
95

Comparing Partial and Full Return Spectral Methods
Kısmi ve Tam Dönümlü Spektral Metotların Karşılaştırması

İhsan Haluk AKINa, Gökay SALDAMLIb, Murat AYDOSc*

aFatih Üniversitesi, Mühendislik Fakültesi, Bilgisayar Müh. Bölümü, E Blok, 34500, Büyükçekmece, İstanbul
bBoğaziçi Üniversitesi, Uygulamalı Bilimler Yüksekokulu, Yönetim Bilişim Sistemleri Bölümü,  

34342, Bebek, İstanbul 
cPamukkale Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü, 20070, Kınıklı, Denizli

Geliş Tarihi/Received : 21.06.2011, Kabul Tarihi/Accepted : 10.11.2011

 

ÖZET
Bu çalışmada, yakın zamanda sunulmuş spektral modüler aritmetik işlemlerinin aritmetik karmaşıklığı 
üzerindeki bir analiz adım adım değerlendirme yöntemi ile karşılaştırılmıştır. Bilgisayar aritmetiğinde spektral 
yöntemlerin standart kullanımı çarpma ve indirgeme adımlarının spektrum ve zaman uzayında birbirinden 
ayrı olarak gerçekleştirilmesi gerektiğini belirtmektedir. Bu tarz bir prosedür ise açıkça tam dönümlü  
(ileri ve geri yönde) DFT hesaplamalarına ihtiyaç duymaktadır. Öte yandan, bazı kısmı değerlerin işlem 
sırasında hesaplanması ile, yeni yöntemler indirgeme işlemi de dahil olmak üzere tüm verilerin tüm zamanlarda 
spektrumda tutulmasını gerektiren bir yaklaşımı benimsemişlerdir. Tüm bu yaklaşımların işlem süresi 
performanslarını karşılaştırdığımızda, tam dönümlü algoritmaların son zamanlarda önerilmiş yöntemlerden 
daha iyi performans gösterdiğini bu çalışmada göstermiş bulunmaktayız.

Anahtar Kelimeler: Spektral modüler aritmetik, Modüler indirgeme, Modüler çarpma, Montgomery 
            indirgeme.

ABSTRACT
An analysis on the arithmetic complexity of recently proposed spectral modular arithmetic – in particular 
spectral modular multiplication- is presented through a step-by-step evaluation. Standart use of spectral 
methods in computer arithmetic instructs to utilize separated multiplication and reduction steps taking place in 
spectrum and time domains respectively. Such a procedure clearly needs full return (forward and backward)                 
DFT calculations. On the other hand, by calculating some partial values on-the-fly, new methods adopt an 
approach that keeps the data in the spectrum at all times, including the reduction process. After comparing the 
timing performances of these approaches, it is concluded that full return algorithms perform better than the 
recently proposed methods.
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1. INTRODUCTION

Spectral techniques for integer multiplications 
have been known for over a quarter of a century 
(Schönhage and Strassen, 1971). These methods 
are extremely efficient for applications using 
large size integer multiplications. The technique 
starts with transforming the encoded integers 
to the frequency domain (possibly via FFT), 
which is followed by a point multiplication in 
the spectrum. After this computation, an inverse 

transform and a decoding is applied to send 
the result back into the time domain as seen in 
Figure 1.

Figure 1. Shönhage and Strassen’s Integer 
multiplication.
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After the RSA proposal (Rivest et al., 1978), 
modular arithmetic-in particular modular 
reduction-attracts more and more interest. 
Perhaps, a method (Montgomery, 1985) 
described by P. Montgomery in 1985 is the 
most notable presentation among several 
other methods. Montgomery reduction carries 
numbers into n-residues, in which modular 
multiplication is more effective if consecutive 
multiplications are performed.

Saldamli proposed a new method for integer 
modular reduction (Saldamli, 2005; Saldamli 
and Koc, 2007). This method performs reduction 
on spectral domain rather than the time domain. 
In fact the method is an adaption of the 
redundant Montgomery algorithm to the spectral 
domain. Based on this reduction, he further 
proposed spectral modular multiplication, and 
spectral modular exponentiation. However, in 
their work, the authors did not conduct a true 
comparision with the existing literature. In this 
study, our main objective is to give a regirous 
comparision between the usual redundant 
Montgomery algorithm and proposed methods.

