
BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022 365

Derin Öğrenme Modellerinin Doğruluk, Süre ve Boyut

Temelli Ödünleşme Değerlendirmesi
Araştırma Makalesi/Research Article

 İsmail ARI, Mustafa Barış ÇAMLI

Bilgisayar Mühendisliği, Özyeğin Üniversitesi, İstanbul, Türkiye

ismail.ari@ozyegin.edu.tr, mustafa.camli@ozu.edu.tr

(Geliş/Received:22.08.2021; Kabul/Accepted:01.08.2022)

DOI: 10.17671/gazibtd.976711

Özet— Makine öğrenmesi ve özellikle derin öğrenme modellerinin gerçek-zamanlı saha uygulamalarında operasyona

alınması için üç ana kriterin aynı anda optimizasyonu gerekmektedir. Bunlar modelin tahmin doğruluğu, eğitim-test

süreleri ile dosya boyutu olup ilgili çalışmalarda sadece iki kriter (örnek: doğruluk-süre) beraber göz önüne alınmıştır.

Ancak, modellerin tahmin doğruluğunu artırmak için oluşturulan derin sinir ağlarının (DSA) eğitim süresi ve boyutunu

artırdığı, boyutunu küçültmek için yapılan çalışmaların ise doğruluğunu düşürdüğü gözlemlenmiştir. Bu üç kriter arasında

bir ödünleşme yapılması gerekmektedir.

Farklı optimizasyon tekniklerinin modelin performansına etkisini göstermek için, bu makalede DSA araştırma alanında

sıklıkla kullanılan ResNet50, ResNet101, VGG16, VGG19 ve EfficientNet ön-eğitimli modellerini CIFAR10, CIFAR100

görsel veri kümeleriyle test ettik. Google Colab Pro ve Tensorflow sistemi üzerinde yaptığımız başarım çalışmalardan

elde edilen önemli sonuçların arasında ağırlık quantizasyonun çok-boyutlu optimizasyonunda şu ana kadarki en başarılı

teknik olduğu, ağırlık kümeleme ve transfer öğrenimi tekniklerinin ise ancak 2-boyutta fayda sağladıkları söylenebilir.

Çalışmamızda ayrıca, literatürde ilk defa DSA’lar için bir operasyonel skor ve modelden-modele katman aktarımı

metodunu tasarlayıp, sınadık. Oluşturulan çerçevenin, yeni geliştirilen DSA modellerinin operasyona sokulmadan önce

çok-boyutlu değerlendirilebilmeleri için bir referans teşkil etmesi umuyoruz.

Anahtar Kelimeler— operasyonel makine öğrenmesi, derin öğrenme, derin sinir ağları, ön-eğitimli modeller, ResNet,

VGG, CIFAR, doğruluk, eğitim süresi.

Tradeoff Assessment of Deep Learning Models based on

Accuracy, Time and Size

Abstract— Machine Learning and especially deep learning models need to be optimized over three main criteria

concurrently, to be operationalized in real-time field applications. These criteria are model’s accuracy, training-testing

times and file size. Related work only considers two criteria (e.g. accuracy-time) together. However, it is observed that

deep neural networks (DNN) designed to improve model accuracy can increase training time and size, while efforts to

reduce model size can lead to lower accuracy. A trade-off needs to be made among these three criteria.

In this paper, to demonstrate the effects of different optimization techniques on model performance, we tested ResNet50,

ResNet101, VGG16, VGG19, EfficientNet pre-trained models with CIFAR10, CIFAR100 image datasets, which are

commonly utilized in the DNN research field. Important performance results obtained over Google Colab Pro and

TensorFlow system show that weight quantization is the most successful technique so far in multi-dimensional

optimization, while weight clustering and transfer learning techniques remain useful in 2-dimensions. In addition, we

designed and tested a new DNN operational score and model-to-model layer transfer method for the first time in literature.

We hope that our framework will constitute a multi-dimensional evaluation reference for DNN models before they are

operationalized.

Keywords— operational machine learning, deep learning, deep neural networks, pre-trained models, ResNet, CIFAR,

VGG, accuracy, training time.

https://orcid.org/0000-0002-6159-0484
mailto:ismail.ari@ozyegin.edu.tr%20irinciyazar@universite.edu.tr
mailto:mustafa.camli@ozu.edu.tr
https://orcid.org/0000-0003-4300-7723

366 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022

1. INTRODUCTION

Machine Learning (ML) models can be broadly

categorized as supervised or unsupervised: supervised

models are trained and tested over labelled data, whereas

unsupervised models depend on purely statistical

properties and patterns in the datasets. Classifier models

fall under supervised category, whereas clustering

algorithms are unsupervised. In this paper, we focus on

Deep Neural Network (DNN)-based classifier models,

which have a high potential for use in real-time

applications including autonomous vehicles [1], industrial

quality control & maintenance [2], automated financial

trading [3], IT security [4], Natural Language Processing

(NLP) [5] and many more [6].

In ML classifiers, three performance criteria that need to

be optimized simultaneously to achieve the highest

operational efficiency are model accuracy, training-testing

times, and file size. Figure 1 illustrates our framework for

Operational Machine Learning (OpML), where the

hypothetical optimal point for all three criteria would be

the <A:0, T:0, S:0> point, which represents the highest

accuracy ratio obtained (1.0-accuracy) with minimal

training–testing times (0.0 sec) and smallest model size (0

MB). For example, a random prediction that requires no

training or state-keeping, would meet the time and size

criteria, but have very low accuracy. As illustrated in

Figure 1 with dashed arrows, trying to improve model

accuracy usually results in increased model complexity

followed by more training and testing times. In addition,

trying to reduce the model size (e.g. by weight clustering

or quantization) reduces accuracy, if not handled carefully.

Finally, to improve model testing times researchers use

more data, which increases the corpus size as well as model

size, while also carrying the risk of model overfitting.

When designing new models and/or tuning pre-trained

models, the operational goal should be to stay within the

inner triangles in Figure 1, while pushing the limits on

either one of these criteria.

We can combine 3-dimensions into a simple, but efficient

operational score (OpScore) as shown in Equation 1:

𝑂𝑝𝑆𝑐𝑜𝑟𝑒 = − log10(1 (1 − 𝐴𝑐𝑐)⁄) + log10 𝑇𝑖𝑚𝑒 +
log10 𝑆𝑖𝑧𝑒(𝑀𝐵) (1)

where the optimal score is close to zero and between [0,5]

for most practical cases (see Sec.4). Note that, increasing

accuracy in Equ. 1 decreases the score, whereas increasing

model time and size values increase the score, denoting

increasing operational costs. The operational score can be

used separately for training and testing times, a weighted

average or total of both depending on the operational

scenario. We will discuss model training, testing (or

inference) and even pre-training (tuning & pruning) times

in this paper to understand their implications on real-time

field applications. While OpScore is directly applicable to

different DNN models, a value-based comparison is done

over the same dataset for fairness.

