
95

Comparing Partial and Full Return Spectral Methods
Kısmi ve Tam Dönümlü Spektral Metotların Karşılaştırması

İhsan Haluk AKINa, Gökay SALDAMLIb, Murat AYDOSc*

aFatih Üniversitesi, Mühendislik Fakültesi, Bilgisayar Müh. Bölümü, E Blok, 34500, Büyükçekmece, İstanbul
bBoğaziçi Üniversitesi, Uygulamalı Bilimler Yüksekokulu, Yönetim Bilişim Sistemleri Bölümü,

34342, Bebek, İstanbul
cPamukkale Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü, 20070, Kınıklı, Denizli

Geliş Tarihi/Received : 21.06.2011, Kabul Tarihi/Accepted : 10.11.2011

ÖZET
Bu çalışmada, yakın zamanda sunulmuş spektral modüler aritmetik işlemlerinin aritmetik karmaşıklığı
üzerindeki bir analiz adım adım değerlendirme yöntemi ile karşılaştırılmıştır. Bilgisayar aritmetiğinde spektral
yöntemlerin standart kullanımı çarpma ve indirgeme adımlarının spektrum ve zaman uzayında birbirinden
ayrı olarak gerçekleştirilmesi gerektiğini belirtmektedir. Bu tarz bir prosedür ise açıkça tam dönümlü
(ileri ve geri yönde) DFT hesaplamalarına ihtiyaç duymaktadır. Öte yandan, bazı kısmı değerlerin işlem
sırasında hesaplanması ile, yeni yöntemler indirgeme işlemi de dahil olmak üzere tüm verilerin tüm zamanlarda
spektrumda tutulmasını gerektiren bir yaklaşımı benimsemişlerdir. Tüm bu yaklaşımların işlem süresi
performanslarını karşılaştırdığımızda, tam dönümlü algoritmaların son zamanlarda önerilmiş yöntemlerden
daha iyi performans gösterdiğini bu çalışmada göstermiş bulunmaktayız.

Anahtar Kelimeler: Spektral modüler aritmetik, Modüler indirgeme, Modüler çarpma, Montgomery
 indirgeme.

ABSTRACT
An analysis on the arithmetic complexity of recently proposed spectral modular arithmetic – in particular
spectral modular multiplication- is presented through a step-by-step evaluation. Standart use of spectral
methods in computer arithmetic instructs to utilize separated multiplication and reduction steps taking place in
spectrum and time domains respectively. Such a procedure clearly needs full return (forward and backward)
DFT calculations. On the other hand, by calculating some partial values on-the-fly, new methods adopt an
approach that keeps the data in the spectrum at all times, including the reduction process. After comparing the
timing performances of these approaches, it is concluded that full return algorithms perform better than the
recently proposed methods.

Keywords: Spectral modular arithmetic, Modular reduction, Modular multiplication, Montgomery reduction.

* Yazışılan yazar/Corresponding author. E-posta adresi/E-mail address : maydos@pau.edu.tr (M. Aydos)

Pamukkale Üniversitesi
Mühendislik Bilimleri Dergisi
Cilt 18, Sayı 2, 2012, Sayfa 95-103

1. INTRODUCTION

Spectral techniques for integer multiplications
have been known for over a quarter of a century
(Schönhage and Strassen, 1971). These methods
are extremely efficient for applications using
large size integer multiplications. The technique
starts with transforming the encoded integers
to the frequency domain (possibly via FFT),
which is followed by a point multiplication in
the spectrum. After this computation, an inverse

transform and a decoding is applied to send
the result back into the time domain as seen in
Figure 1.

Figure 1. Shönhage and Strassen’s Integer
multiplication.

İ. H. Akın, G. Saldamlı, M. Aydos

96

Pamukkale University, Journal of Engineering Sciences, Vol. 18, No. 2, 2012

After the RSA proposal (Rivest et al., 1978),
modular arithmetic-in particular modular
reduction-attracts more and more interest.
Perhaps, a method (Montgomery, 1985)
described by P. Montgomery in 1985 is the
most notable presentation among several
other methods. Montgomery reduction carries
numbers into n-residues, in which modular
multiplication is more effective if consecutive
multiplications are performed.

Saldamli proposed a new method for integer
modular reduction (Saldamli, 2005; Saldamli
and Koc, 2007). This method performs reduction
on spectral domain rather than the time domain.
In fact the method is an adaption of the
redundant Montgomery algorithm to the spectral
domain. Based on this reduction, he further
proposed spectral modular multiplication, and
spectral modular exponentiation. However, in
their work, the authors did not conduct a true
comparision with the existing literature. In this
study, our main objective is to give a regirous
comparision between the usual redundant
Montgomery algorithm and proposed methods.

Going back again to the history: RSA altered
the history of cryptography by bringing up the
public key cryptography notion. Later in late 80s,
Koblitz and Miller independently introduced the
elliptic curve cryptography-ECC, (Miller, 1986;
Koblitz, 1987). Because of its efficiency, short
key lengths and mature mathematics ECC is
recently adopted by the U.S. Government as the
basic technology for key agreement and digital
signature standard (NIST, 2009).

The security of the ECC depends on the well
known discrete logarithm problem. To setup
the system one has to compute exponentiations
in the elliptic curve group, requiring several
calculations (especially multiplications) with in
a finite field. As the ECC over binary and prime
fields are standardized (IEEE, 1999; ANSI,
2001), one can argue that the practical (i.e.
implementation) aspects of these systems are
fairly mature. On the other hand, the arithmetic
in medium size characteristics extension
fields (i.e. GF (pk) for some positive integer
k and a prime p such that 0 < p < 2128) is still
a very active research topic. Recently, some
researchers proposed and evaluated the spectral
modular reduction over the medium size

characteristics fields (Baktir et al., 2007; Baktir,
2008). Moreover, he successfully applied the
method to ECC.