Going back again to the history: RSA altered 
the history of cryptography by bringing up the 
public key cryptography notion. Later in late 80s, 
Koblitz and Miller independently introduced the 
elliptic curve cryptography-ECC, (Miller, 1986; 
Koblitz, 1987). Because of its efficiency, short 
key lengths and mature mathematics ECC is 
recently adopted by the U.S. Government as the 
basic technology for key agreement and digital 
signature standard (NIST, 2009).

The security of the ECC depends on the well 
known discrete logarithm problem. To setup 
the system one has to compute exponentiations 
in the elliptic curve group, requiring several 
calculations (especially multiplications)  with in 
a finite field. As the ECC over binary and prime 
fields are standardized  (IEEE, 1999; ANSI, 
2001), one can argue that the practical (i.e. 
implementation) aspects of these systems are 
fairly mature. On the other hand, the arithmetic 
in medium size characteristics extension 
fields (i.e. GF (pk) for some positive integer 
k and a prime p such that 0 < p < 2128) is still 
a very active research topic. Recently, some 
researchers proposed and evaluated the spectral 
modular reduction over the medium size 

characteristics fields (Baktir et al., 2007; Baktir, 
2008). Moreover, he successfully applied the 
method to ECC.

In this study, we compare the performance of 
the standard modular FFT multiplication and 
spectral modular multiplication. To be more 
specific, FFT multiplication combined with the 
redundant Montgomery reduction and recently 
proposed spectral algorithms given by Saldamli 
and Baktir et al. (Saldamli, 2005; Baktir et al., 
2007). We believe, developers in particular 
cryptographic engineers would benefit the 
outcomes of this work as  it would give them a 
fair foreseeing before doing their design work. 
The presentation of our study is organized as 
follows.

In the next section, after giving the preliminary 
definitions, we state the standard modular FFT 
multiplication as a combination of Schönhage 
and Strassen’s integer multiplication algorithm 
(SaSIMA) and redundant Montgomery 
reduction.  Our spectral modular multiplication 
presentation follows the notation and 
terminology given in (Saldamli, 2005).

In Section 3, we present our evaluation results 
for the prime fields showing that SaSIMA 
performs much better than the spectral modular 
multiplication. In Sections 4 and 5, we turn our 
attention to multiplication over the medium 
size characteristics fields; present an adaption 
of SaSIMA to GF (pk) and report a similar 
result when it is compared with the algorithm 
proposed in (Baktir et al., 2007).  Finally,  we 
conclude our work in the last section.

2. SPECTRAL MODULAR 
REDUCTION

We briefly give the basic terminology needed 
for the presentation of the spectral modular 
operations.
Definition 1 Let x(t) = x0  + x1 t + · · · + xd−1 t

d−1 Є 
Z[t].  If x(b) = a for some a Є Z than we say x(t) 
is a polynomial representation of a with respect 
to base b.

2. 1. Discrete Fourier Transform (DFT)

The definition and properties of DFT in a 
finite field setting is slightly different from the 
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common use of this transform in engineering. 
In order to suppress on this distinction we start 
with a formal definition of DFT over finite 
fields.

Definition 2 Let ω be a primitive d-th root of 
unity in Zq and, let x(t) and X (t) be polynomials 
of degree d − 1 having entries in Zq. The DFT 
map over Zq is an invertible set map sending x(t) 
to X (t) given by the following equation;

   
                  (1)

With the inverse,

for i, j = 0, 1, . . . , d − 1.  We say x(t) and 
X (t) are transform pairs,  x(t) is called a time 
polynomial and sometimes X (t) is named as the 
spectrum of x(t).

Remark 1 In the literature, DFT over a finite 
ring spectrum is also known as the Number 
Theoretical Transform (NTT).  Moreover, if q 
has some special form such as a Mersenne or a 
Fermat number,  the transform named after this 
form; Mersenne Number Transform (MNT) or 
Fermat Number Transform (FNT). 

Note that, unlike the DFT over the complex 
numbers,  the existence of DFT over finite rings 
is not trivial. In fact, Pollard mentions that the 
existence of primitive root d-th of unity and the 
inverse of d do not guarantee the existence of a 
DFT over a ring (Pollard, 1976). He adds that a 
DFT exists in ring R if and only if each quotient 
field R/M (where M is maximal ideal) possesses 
a primitive root of unity.

To simplify our discussions,  throughout this text 
we take q as a Mersenne prime and the principal 
root of unity as ω = −2 without loss of generality.  
According to Saldamli and Baktir et al., such 
a preference reflects the best performance for 
DFT computations, spectral multiplications and 
eductions among other choices (Saldamli, 2005;                   
Baktir et al., 2007).