Figure 1. Dimensions of model performance criteria to be

optimized concurrently are model accuracy, time and size.

We use this scheme as a reference to compare novel DNN

models and optimization techniques in terms of their

operational efficiency.

Figure 2 illustrates the general structure and components of

a DNN classifier model. As an example, the image of an

animal such as a cat or a dog is passed through the DNN to

generate a correct classification “cat” in text format. The

depth of a DNN model is measured by the number of

hidden layers. As DNN models get deeper they contain

hundreds of convolutional layers as well as activation,

pooling, regularization, attention, normalization, and dense

layers that carry thousands of functions and millions of

weights. These facts are valid for Convolutional Neural

Networks (CNN), Recurrent Neural Networks (RNN), and

their hybrids called R-CNN.

Figure 2. DNN, CNN or RNN models have layered

structures containing millions of weights, which account

for 100s of millions of floating-point operations over

multiple epochs of training and testing.

After training, the models are serialized and saved in

storage systems using special Hierarchical Data Formats

(HDF) [7] or Open Neural Network Exchange (ONNX) [8]

file formats. ONNX is becoming the de facto standard for

easily converting and sharing pre-trained models. These

models can be uploaded to public model repositories called

“model zoo” [9] for online sharing. They are later

downloaded locally, possibly in edge or Internet of Things

(IoT) devices and operationalized by deserializing the

model file into the memory. Next, every input (e.g. image)

gets turned into a matrix of float-type variables by the input

layer and passed through model layers to deliver correct

classification results at the output layer. Convolutional

layers generate feature maps from the input. Pooling layers

(average or max pooling) down sample feature maps to

provide translational invariance. In between these two,

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022 367

there are activation functions (ReLU, Sigmoid, etc.) that

are used to introduce nonlinearity. It takes millions of

sample images to train accurate models. DNN models can

take days to train over traditional Central Processing Units

(CPU). Fortunately, massively parallel Graphical

Processing Unit (GPU) and novel Tensor Processing Units

(TPU) [10, 11] come to rescue to reduce these model

training times to hours and minutes.

One potential caveat in model training is over-fitting,

where the model strictly and only learns the training data.

To avoid over-fitting, techniques such as data cross-

validation and activation functions are used. Models may

need to be retrained with new data in the field for

continuous improvement, yet mobile edge devices [12] are

usually not as powerful as the central servers or cloud

resources. Therefore, field success depends on

optimization of model training time as well as its accuracy

and size, concurrently. Model testing does not require

weight updates and therefore it is faster than model

training. However, since inference time effects field

performance it must be measured and optimized carefully.

Contributions of our paper are as follows:

 We develop a 3D framework and a score for

evaluation and ranking of DNN model to be

operationalized in the field,

 We present a detailed multi-dimensional evaluation of

commonly used DNN models including ResNet, VGG

and EfficientNet with different datasets,

 We calculate an OpScore and rank models using the

same unified metric,

 We evaluate the performance effects of modern CPU

accelerator chips, including GPU and TPU over DNN

training and testing times,

 We quantify the cost of model optimization techniques

such as weight clustering,

 We report on sensitivity of model accuracy over

increasing number of dense & hidden layers

“unfrozen” to be retrained,

 We test a new method that we call “model-to-model

layer transfer”.

The rest of the paper is organized as follows. Section 2

gives the background on DNN models and their Key

Performance Indicators (KPI) including model accuracy,

training and testing times as well as size reduction

techniques. Section 3 describes our methodology including

experimental setup, datasets and the concept of transfer

learning. Section 4 presents the detailed performance

assessment of several DNN models and optimization

techniques including model quantization and clustering

using proposed tradeoff assessment scheme. Most of the

contribution listed above are realized in this section.

Section 5 discusses related work on model optimizations in

comparison to our proposed framework and findings.

Section 6 concludes the paper also describing future work.

2. BACKGROUND

In this section, we first give a quick background on KPI for

OpML (model accuracy, time, size). Next, we describe

properties of reference DNN models used in this research.

2.1. Model Accuracy

When a set of N inputs are fed into a classifier, the four

possible outcomes of the classification are True Positive

(TP), True Negative (TN), False Positive (FP), and False

Negative (FN), thus N=(TP+FP+TN+FN). Accuracy

(Eq.2) is simply measured as the ratio of “truly classified”

instances over N. Model’s accuracy, recall, precision and

F1-measure formulas are given below by Equations 2-5,

respectively.

Accuracy = (TP+TN)/N (2)

Recall= TP/(TP+FN) (3)

Precision = TP/(TP+FP) (4)

F1-score = 2/(1/Precision+1/Recall) (5)

These are commonly used for model accuracy measures

but have small semantic differences and implications. In

cases where the items to catch are extremely rare (e.g., a

medical test to detect a rare cancer type) precision and

recall should also be employed. Recall (Eq.3) focuses on

model’s ability to correctly detect (i.e., “not miss” or make

“False Negative”) items that should be placed in the

selected class, while Precision (Eq.4) denotes model’s

ability “not to misplace or confuse” (FP) items belonging

to other sets into the selected class. F1-score (Eq.5) is the

harmonic average of recall and precision values, giving a

unified view of both success metrics.

2.2. Model Training and Testing Time

NN are difficult to deploy on IoT and embedded systems

with limited resources since they are both compute and

memory intensive. Most of the recent R&D efforts in

OpML focus on reducing model training and testing (a.k.a.

inference, serving) times. CPU-GPU manufacturers also

produce ML-accelerator chips such as Tensor Processing

Units (TPU) to speed up floating point operations in DNN.

In cases where a model contains mixed-precision values

(float16, float32, float64) together, chip-level support for

mixed-precision operations [13] is also crucial for high

performance. Otherwise, every arithmetic-logic operation

also requires a value conversion (among float16-32)

having a diverse performance effect.

2.3. Model Size Reduction Techniques

Modern pretrained DNN model files generally range

between 10 Megabytes (MB) to 1 Gigabytes (GB) in size.

We compared two techniques for model size reduction in

this paper, namely quantization [l4, 15] and weight sharing

(a.k.a weight clustering) [16]. Quantization is a technique

368 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022

to reduce model size by reducing the number of bytes used

for each NN weight value. For example, if we use a float16

value (2-bytes) instead of float32 (4-bytes) the model size

should be approximately reduced by half. However, since

the weights are highly tuned to make accurate predictions

and reducing weight precision could also result in loss of

accuracy.

In weight sharing technique [16], all the weights in a model

are clustered using K-means algorithm (or alike) and

centroid values of each cluster are used as a single, shared

value for the weights that belong to that cluster. Thus, the

number of DNN weights to maintain is reduced from

millions to thousands. Potentially, this also results in

caching of weight values in L1-L2-L3 caches, which could

speed up model training and testing times. However, like

quantization, replacing thousands of values with their

shared value also results in loss of model accuracy. We test

this hypothesis and present comparative results in Sec. 4.

