L. Gan, 

G. Yang, D. Qian. "The deep learning compiler: A comprehensive 

survey." IEEE Transactions on Parallel and Distributed Systems, 

Vol. 32, No. 3, 708-727, 2020. 

[44]  McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B. 

A. “Communication-efficient learning of deep networks from 

decentralized data”. In Artificial intelligence and statistics, 1273-

1282, PMLR, 2017. 

[45]  T. Li, A. K. Sahu, A. Talwalkar, V. Smith, V. “Federated learning: 

Challenges, methods, and future directions”. IEEE Signal 

Processing Magazine, 37(3), 50-60, 2020. 

[46]  Maraş, A. Erol, Ç. “Emerging Trends in Classification with 

Imbalanced Datasets: A Bibliometric Analysis of Progression”. 

Bilişim Teknolojileri Dergisi, 15(3), 275-288, 2022. 

 