2. 2. SaSIMA Combined with Redundant 
Montgomery Reduction

To be consistent, we adopt the previous section’s 
notation and state the standard modular FFT 
multiplication as a combination of SaSIMA and 
redundant Montgomery reduction. 

Let r, b, u Є Z, b = 2u and ni (t) be the polynomial 
representation of an integer multiple of modulus 
n such that the zeroth coefficient of ni (t) satisfies 
(ni)0   = 2i−1 for i = 1, 2, . . . , u (observe that n(t) 
= n1(t)).

Now, we write a β multiple of n(t) as

                                        (2)

Where b > β Є N and βi represents the binary 
digits of β.

Algorithm 1 Spectral multiplication with time 
reduction

Suppose that there exist a d-point DFT map for 
some principal root of unity  ω in Zq, and X (t) 
and Y (t) are transform pairs of x(t) and y(t) 
respectively where x(b)  = x and y(b) = y for 
some x, y < n.   Let NT = {n1(t), n2 (t), . . . , nu (t)} 
be the set of special polynomials as described 
above;

Input   : X (t), Y (t) and a basis set NT
Output: Z (t) = DF T (z(t)) where z  xy2−db mod 
n and z(b) = z,

Observe that Alg. 1 requires a full return 
computation (i.e. Step 2) right after the 
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component-wise multiplication. Moreover,  
Steps 4 through 9 perform the reduction in time 
domain implementing the so called redundant 
Montgomery reduction.

2. 3. Modified Spectral Modular Product   
(MSMP)

On the other hand,  MSMP describes a partial 
return algorithm originally described by 
Saldamli (Saldamli, 2005). Let r, b, u Є Z, b 
= 2u and ni(t) be the polynomial representation 
of an integer multiple of n such that the zeroth 
coefficient of ni (t) satisfies (ni)0 = 2i−1 for i = 1, 
2, . . . , u (note that n(t) = n1 (t)). We can now 
write β · N (t) as

   
                                      (3)

Where βi is a binary digit of β and Ni(t) = DFTd
ω 

(ni(t)) for i = 1, 2, . . . , u.  Note that β < b and 
βi = 0 for i > u.

Algorithm 2 MSMP algorithm

Suppose that there exist a d-point DFT map for 
some principal root of unity ω in Zq, and X (t) 
and Y (t) are transform pairs of x(t) and y(t) 
respectively where x(b) = x and y(b) = y for 
some x, y < n and b > 0. Let NF = {N1 (t), N2 (t), 
. . . , Nu (t)} be the set of special polynomials as 
described above;

Input: X (t), Y (t) and a basis set NF
Output: Z (t) = DF T (z(t)) where z  xy2−db mod 
n and z(b) = z,

3. COMPARING SaSIMA AND MSMP

Notice that both of the algorithms perform their 
multiplication in the spectral domain. However,  
they employ different reduction process. To be 
more informative; the reduction in Alg. 1 takes 
place in time whereas Alg. 2 computes the 
modular reduction in spectral domain. Therefore, 
we particularly probe this difference to compare 
the arithmetic and ASIC performances of these 
algorithms through a step-by-step evaluation.

3. 1. Arithmetic Performance

In order to perform the Montgomery reduction, 
the least significant word of the partial sum 
has to be known in advance at each iteration.  
Therefore,  Alg. 2 requires partial returns to 
time domain to determine the least significant 
words.  With the help of these partial returns, 
reduction calculations are performed in spectral 
domain.

On the other hand,  Alg. 1 performs the 
Montgomery reduction in time domain.   
Naturally, such a reduction needs a full return 
of the multiplication result to the time domain.  
Once the reduction is completed using redundant 
Montgomery method, a forward DFT transform 
is applied to grasp the spectral coefficients.

At first glance,  the partial return of the Alg. 2 
seems advantageous over Alg. 1 requiring full 
forward and backward DFTs. However, if the 
arithmetic requirements of both algorithms are 
evaluated step-by-step (i.e. given in Tables  1 
& 2) and further summed  up in Table 3, it is 
easily seen that full return algorithm needs less 
additions and hence behaves better than the 
partial return one.