2.4. Models: ResNet50-101, VGG16-19, EfficientNet

Most image classification DNN models including

ResNet50, ResNet101 and VGG were originally trained

over the ImageNet dataset [17], but they can be retrained

and used with other datasets. Table 1 shows their original

and quantized sizes as well as layer counts. We can

generally observe the 2x reduction in size due to float32 to

float16 type change over all models. ResNet50 consists of

176 layers, which are inside 50 blocks (hence the name

ResNet50) each consisting of a sequential group of <Conv-

2D, Batch-Normalization, ReLU> layers, whereas

ResNet101 consists of 346 layers inside 101 such

carefully-engineered blocks. ResNet50 original model file

is 103 MB whereas ResNet101 model is 180 MB, which is

approximately proportional to the number of layers. Since

we used the CIFAR datasets, which were different from the

ImageNet dataset that was originally used to pretrain

ResNet50-101 models, we had to retrain and test them.

This would be the case with any operational ML scenario

when pretrained models are employed in field applications.

Note that the architecture of models (blocks and layers) are

not affected by weight quantization techniques.

VGG16 was the winner of ImageNet classification

competition in 2014 [18]. While it doesn’t have as many

layers as ResNet, it has very wide convolutional layers that

carry a total of 138 Million parameters that reflect its

original model size of 528 MB. VGG19 model is very

similar in structure to VGG16 except 3 more convolutional

layers in the middle, which increases VGG19 size to

549MB for a slightly better accuracy. When we

downloaded models into Keras [19], we omitted the top-

layers of the pretrained models, therefore Table 1 reports

smaller model sizes without the top layers, obtained before

transfer learning.

EfficientNet [20,21] studies model scaling issues and

identifies that “carefully balancing network depth, width,

and resolution can lead to better performance”. They

proposed a method that uniformly scales all dimensions

using a compound coefficient using which they designed a

range of EfficientNet from B0B7. They demonstrated

effectiveness of this method up to 6x in speed and 8x in size

over ResNet50-101-152. Table 1 shows the modest size of

B0 compared to ResNets and VGG. We’ll compare their

time-accuracy performances in Section 4.

3. METHODOLOGY

This section describes our methodology for tradeoff

assessment of different DNN models over different

benchmark datasets. Compared techniques include

quantization, weight sharing (clustering), transfer learning

using top (dense + hidden) layer unfreezing (Top-1, Top-

10), and direct model-to-model layer-based reuse of

weights (e.g., from ResNet101 to ResNet50). We trained

each model for 10 Epochs, which allowed for accuracy

convergence.

3.1. Experimental Systems and Software

We used Google Colab Pro cloud system [10], TensorFlow

[11] Keras [19] and Scikit-learn [22] Python libraries to

calculate our model accuracies, training times and sizes.

Google Colab Pro provides Intel Xeon® CPU @ 2.30GHz

16-core 32GB DRAM machines with different GPU

generations: NVIDIA Tesla Pascal (P100) PCIE-16GB and

Volta (V100) SXM2-16GB. A major difference between

these two GPU’s is that the newer V100 supports mixed-

precision operations, while P100 does not. We will discuss

the effects of system differences in performance.

3.2. Datasets: CIFAR10 and CIFAR100

Canadian Institute For Advanced Research (CIFAR) has

published labelled image datasets that have become the de-

facto benchmark for image classification models.

CIFAR10 and CIFAR100 include 60,000 32x32 bit color

images, belonging to 10 different classes and 100 different

classes, respectively. Image contents exclusively show

animals (bird, cat, dog, horse, etc.), vehicles (automobiles,

planes, ships, trucks), flowers, vegetables, trees and

people. CIFAR10 has 6000 images from each of 10 class

types, whereas CIFAR100 has 600 images from each of

100 types. In both datasets, 50,000 images are used for

training and 10,000 for testing purposes. These datasets are

identically and independently distributed (IID) [23],

basically having no label and quantity skews. Since we

compare models over a centralized system architecture in

this paper, having non-IID datasets would be equivalent to

Table 1: Originally used and quantized model sizes (MB).
Model Name Original Size

(MB)

Quantized

Size (MB)

Number

of Layers

ResNet50 103 48 176

ResNet101 180 86 346

VGG16 59 29 16

VGG19 80 40 19

EfficientNet-B0 16 8 238

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022 369

leaving some classes out of the question and render our

results incomparable with respect to other related work in

this domain. Yet, we included a sensitivity analysis having

different splits (Table 3: 50-50%, 70-30%, 90-10%) for

training and testing CIFAR datasets. In another study [24],

we currently tested models with non-IID datasets with

respect to their impact on distributed, federated learning

scenarios.

3.3. Unfreezing Model Layers for Transfer Learning

Transfer learning allows a model, pretrained with a former

dataset, to be unfrozen and retrained with the new dataset

at hand. Top layers are the ones closer to the model output,

which are also the fully-connected, dense layers. Since the

input layers are the same for all models (ingesting 32x32

bit images), the output layer and the hidden layers are of

utmost importance in improving model performance.

Therefore, we start by retraining models’ weights from

Top-to-Bottom, where Top denotes the model output. We

used the term “unfreeze” to denote the number of layers to

be retrained. For example, when we "unfreeze” Top-1

(dense) layer the dense layer is retrained, but hidden layers

are not affected, whereas when we unfreeze Top-10 layers,

we update and adapt 1 dense layer + 9 hidden layers.

VGG16-VGG19 models we used had 2 fully-connected

(dense) layers [25] and 13-16 hidden layers, respectively.

For fairness, we unfroze and retrained the same number of

dense & hidden layers in each model type.

After downloading selected pretrained models into Keras

for transfer learning, we initialized models’ top layers with

Keras’ default Glorot (Xavier) uniform initializer. This

initializer is known to fix the exploding & vanishing

gradient problems associated with random initialization

[26]. We can regard our new model-to-model layer transfer

strategy as a coarse-granularity initialization technique

where the top-layers of successor models (e.g. ResNet101

to ResNet50) are transferred with the presumptions that (a)

there is an evolutionary relation between the two model

generations which guarantees input-output compatibility

(2) the successor model has higher accuracy and the

predecessor model has smaller size. We report the results

in Section 4.

4. RESULTS AND DISCUSSION

In this section, we first present comparisons of the baseline

ResNet50-ResNet101 models over selected datasets. We

start by comparing their accuracies and continue with

training-testing times over two different GPU systems.

Then, we compare different model optimization techniques

in terms of their impact on model accuracy, time, and size.

We fix both training and testing epochs at 10 for all

experiments for reference. While training models for 10

epochs provides weight updates and accuracy

convergence, testing models for 10 epochs serves a

statistical validation for accuracy and inference timing

measurements.

4.1. Analysis and Comparison of Model Accuracies

Figure 3 shows the comparison of classification accuracies

for ResNet50-101 models over CIFAR10 and CIFAR100

datasets while retraining Top-1 (Dense) and Top-10 (1

Dense + 9 Hidden) layers. First, we observe in Figure 3a-

3b that retraining of even the last (Top-1) layer in both

ResNet50 and ResNet101 results in a significant

improvement of accuracy. Since original models were

trained using ImageNet, this case shows the immediate

benefits of transfer learning for both CIFAR10 (from

~0.78-to-0.96) and CIFAR100 (from ~0.5-to-0.95).

Second, training accuracies are always higher than testing

accuracies and the difference between them denotes the

amount of overfitting (since we have IID data). Third,

ResNet101 only has slightly higher training and testing

(a) Accuracy with CIFAR10 dataset Top-1 retraining.

(b) Accuracy with CIFAR100 dataset Top-1 retraining.

(c) Accuracy with CIFAR100 dataset Top-10 retraining.

Figure 3. Comparison of accuracies for Resnet50 and

Resnet101 models with (a) CIFAR10 Top-1, (b)

CIFAR100 Top-1, and (c) CIFAR100 Top-10 layers

retraining.

370 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022

accuracy compared to ResNet50. However, the dataset’s

image complexity has a bigger role in the final result, i.e.

CIFAR100 being more complex than CIFAR10 leads to

lower accuracies (0.7 vs. 0.9). Otherwise, ResNet50-101

models have very close validation accuracies in both

datasets. This proves that additional efforts and complexity

added to create ResNet101 model did not contribute

significantly to higher accuracy while it caused 60-80%

increase in model training time and sizes. ResNet101 takes

1.6-1.8x the training time of ResNet50 (see Table3: P100:

470sec vs. 840sec, V100: 280sec vs. 470sec) and increases

model size by ~1.74x (see: Table1: 103MB180MB). We

therefore find that operationalizing models in the field to

train & test them over different datasets can be as important

as offline feature and model engineering.

In Figure 3b-3c, a comparison of models over retraining of

Top-1 vs. Top-10 layers with CIFAR100 shows faster

convergence in Top-10 layers (e.g., 0.9 point reached at 3

epochs in Top-10 vs. 5 epochs in Top-1) and a slightly

higher accuracy result with Top-10 at the end (Top-1: 0.95

vs. Top-10:0.98). Note that we refer to unfrozen layers and

not the probably of a class prediction being in Top-1 vs.

Top-5 lists, since Top-5 result in an unacceptably higher

accuracies for field applications.

In Table 2, we briefly report different accuracy measures

including Recall, Precision and F1 for ResNet50-

ResNet101 models over different datasets. Since these

benchmark datasets were IID for all class types, all of the

measures gave similar accuracy results: ~0.9 for CIFAR10

and ~0.7 for CIFAR100. There are no label or quantity

skews to cause reductions in precision or recall. We tested

these issues in our recent work on distributed federated

learning [24] where non-IID datasets [27,28] can have

more impact on federated model performance [29].

While not shown here for brevity, we also tested a

Random Model (i.e. naive reference) with CIFAR100

dataset for cross-examination and correctness control and

we obtained accuracy: 0.01 (1/100), recall: 0.01,

precision: 0.01, Area Under Curve (AUC): 0.50 as

expected.

4.2. Model Training-Testing Times and GPU Effects

In this part, we compare training and testing times of the

baseline ResNet50-ResNet101 models over CIFAR100

dataset and by unfreezing Top10 layers. As a part of our

measurement and sensitivity analysis we run the

experiments over two different GPUs (P100-V100) and

change the ratio of training-testing datasets (50-50%, 70-

30%, 90-10%) to validate per mini-batch processing times.

We used TensorFlow Keras library and its evaluate()

function. The batch_size was 128 items for both training

and testing.

Table 3 shows that the training time for ResNet50 was 26.8

sec/30,000 images (~0.9 ms/image) and for ResNet101

42.7 sec/30,000 images (~1.4 ms/image). For example, if a

real-time application sets the inference time limit for the

DNN model to be 1ms, ResNet50 would be eligible for

field deployment whereas ResNet101 would not qualify.

Depending on the ratio of increase in training data the

training times increase and the testing times decrease, but

the total time remains consistent around ~53 seconds for

ResNet50 and ~84 second for ResNet101 over P100 GPU.

We observe that both training and testing times of

Resnet101 are 1.6-1.8x slower than ResNet50 for all data

sizes (e.g. Res101/Res50 testing for 90-10%:

8.2/4.9=1.67), which is due to the model size and

complexity.

Training and testing times improved by ~45% for both

models when we used Volta (V100) GPU, since it has

~45% more GPU cores (+TPU cores), higher memory

bandwidth as well as memory capacity (32GB vs 16GB).

For example, Res50 50-50% was 14.5 sec vs. 26.8 sec. In

an offline analysis, we also compared Adam or SGD

optimizers and observed no performance impact on

training time. The total time was similarly ~29 sec. for

ResNet50 and ~47 sec. for ResNet101 with V100.

Table 3: Effects of different GPU accelerators (P100,V100) on model training-testing time for different data ratios

(50-50%, 70-30%, 90-10%) using CIFAR100 dataset and Top-10 layers for retraining.

GPU Ratio (%) Train Time (sec) Test Time (sec) Total Time (sec)

Res50 Res101 Res50 Res101 Res50 Res101

P100 (Pascal) 50-50 26.8 42.7 27.8 40.5 64.6 83.2

70-30 37.4 59.9 14.7 24.4 52.1 84.3

90-10 48.1 76.9 4.9 8.2 53.0 85.1

V100 (Volta) 50-50 14.5 23.7 15.0 22.7 29.5 46.4

70-30 20.3 33.1 8.1 20.6 28.4 53.7

90-10 25.9 42.5 2.7 5.2 28.6 47.7

Table 2: ResNet50-101 accuracy values over CIFAR10-

100 datasets using Recall, Precision and F1 measures.

Model Dataset Recall Precision F1

CIFAR10 Res50-Top10 0.92 0.92 0.92

Res101-Top10 0.99 0.99 0.99

CIFAR100 Res50-Top10 0.72 0.76 0.74

Res101-Top10 0.73 0.77 0.75

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022 371

4.3. Comparison of Different Model Optimization

Techniques on Accuracy

Figure 4 shows the accuracy results for the basic Resnet50-

Resnet101 models and their optimized (quantized, weight-

clustered, transferred) versions over CIFAR10 (Fig.4a) and

CIFAR100 (Fig.4b) datasets, respectively and in

descending order of their accuracy achievements. We

report the accuracies obtained after 10 epochs of retraining.

First, we observed that unfreezing Top-10 Layers resulted

in higher accuracy compared to unfreezing only Top-1

layer. For Res50-cluster and Resnet101-cluster models,

although we used a relatively large number of clusters

K=8192 to obtain high-precision weights, the accuracy

drop over the original model was significant (~6%)

compared to the quantization optimization. Finally,

transferring top layers directly from ResNet101 to the

ResNet50 model (Res50+101 model-2-model) resulted in

the lowest accuracy before retraining. However, this

strategy was still more promising than the Res50-Cluster

model after retraining with both CIFAR10 and CIFAR100.