Another comparison concern is the memory 
requirements of both algorithms. As both 
algorithms enjoy the performance gain comes 
with the high radix Montgomery reduction, 
one has to pre-compute and store the basis sets. 
Observe that Alg. 1 and Alg. 2 require u and q 
sized words respectively for such allocations.  If 
the relation 2u<q is considered (see “Saldamli, 
2005” for the exact ratio), one sees that Alg. 1 is 
advantageous over  Alg. 2.
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Table 1. Step by step arithmetic requirements of 
Alg. 1.

3. 2. ASIC Performance Evaluation

Since spectral methods exploit massive 
parallelism,  ASIC architectures are utmost 
suitable for their employments. In this respect, 
precise ASIC analysis for both algorithms 
have to be given for a healthy comparison. As 
the complexity of the multiplication for both 
algorithms is same, we exclude its cost from our 
analysis. Alg. 1 consists of three stages, namely; 
iDFT, reduction steps and DFT. Among those 
three, DFT and iDFT can be calculated with the 
same FFT hardware, preferably with a butterfly 
network taking logarithmic time with respect to 
the operand size.

If Alg. 1 is considered,  it has a single stage, 
consists of reduction steps and partial return 
embeddings.

Table 2. Step by step arithmetic requirements of 
Alg. 2.

This stage loops d times and calculates a single 
reduction step in one clock cycle as seen in            
Figure 2.

Figure 2. Steps of Alg. 1.

On the other hand, the loop of Alg. 2 contains a 
partial return, which calculates the value z0. As 
mentioned before this single word computation 
takes the same logarithmic time as the full iDFT 
calculation. Since this partial return is computed 
at every iteration of the loop as it can be seen in     
Figure 3, the rest of the remaining steps in both 
algorithms have similar complexities.

Moreover, if redundancy and bound control, 
and smaller sized precomputation (see “Sal-
damli, 2005”) are considered Alg. 1 again out-
performs. If presented formally; let reduction 
and iDFT times are denoted by Tred and TiDF T 

respectively, then

and

Here, note that TDF T < TiDF T because of the 
constant multiplication.

Table 3. Arithmetic performance of Alg. 1 & Alg. 2.

Step 1 contains d multiplications. 
Step 2 

 

contains d multiplications. 

contains d(d− ) additions and 
d(d−1) rotations and d constant 
multiplications 

Step 3 none. 

Step 4 none (loop d times). 

Step 5 contains 1 addition. 

Step 6 
 

contains 1 addition (step 5 and 6 uses a 
temporary variable to avoid one addition). 

contains  (u − 1)d + d additions, which 
Step 7 

 

makes ud. 

contains only memory mappings. 

Step 8 none (end loop d times). 
Step 9 contains 1 addition. 

Step 10 contains d(d − 1) additions and d(d − 1) 

Step 11 rotations.   

Step 12 none. 

 

Step 1 contains d multiplications. 
Step 2 none. 

Step 3 none (loop d times). 

Step 4 contains d − 1 additions and 1 constant 
multiplication. 

Step 5 

 

contains 1 addition. 

 
Step 6 

 

contains 1 addition  (step 5 and 6 uses  

a  temporary  variable  to avoid one 
addition). 

Step 7 
 

contains (u − 1)d + d additions, which 
makes ud. 

 

Step 8 contains d + 1 additions. 
Step 9 contains d rotations. 

Step 10 none (loop d times). 

Step 11 contains d additions. 

Step 12 none. 

 

Step 1 contains d multiplications. 
Step 2 none. 

Step 3 none (loop d times). 

Step 4 contains d − 1 additions and 1 constant 
multiplication. 

Step 5 

 

contains 1 addition. 

 
Step 6 

 

contains 1 addition  (step 5 and 6 uses  

a  temporary  variable  to avoid one 
addition). 

Step 7 
 

contains (u − 1)d + d additions, which 
makes ud. 

 

Step 8 contains d + 1 additions. 
Step 9 contains d rotations. 

Step 10 none (loop d times). 

Step 11 contains d additions. 

Step 12 none. 

 

 

 Alg. 1 Alg. 2 
Multiplication d d 

Constant 

Multiplication 

d d 

Addition  (u+2)·d2 +1 (u+3)·d2+2d 

Shift and Rotate 2d(d-1) d.d 

Stored Memory 
(bits) 

u.b.d q.b.d 

 



Figure 3. Steps of Alg. 2.