This technique requires more investigation by careful

selection of the transferred blocks.

Also, accuracies of all unmodified (Res50-Res101) and

optimized (quantized, clustered, transferred) models are

higher for CIFAR10 (~0.85-0.92), then CIFAR100 (~0.65-

0.75). Surprisingly, quantized versions of Res50-Res101

from float32-to-float16 resulted in a very small decrease

(<2%) in the accuracy, although we gained a significant

size reduction (see Sec 4.5).

Based on this subtle, but important difference we decided

to conduct another sensitivity analysis of model depth over

Resnet ad VGG. Figure 5 shows that ResNet benefited

more as we unfroze more layers, whereas VGG did not.

(a) Accuracies of models with CIFAR10 dataset.

(b) Accuracies of models with CIFAR100 dataset.

Figure 4. Accuracy comparison of different pre-trained DNN models and their optimized (quantized, clustered,

transfer learning, model-to-model layer transfer) versions after retraining of Top-1 and Top-10 layers.

Figure 5: Sensitivity of Resnet101 and VGG model

testing accuracy over different count of Top layers

unfrozen and retrained for 10 epochs.

372 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022

Including dense (Top 1-3) classifier layers to transfer

learning is generally a good idea but moving further into

the hidden layers does not always guarantee accuracy

gains. This may be due to the fact that model architectures

are originally designed and fit for their initial datasets,

which is ImageNet dataset in this case.

4.4. Comparisons of Training-Testing Times

Table 4 shows the total times for 10 training + 10 testing

epochs with 50,000 training and 10,000 testing images

(ratio ~83-17%) of original ResNet50-101 models and

their optimized (quantized, clustered, transfer learned, and

model-2-model layer transfer) versions over P100 and

V100 GPUs. There are two main findings within these

results: (1) clustering does not change the train-test times,

but there is a preparation time cost for these models, (2)

quantization is highly-sensitive to GPU’s mixed-precision

support at the hardware level: if there is support (V100) the

resulting times are 25% faster, but if not (P100) the train-

test times can be 30% slower. Resnet50+101 model-to-

model layer transfer has similar time performance to

weight clustering.

4.5. 3D Comparisons Including Size Reduction

In Table 1 we showed that quantization can reduce model

sizes by 50% (or 2x). Note that the accuracies presented in

Figure 4 were comparable within 2% of original models.

Quantization with mixed-precision support leads to the

best results in multi-dimensional assessment. However,

edge nodes currently don’t have GPUs with mixed-

precision support. These high-end GPUs are powerful, but

expensive and energy-consuming devices. So, their

operational use at the edge for mass scale is currently not

feasible.

Figure 6 shows the model inference time (X-axis) vs.

model accuracy (Y-axis) and bigger bubble sizes refer to

the bigger model sizes. High accuracy, small inference

time and smallest model sizes are preferable. From Fig. 6

we can see that EfficientNet-B0 Top-1-10 quant models

have the highest accuracy, smallest inference time and size.

In comparison, VGG19 models are at the outer rim of the

chart with lower accuracy, higher inference times and

relatively larger bubble sizes. Finally, Resnet101 models

have relatively larger sizes and inference times compared

to EfficientNet-B0 and Resnet50 models (respectively,

their quant versions) although their accuracies are also

high. For each model, we observe that quantization

increases the inference times while it makes the model

sizes smaller. While Fig 6. is illustrative, it cannot help us

make a final decision in model selection. Therefore, we use

a new operational score to combine conflicting dimensions

and rank our selected models. Table 5 shows the model

rankings based on OpScore. We added a fictitious MIN and

MAX model in the table, which picks the best and worst

values from among the analyzed models in the table. These

values can later be used for MIN-MAX normalization

purposes for each application. Theoretically, our OpScore

can take negative or relatively high values, but it will be

between [0,5] for almost all practical cases. For example, a

very poor performing model with <Acc:0,01; Size=1GB;

Time=100sec> has OpScore=5.0, whereas a relatively

good model with <Acc:0,99; Size=10MB; Time=10sec>

has OpScore=0.0. OpScore values of all the real pretrained

models for CIFAR10 are between [0,67-2,63] in Table 5.

Figure 7 shows the performance results of all models over

CIFAR100 dataset using a bubble chart for visual

comparison. Accuracy values have dropped for all the

models due to classification complexity of CIFAR100 as

expected. Yet, the general patterns and findings for

CIFAR10 reported in Figure 6 are still valid. Inference

times and model sizes are similar. Table 6 show the results

ranked by OpScore, respectively. Due to the decrease in

accuracy, OpScore values of all models with CIFAR100

are higher between [1,15-3,10]. There are only small

changes in the ordering of the models.

Figure 8 presents the sensitivity analysis of clustering

technique (K=51216,384) on model accuracy. Note that

the accuracy drops from ~0.9 to ~0.6 for CIFAR10 and

~0.7 to ~0.3 as the number of weight clusters decrease from

K=8192 to K=1024. This is due to the immense loss of

information in NN weights. Table 7 presents the same

analysis for effects on model size and model clustering

time. Note that this clustering time is a “preparation” time

that has to be spent before the model is used for training

and testing. Therefore, it is an additional cost. Most of the

related work do not report their model preparation times,

which could become a significant limit in practice. The

main goal of clustering is to reduce model size. Table 7

shows that this goal is achieved (103MB39MB), but at

the expense of accuracy loss and added clustering times.

An interesting observation is that, since Resnet101 is a

bigger model (~50 million weights) weight sharing via

Table 4: Training and testing times with different NVIDIA Tesla GPUs (P100-V100).
GPU Dataset-Layers Resnet50 Res50-

Quant

Res50-

Cluster

Resnet101 Res101-

Quant

Res101-

Cluster

Res50+101

P100 CIF10-Top1 472 630 471 842 1062 847 838

CIF100-Top1 476 642 476 841 1048 861 841

CIF10-Top10 528 671 540 894 1108 892 896

CIF100-Top10 540 691 524 895 1121 898 902

V100 CIF10-Top1 286 226 286 474 329 470 477

CIF100-Top1 286 218 285 493 325 470 477

CIF10-Top10 318 238 323 509 343 501 510

CIF100-Top10 319 238 319 509 343 507 514

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022 373

clustering reduces its accuracy more than Resnet50 (~30

Figure 6. 3D Bubble chart comparison of selected DNN models with CIFAR10.

Table 5. Ranking of evaluated models based on 3D KPI and unified OpScore using CIFAR10 dataset. MIN-

MAX values are obtained by selecting the best and worst value for each column and generating a score for this

fictitious model as reference; this can be used for normalization. Note that best and worst OpScore values range

between 0-5.

Model Name Accuracy Size (MB) Training Time (sec) Inference Time (sec) Score

MIN 0,93 8,10 27,72 6,06 0,54

B0 Quant Top-10 0,91 8,10 31,77 6,28 0,67

B0 Quant Top-1 0,89 8,10 27,98 6,27 0,75

B0 Top-10 0,93 16,60 29,92 6,07 0,86

B0 Top-1 0,89 16,60 27,72 6,06 1,05

B0 Cluster Top-10 0,40 11,00 29,34 6,07 1,60

Resnet-50 Quant Top-10 0,90 48,00 56,41 10,34 1,71

B0 Cluster Top-1 0,21 11,00 27,75 6,07 1,72

Resnet-50 Quant Top-1 0,89 48,00 51,51 10,39 1,74

Resnet-50 Top-10 0,92 103,00 44,48 8,14 1,81

Resnet-50 Top-1 0,90 103,00 40,09 8,14 1,91

VGG16 Quant Top-2 0,88 29,50 136,00 28,00 2,00

Resnet-50 Cluster Top-10 0,75 61,00 44,48 8,14 2,09

VGG16 Cluster Top-3 0,86 39,90 118,00 23,00 2,11

VGG16 Cluster Top-2 0,85 39,90 114,00 23,00 2,13

Resnet-101 Quant Top-10 0,91 86,00 89,78 17,02 2,14

Resnet-101 Quant Top-1 0,90 86,00 84,29 16,92 2,17

Resnet-50 Cluster Top-1 0,70 61,00 40,16 8,15 2,17

VGG16 Top-2 0,88 58,90 114,13 23,00 2,22

VGG16 Top-3 0,88 58,90 117,78 23,00 2,22

VGG19 Quant Top-2 0,87 40,10 167,48 34,00 2,23

Resnet-101 Top-10 0,93 180,00 71,18 13,56 2,25

VGG19 Cluster Top-3 0,88 54,30 144,85 29,00 2,29

VGG19 Cluster Top-2 0,87 54,30 141,33 29,00 2,32

Resnet-101 Top-1 0,91 180,00 67,51 13,60 2,35

VGG16 Quant Top-3 0,73 29,50 140,00 28,00 2,35

VGG19 Top-3 0,89 80,20 144,80 29,00 2,42

VGG19 Top-2 0,87 80,20 141,23 29,00 2,48

VGG19 Quant Top-3 0,77 40,10 171,31 34,00 2,50

Resnet-101 Cluster Top-10 0,77 115,00 71,25 13,56 2,55

Resnet-101 Cluster Top-1 0,73 115,00 67,51 13,63 2,63

MAX 0,21 180,00 171,00 34,00 3,68

374 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022

million weights) due to additional loss of weight

Figure 7. 3D Bubble chart comparison of selected DNN models with CIFAR100.

Table 6. Table 5. Ranking of evaluated models based on 3D KPI and unified OpScore using CIFAR100 dataset.

MIN-MAX values are obtained by selecting the best and worst value for each column and generating a score for

this fictitious model as reference; this can be used for normalization. Note that best and worst OpScore values

range between 0-5.

Model Name Accuracy Size (MB) Training Time (sec) Inference Time (sec) Score

MIN 0,75 8,10 27,28 6 1,08

B0 Quant Top-1 0,71 8,10 27,77 6,00 1,15

B0 Quant Top-10 0,71 8,10 30,94 6,00 1,15

B0 Top-10 0,74 16,60 29,63 6,00 1,41

B0 Top-1 0,71 16,60 27,36 6,00 1,46

B0 Cluster Top-10 0,12 11,00 29,59 6,00 1,76

B0 Cluster Top-1 0,05 11,00 27,28 6,00 1,80

Resnet-50 Quant Top-10 0,72 48,00 56,63 10,37 2,14

Resnet-50 Quant Top-1 0,70 48,00 51,05 10,27 2,17

Resnet-50 Cluster Top-10 0,66 61,00 44,61 8,22 2,23

Resnet-50 Cluster Top-1 0,63 61,00 40,50 8,22 2,27

Resnet-50 Top-10 0,74 103,00 44,47 8,11 2,34

VGG16 Quant Top-2 0,59 29,50 136,27 28,00 2,53

Resnet-101 Quant Top-10 0,73 86,00 88,43 16,87 2,59

VGG16 Cluster Top-2 0,56 39,90 113,84 23,00 2,60

Resnet-101 Quant Top-1 0,71 86,00 84,04 16,87 2,62

VGG16 Cluster Top-3 0,54 39,90 117,50 23,00 2,62

Resnet-101 Cluster Top-10 0,67 115,00 71,25 13,73 2,72

VGG19 Quant Top-2 0,60 40,1 167,37 34 2,74

VGG16 Top-2 0,59 58,90 113,92 23,00 2,74

Resnet-101 Cluster Top-1 0,64 115,00 67,50 13,65 2,75

VGG16 Top-3 0,56 58,90 117,63 23,00 2,77

Resnet-101 Top-10 0,75 180,00 70,18 13,58 2,79

Resnet-101 Top-1 0,74 180,00 67,3 13,58 2,80

VGG19 Cluster Top-2 0,58 54,3 141,1 29 2,82

VGG19 Cluster Top-3 0,57 54,3 144,5 29 2,83

VGG16 Quant Top-3 0,12 29,50 139,65 28,00 2,86

VGG19 Top-2 0,59 80,20 141,24 29,00 2,97

VGG19 Top-3 0,59 80,20 144,92 29,00 2,98

Resnet-50 Top-1 0,72 103,00 40,06 8,11 3,06

VGG19 Quant Top-3 0,07 40,1 171 34 3,10

MAX 0,07 180,00 167,37 29 3,69

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022 375

information.

5. RELATED WORK

While increasing the depth in DNN, generally increases the

accuracy of image classification, this accuracy gets

saturated and then even drops as more layers are added. He

et al. [17] proposed to reformulate plain or stacked layers

as residual functions leading to deeper networks without

increasing the costs of training. These networks were

called Residual Networks or ResNet in short. The state-of-

the art DNN including ResNets [17], DenseNet [30],

SqueezeNet [31] and EfficientNet [19,20] addressed

models’ size, accuracy and inference time balance, but the

outcomes were not operationalized in real-time field

applications, because of resource limitations at the edge

and the need for continuous architectural adaptation.

Methods that only consider improvements in inference

time, assume that model training or tuning would be done

once at the beginning or infrequently. However, modern

Table 7: Sensitivity of Resnet50-101 models per

number of clusters over size (MB) and time (sec).

Model Name -

Cluster#

Size

(MB)

Clustering

Time (sec)

Res50 – Original 103 -

Resnet50 -512 39 398

Resnet50 -1024 42 561

Resnet50 -2048 47 911

Resnet50 -4096 55 1556

Resnet50 -8192 61 2894

Res101 – Original 180 -

Resnet101 -512 76 1014

Resnet101 -1024 82 1560

Resnet101 -2048 93 2692

Resnet101 -4096 115 4808

Resnet101 -8192 130 7800

(a) Sensitivity of ResNet accuracy to number of weight clusters over CIFAR10 dataset.