Above analysis demonstrates a fair comparison 
of both algorithms. In fact, one can equipped 
Alg. 1 with more features that one can not do 
that with  Alg. 2. For instance; better parameters 
on the encoding and decoding can be chosen 
while transforming to the non-redundant form. 
With these parameters, Montgomery reduction 
requires less values to store and can be calculated 
faster as described by some references (Tenca 
and Koc, 1999; Todorov et al., 2001; Bunimov 
and Schimmler, 2003).

As a last remark,  we remind that in our analysis 
we reference the worst case DFT and iDFT 
computa- tion. The analysis of fast Fourier 
transform algorithms are beyond the scope of 
this text. However; in real world applications one 
should benefit the fruits of this mature methods. 
We refer the reader to textbook presentations 
for such discussions (Nussbaumer, 1982;  
Blahut, 1985).

4. SPECTRAL MODULAR 
ARITHMETIC FOR FINITE FIELD 

EXTENSIONS

In this section, we turn our attention to the 
arithmetic in the extension fields and revisit two 
methods of multiplication including an adaption 
of Schönhage and Strassen’s algorithm and 
the algorithm of Baktir et al. (Schönhage and 
Strassen, 1971; Baktir et al., 2007).

Abstractly, a finite field consists of a finite 
set of objects together with two binary 
operations (addition and multiplication) that 
can be performed on pairs of field elements.  
These binary operations must satisfy certain 
compatibility properties.  There is a finite field 
containing q field elements if and only if q is a 
power of a prime number,  and in fact for each 
such q there is precisely one finite field denoted 
by GF (q). When q is prime the finite field is 
called a prime field whereas if q = pk for a prime 
p and k>1, the finite field GF (pk) is called an 
extension field.  The number p is named as the 

characteristic of the finite field and in case of  
p = 2, the extension field is called a binary 
extension field.

The extension field GF (pk ) can be represented 
by the set of polynomials with polynomial 
addition and multiplication modulo an 
irreducible polynomial f (t) over GF (p) having 
degree k. The degree of the polynomial f (t) is 
also referenced as the degree of the extension. In 
fact,  the defining polynomial f (t) characterizes 
the structure of the mathematical object consist 
of the polynomial congruent classes.  Since for 
every prime power q there exists a unique finite 
field, the structure of the finite field does not 
depend on the choice of the defining polynomial 
as long as it is an irreducible having degree k.

Being a polynomial ring,  the arithmetic 
in extension fields is the familiar modular 
polynomial arithmetic. Since the characteristic is 
p, addition is performed by adding polynomials 
modulo p whereas multiplication involves a 
polynomial multiplication and a reduction with 
respect to the defining irreducible polynomial  
f (t).

We assume that the parameter p and f (t) can 
arbitrarily be chosen without concerning about 
the security of a cryptosystem defined over 
the extension field. Certainly, our first choice 
for p would be a Mersenne prime enjoying the 
one’s complement arithmetic. Similarly we 
would tend to choose f (t) as a low hamming 
weight polynomial such as a binomial or a 
trinomial. Moreover, we would insist on fixing 
the coefficients of f (t) to powers of two, so that 
multiplications on the coefficients enjoys shifts 
instead of full multiplications.

Obviously, the above extension field selection 
exploits the spectral algorithms built over it. 
If this is furnished with the selection of DFT 
parameter  ω as a power of 2, one would utilize 
the best performing spectral algorithm setup.  
For instance, in a study, such a selection is 
presented by choosing f (t) = tk − 2, ω = −2 and 
p a Mersenne prime such as 213  − 1 or 219  − 1 
(Baktir et al., 2007).

Notice that the choice of the field generation 
polynomial as tk −2 makes the reduction simpler.   
Indeed, instead of sequential Montgomery 
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reduction taking tk  = 2 and simple adding at once 
has better approach in time domain. The next 
algorithm presented under this consideration. 
Therefore; it does not includes a Montgomery 
reduction step.

Algorithm 3 Standard DFT modular 
multiplication for GF (pk).

Suppose that there exist a d-point DFT map for 
some principal root of unity ω in Zq, and X (t) 
and Y (t) are transform pairs of x(t) and y(t) 
respectively

Input: d > 2k − 1, f (t) = tk − ω , X (t), Y (t),
Output: Z (t) where iDF T (Z (t))  x(t) · y(t) Є 
GF (pk)

1: Z (t) := X (t)  Y (t)
2: z(t) := I DF Ttw (Z (t))
3: for  j = 0 to k − 2 do
4: zj (t) := zj (t) + ωzj+k
5: end for
6: Z (t) := DF T (z(t))
7: return Z

DFT Modular Algorithm, which is defined by 
(Baktır, 2008) performs Montgomery reduction 
in spectral domain. Let fN (t) = f (t)/f(0) be 
normalized field generating polynomial and  
FNi = fi /f (0).