(b) Sensitivity of ResNet accuracy to number of weight clusters over CIFAR100 dataset.

Figure 8. Accuracy comparison of clustered Resnet50-101 pre-trained models over different cluster counts.

376 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022

distributed [32] or decentralized scenarios teach us that

frequent model updates may be necessary. Our work

quantifies the evaluation and ranking of DNN’s for this

purpose.

DeepCPU [33] developed by Microsoft also focuses on

operational models, but only addresses model serving time

reduction. They denote, users can tolerate long training

times since this step is offline but improving serving time

is crucial since this makes the biggest difference between

shippable vs. non-shippable model. Models need to

conform to Service-Level Agreements (SLA) in real-time

and thus must make fast and accurate predictions.

DeepCPU proposes cache-aware partitioning to optimize

L2-L3 data movements and weight-centric streamlining.

Specifically, they demonstrate 10x-60x speedups in

serving time of different NLP models. There are other

researchers that address model performance issues at the

hardware level. HardNet [34] aimed to reduce the traffic to

DRAM by reducing the number of accesses to feature maps

in CNN. This operation reduced the number of floating-

point operations (flops) and inference latency.

In this paper, we evaluated the performance benefits and

potential hardware dependencies of quantization. While

our work is orthogonal to scalar and vector-based

quantization [35], it is still useful to summarize related

work in this group. Fixed scalar quantization of weights

stored in floating-point variables can reduce performance

as the amount of information is reduced. Researchers

analyzed resilience of DNN under quantization [36] and

effects of retraining models to alleviate this problem.

Zhang et al. [15] developed a strategy called Learned

Quantization Networks (LQ-Nets) that can change the

fixed point and adapt quantization level to balance the

tradeoff between size and accuracy. Han, et al. [16]

reduced model sizes further via deep compression while

also trying to address power issues. They designed a three-

stage pipeline of model pruning, trained quantization, and

Huffman coding to reduce the storage requirement of NN

without affecting their accuracy.

Nath, et al. [37] claim that most of these methods suffer

from two strict requirements, which hinder their

operational performance: (1) they require special hardware

to be effective or (2) they have to modify their model

structures and/or weights via pruning [38] and retraining

which is quite costly to handle during operation. In their

paper titled “better together” [37], they proposed “adjoint

networks” where a large DNN continuously acts as a

teacher to a smaller DNN. Their approach is orthogonal to

quantization and neural architectural search [32] methods.

A similar approach by Shen, et al. [39] called MealV2 uses

an ensemble of teachers for “knowledge distillation”

coupled with a good initialization of the student model. Our

model-to-model layer transfer method was inspired by

these approaches, but we wanted to further minimize the

cost of retraining by quick layer transfers and stitching

before retraining instead of weight initialization. We could

resemble our new approach to creation of a “Frankenstein”

model, which borrows layers of the architecture model

different related models.

Other orthogonal but related work include model

generalization issues [40,41] and DNN performance

surveys [42,43]. Recht, et al. [40] performed a longitudinal

study for model generalization or robustness using

ImageNet classifiers using CIFAR10 and ImageNet

datasets. After creating a new labelled dataset called

CIFAR 10.1, they found that (1) there was a significant

performance drop in all models developed during 2013-

2018 (a very active 5 years for ML research), (2) drops

were due to models’ inability to generalize to slightly

harder images and not due to model adaptability to new

data (i.e. overfitting to old datasets). Zhang, et al. proposed

adversarial auto-augmentation [41] which is a data

augmentation technique to help target NN learn hard

features and improve model generalization

Li, et al. [43] gave a comprehensive survey of deep

learning (DL) compilers. They listed properties of DL

frameworks such as TensorFlow, PyTorch, Keras, etc. and

DL accelerator hardware (by Google, Intel, Amazon). It is

a useful survey for understanding general OpML issues.

6. CONCLUSION AND FUTURE WORK

We described a framework for multi-dimensional tradeoff

assessment of DNN model performances based on

accuracy, time, and size. Comparison of modern

quantization and weight sharing (clustering) techniques

revealed that quantization can provide size savings without

loss of accuracy, yet it needs GPU support for mixed-

precision float operations for achieving acceptable train &

test times. If this can be provided, then its operational

efficiency and viability is high. Yet, these high-end GPUs

are currently not feasible for use in edge devices, especially

at large-scale. NN weight sharing via clustering can save

sizes by up to 60%, but its accuracy is sensitive to number

of clusters used. While higher cluster counts give better

accuracy, they eventually lose benefit in size and time

dimensions. Finally, direct layer transfers among models

requires careful selection. Otherwise, their accuracy can be

lower than the original models.

In the future, we plan to extend our sensitivity analysis to

different models and model parameters. Specifically, we

are currently investigating the effect of decentralized, non-

IID and unbalanced datasets in distributed federated

learning settings [44,45,46]. Our work proposes a 3D

evaluation scheme for these and other comparable

techniques. We hope that DNN, AI, ML, OpML

researchers can repeat these assessments over different

DNN models and datasets.

REFERENCES

[1] F. Fabio, G. Lami, A. M. Costanza. "Deep learning in automotive

software." IEEE Software 34(3), 56-63, 2017.

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022 377

[2] J. Villalba-Diez, D. Schmidt, R. Gevers, J. Ordieres-Meré, M.

Buchwitz, W. Wellbrock, “Deep learning for industrial computer

vision quality control in the printing Industry 4.0”. Sensors, 19(18),

3987, 2019.

[3] Z. Hu, Y.Zhao, M. Khushi. "A survey of forex and stock price

prediction using deep learning." Applied System Innovation 4(1), 9,

2021.

[4] J. Kim, Y. Shin, E. Choi. "An intrusion detection model based on

a convolutional neural network." Journal of Multimedia

Information System 6(4), 165-172, 2019.

[5] Deng, L., Liu, Y. (Eds.). Deep learning in natural language

processing. Springer, 2018.

[6] Bashar, A. “Survey on evolving deep learning neural network

architectures”. Journal of Artificial Intelligence, 1(02), 73-82,

2019.

[7] A. Collette, Python and HDF5, O'Reilly Media, Inc., November

ISBN: 9781449367831, 2013.

[8] Internet: Open Neural Network Exchange (ONNX), The open

standard for machine learning interoperability, https://onnx.ai,

24.10.202.

[9] Internet: Model Zoo, Open source deep learning code and

pretrained models. https://modelzoo.co, 24.10.202.

[10] Internet: Google Colaboratory, https://colab.research.google.com/,

24.10.202

[11] M. Abadi, P. Barham, J.Chen, Z. Chen, A. Davis, J. Dean, M.

Devin et al. "Tensorflow: A system for large-scale machine

learning." In 12th USENIX Symposium on Operating Systems

Design and Implementation (OSDI), 265-283. 2016.