Algorithm 4 DFT modular multiplication for GF 
(pk) Suppose that there exist a d-point DFT map 
for some principal root of unity  ω in Zq, and 
X (t),Y (t), A(t) and fN (t) are transform pairs 
of x(t),y(t),a(t) and fN (t) respectively, where  
a(t) = t

Input: d > 2k − 1, N (t) , X (t), Y (t),
Output: Z where iDF T (Z )  x(t) · y(t) · x(k−1)  

GF (pk)

1: for  i = 0 to d − 1 do
2: Zi  := Xi  · Yi
3: end for
4: for  j = 0 to k − 2 do
5: S := 0
6: for  i = 0 to d − 1 do
7: S := S + Zi
8: end for
9: S := −S/d
10: for i = 0 to d − 1 do

11: Ci  := (Zi + FNi  · S) · Ai-1

12: end for
13: end for
14: return (Z )

5. COMPARISON OF ALGORITHMS 3 
AND 4

5. 1. Arithmetic Performance

In fact, the discussion in Section 3 while 
comparing Algorithms 1 and 2 is clearly valid 
in here also.  Notice that likewise in Alg. 2 there 
exist a partial return in Alg. 4. However, this 
time not all of inverse DFT is calculated by Alg. 
2 over the loop, since we have d > 2k − 1. More 
precisely d = 2k, see (Baktır, 2008).

The selection of tk  − 2 does not only improve 
performance of the Al. 4 but also of the  
Alg. 3.  With this selection as we mentioned 
above there is no need for a sequential reduction 
or Montgomery process. That is the reason why 
Alg. 3 has no reduction loops. Tables 4 & 5 
tabulated the arith- metic requirements of both 
algorithms. Table 6 simply summarizes these 
two tables in addition to memory requirements 
for necessary pre-computations.  From this 
analysis,  we conclude that Alg. 4 has better 
arithmetic performance over Alg. 3.

Table 4. Step by step arithmetic requirements of 
Alg. 3.

5. 2. ASIC Performance Evaluation

The ideas of Section 3.2 discussing the ASIC 
performance evaluation can be applied in here 
also. In the light of these ideas, the simple 
reduction of the Alg. 3 gives much better 
performance.

Step 1 
Step 2 
 

 
Step 3 
Step 4 

 
Step 5 
Step 6 

Step 7 

contains 2k multiplications. 
contains 2k2 additions and 2k2 −2k 
rotations and 2k − 1 constant 

multiplications. 
none (loop k times). 
contains 1 constant multiplications and 1 

addition. 
none (end loop k times). 
contains k2  + k additions and k2 rotations. 

none. 
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Putting these in a more formal setting gives the 
following analysis.  Suppose that TsRed  and Tred  
are the time of the reductions of Algorithms 3 
and 4, respectively. Let TDF T and TiDF T be the 
times of DFT and inverse DFT to be performed,  
respectively, then

and

Clearly,  the above analysis shows the superiority 
of the Alg. 3 over Alg. 4.

Table 5. Step by step arithmetic requirements of 
Alg. 4.

6. CONCLUSIONS

In this study, we compare partial and full return 
modular multiplication algorithms proposed 
for ring of integers and finite field extensions. 
Our comparison is based on a step-by-step 
evaluation of their arithmetic operations and 
ASIC performance.

Our arithmetic performance calculations shows 
that although Alg. 1 requires full return to time 
domain, it is better choice over Alg. 2 for integer 
modular multiplication. When multiplication 
over medium size characteristic fields is taken 
into account, Alg. 4 is better choice over Alg. 
3. Due to the zero memory requirements, Alg. 
3 may become a suitable choice over Alg. 4 for 
some processing environments.

Table 6. Arithmetic performance of Alg. 3 & Alg. 4.

If the ASIC performance comparison is 
considered Algorithms 1&3 do not have better 
performance.  Interestingly, although Alg. 4 has 
better arithmetic performance over Alg. 3, its 
ASIC performance is worse than its rival.

As a final remark, we conclude that all 
algorithms are evaluated have inputs with 
frequency coefficients and complete the result 
in spectral domain. However, when ASIC 
implementations are considered there must be 
some DFT implementations which would give 
further stress on these deployments.
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