[12] Yu, R., Li, P. “Toward resource-efficient federated learning in

mobile edge computing”. IEEE Network, 35(1), 148-155, 2021.

[13] M. , Paulius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia,

B. Ginsburg, et al. "Mixed precision training." arXiv preprint

arXiv:1710.03740 (2017).

[14] D. Lin, T. Sachin Talathi, A. Sreekanth "Fixed point quantization

of deep convolutional networks." In International Conference on

Machine Learning, PMLR, 2849-2858, 2016.

[15] D. Zhang, J. Yang, D. Ye,, G. Hua, “LQ-Nets: Learned

quantization for highly accurate and compact deep neural

networks”. In Proceedings of the European Conference on

Computer Vision (ECCV) 365-382, 2018.

[16] S. Han, H. Mao, W. J. Dally, “Deep compression: Compressing

deep neural networks with pruning, trained quantization and

Huffman coding”. arXiv preprint arXiv:1510.00149, 2015.

[17] K. He, X. Zhang, S. Ren, J. Sun, “Deep residual learning for image

recognition”. In Proceedings of the IEEE conference on

computer vision and pattern recognition (CVPR), 770-778,

2016.

[18] Simonyan, K., Zisserman, A. “Very deep convolutional networks

for large-scale image recognition”. arXiv preprint

arXiv:1409.1556, 2014.

[19] Internet: Keras Applications, https://keras.io/api/applications,

24.10.202

[20] M. Tan, Q. Le. "EfficientNet: Rethinking model scaling for

convolutional neural networks." In International Conference on

Machine Learning (ICML), 6105-6114. PMLR, 2019.

[21] Tan, M., Le, Q. “EfficientNetv2: Smaller models and faster

training”. In International Conference on Machine Learning,

10096-10106, PMLR, 2021

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, et al. "Scikit-learn: Machine learning in

Python." The Journal of Machine Learning Research V.12, 2825-

2830, 2011.

[23] He, Y., Shen, Z., Cui, P. “Towards non-IID image classification: A

dataset and baselines”. Pattern Recognition, 110, 107383, 2021.

[24] M.B. Çamlı, I. Ari, “Sensitivity Analysis of Federated Learning

over Decentralized Data and Communication Rounds”, 7. Ulusal

Yüksek Basarimli Hesaplama Konferansı (BAŞARIM), no.14,

2022

[25] Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H. P. “Pruning

filters for efficient ConvNets”. arXiv preprint arXiv:1608.08710,

2016.

[26] Glorot, X., Bengio, Y. “Understanding the difficulty of training

deep feedforward neural networks”. In Proceedings of the 13th

international conference on artificial intelligence and statistics,

249-256, JMLR Workshop and Conference Proceedings, 2010.

[27] Luo, J., Wu, X., Luo, Y., Huang, A., Huang, Y., Liu, Y., Yang, Q.

“Real-world image datasets for federated learning”. arXiv preprint
arXiv:1910.11089, 2019

[28] Zhu, H., Xu, J., Liu, S., Jin, Y. “Federated Learning on Non-IID

Data: A Survey”. arXiv preprint arXiv:2106.06843, 2021.

[29] Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.

“Federated learning with non-IID data”.arXiv preprint

arXiv:1806.00582, 2018.

[30] F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell, K.

Keutzer, “DenseNet: Implementing efficient convnet descriptor

pyramids” arXiv preprint arXiv:1404.1869, 2014.

[31] F. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, K.

Keutzer."SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and< 0.5 MB model size." arXiv preprint

arXiv:1602.07360, 2016.

[32] H.R. Roth , D. Yang, W. Li, A. Myronenko, W. Zhu, Z. Xu, X.

Wang, D. Xu, “Technique to perform neural network architecture

search with federated learning”, WO/2021-247338A1, WIPO

Patent, 2021.

[33] M. Zhang, S. Rajbhandari, W. Wang, Y. He, “DeepCPU: Serving

RNN-based deep learning models 10x faster”. In 2018 USENIX

Annual Technical Conference (ATC), 951-965, 2018.

[34] P. Chao, C. Kao, Y. Ruan, C. Huang, Y. Lin. "Hardnet: A low

memory traffic network" In Proceedings of the IEEE/CVF

International Conference on Computer Vision, 3552-3561.

2019.

[35] Sung, W., Shin, S., Hwang, K. “Resiliency of deep neural networks

under quantization”. arXiv preprint arXiv:1511.06488, 2015.

[36] Gong, Y., Liu, L., Yang, M., Bourdev, L. “Compressing deep

convolutional networks using vector quantization”. arXiv preprint

arXiv:1412.6115, 2014.

378 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 15, SAYI: 4, EKİM 2022

[37] Nath, U., Kushagra, S. “Better Together: Resnet-50 accuracy with

13x fewer parameters and at 3x speed”. arXiv preprint

arXiv:2006.05624, 2020.

[38] Ma, X., Yuan, G., Lin, S., Li, Z., Sun, H., Wang, Y. “ResNet can

be pruned 60×: Introducing network purification and unused path

removal (p-rm) after weight pruning”. In 2019 IEEE/ACM

International Symposium on Nanoscale Architectures, 1-2,

IEEE, 2019.

[39] Shen, Z., Savvides, M. “Meal v2: Boosting vanilla Resnet-50 to

80%+ Top-1 accuracy on Imagenet without tricks”. arXiv preprint

arXiv:2009.08453, 2020.

[40] B. Recht, R. Roelofs, L. Schmidt, L., V. Shankar, “Do Imagenet

classifiers generalize to Imagenet?” In International Conference

on Machine Learning, 5389-5400, PMLR, 2019.

[41] Zhang, X., Wang, Q., Zhang, J., Zhong, Z. “Adversarial

autoaugment”. arXiv preprint arXiv:1912.11188, 2019.

[42] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, C. Liu, “A survey on

deep transfer learning”. In International conference on artificial

neural networks 270-279, Springer, 2018.

[43] M. Li, Y. Liu, X. Liu, Q. Sun, X. You, H. Yang, Z. Luan, L. Gan,

G. Yang, D. Qian. "The deep learning compiler: A comprehensive

survey." IEEE Transactions on Parallel and Distributed Systems,

Vol. 32, No. 3, 708-727, 2020.

[44] McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.

A. “Communication-efficient learning of deep networks from

decentralized data”. In Artificial intelligence and statistics, 1273-

1282, PMLR, 2017.

[45] T. Li, A. K. Sahu, A. Talwalkar, V. Smith, V. “Federated learning:

Challenges, methods, and future directions”. IEEE Signal

Processing Magazine, 37(3), 50-60, 2020.

[46] Maraş, A. Erol, Ç. “Emerging Trends in Classification with

Imbalanced Datasets: A Bibliometric Analysis of Progression”.

Bilişim Teknolojileri Dergisi, 15(3), 275-288, 2022.