In this study, we compare the performance of
the standard modular FFT multiplication and
spectral modular multiplication. To be more
specific, FFT multiplication combined with the
redundant Montgomery reduction and recently
proposed spectral algorithms given by Saldamli
and Baktir et al. (Saldamli, 2005; Baktir et al.,
2007). We believe, developers in particular
cryptographic engineers would benefit the
outcomes of this work as it would give them a
fair foreseeing before doing their design work.
The presentation of our study is organized as
follows.

In the next section, after giving the preliminary
definitions, we state the standard modular FFT
multiplication as a combination of Schönhage
and Strassen’s integer multiplication algorithm
(SaSIMA) and redundant Montgomery
reduction. Our spectral modular multiplication
presentation follows the notation and
terminology given in (Saldamli, 2005).

In Section 3, we present our evaluation results
for the prime fields showing that SaSIMA
performs much better than the spectral modular
multiplication. In Sections 4 and 5, we turn our
attention to multiplication over the medium
size characteristics fields; present an adaption
of SaSIMA to GF (pk) and report a similar
result when it is compared with the algorithm
proposed in (Baktir et al., 2007). Finally, we
conclude our work in the last section.

2. SPECTRAL MODULAR
REDUCTION

We briefly give the basic terminology needed
for the presentation of the spectral modular
operations.
Definition 1 Let x(t) = x0 + x1 t + · · · + xd−1 t

d−1 Є
Z[t]. If x(b) = a for some a Є Z than we say x(t)
is a polynomial representation of a with respect
to base b.

2. 1. Discrete Fourier Transform (DFT)

The definition and properties of DFT in a
finite field setting is slightly different from the

Comparing Partial and Full Return Spectral Methods

97

Pamukkale Üniversitesi, Mühendislik Bilimleri Dergisi, Cilt 18, Sayı 2, 2012

common use of this transform in engineering.
In order to suppress on this distinction we start
with a formal definition of DFT over finite
fields.

Definition 2 Let ω be a primitive d-th root of
unity in Zq and, let x(t) and X (t) be polynomials
of degree d − 1 having entries in Zq. The DFT
map over Zq is an invertible set map sending x(t)
to X (t) given by the following equation;

 (1)

With the inverse,

for i, j = 0, 1, . . . , d − 1. We say x(t) and
X (t) are transform pairs, x(t) is called a time
polynomial and sometimes X (t) is named as the
spectrum of x(t).

Remark 1 In the literature, DFT over a finite
ring spectrum is also known as the Number
Theoretical Transform (NTT). Moreover, if q
has some special form such as a Mersenne or a
Fermat number, the transform named after this
form; Mersenne Number Transform (MNT) or
Fermat Number Transform (FNT).

Note that, unlike the DFT over the complex
numbers, the existence of DFT over finite rings
is not trivial. In fact, Pollard mentions that the
existence of primitive root d-th of unity and the
inverse of d do not guarantee the existence of a
DFT over a ring (Pollard, 1976). He adds that a
DFT exists in ring R if and only if each quotient
field R/M (where M is maximal ideal) possesses
a primitive root of unity.

To simplify our discussions, throughout this text
we take q as a Mersenne prime and the principal
root of unity as ω = −2 without loss of generality.
According to Saldamli and Baktir et al., such
a preference reflects the best performance for
DFT computations, spectral multiplications and
eductions among other choices (Saldamli, 2005;
Baktir et al., 2007).

2. 2. SaSIMA Combined with Redundant
Montgomery Reduction

To be consistent, we adopt the previous section’s
notation and state the standard modular FFT
multiplication as a combination of SaSIMA and
redundant Montgomery reduction.

Let r, b, u Є Z, b = 2u and ni (t) be the polynomial
representation of an integer multiple of modulus
n such that the zeroth coefficient of ni (t) satisfies
(ni)0 = 2i−1 for i = 1, 2, . . . , u (observe that n(t)
= n1(t)).

Now, we write a β multiple of n(t) as

 (2)

Where b > β Є N and βi represents the binary
digits of β.

Algorithm 1 Spectral multiplication with time
reduction

Suppose that there exist a d-point DFT map for
some principal root of unity ω in Zq, and X (t)
and Y (t) are transform pairs of x(t) and y(t)
respectively where x(b) = x and y(b) = y for
some x, y < n. Let NT = {n1(t), n2 (t), . . . , nu (t)}
be the set of special polynomials as described
above;

Input : X (t), Y (t) and a basis set NT
Output: Z (t) = DF T (z(t)) where z xy2−db mod
n and z(b) = z,

Observe that Alg. 1 requires a full return
computation (i.e. Step 2) right after the

İ. H. Akın, G. Saldamlı, M. Aydos

98

Pamukkale University, Journal of Engineering Sciences, Vol. 18, No. 2, 2012

component-wise multiplication. Moreover,
Steps 4 through 9 perform the reduction in time
domain implementing the so called redundant
Montgomery reduction.

2. 3. Modified Spectral Modular Product
(MSMP)

On the other hand, MSMP describes a partial
return algorithm originally described by
Saldamli (Saldamli, 2005). Let r, b, u Є Z, b
= 2u and ni(t) be the polynomial representation
of an integer multiple of n such that the zeroth
coefficient of ni (t) satisfies (ni)0 = 2i−1 for i = 1,
2, . . . , u (note that n(t) = n1 (t)). We can now
write β · N (t) as

 (3)

Where βi is a binary digit of β and Ni(t) = DFTd
ω

(ni(t)) for i = 1, 2, . . . , u. Note that β < b and
βi = 0 for i > u.

Algorithm 2 MSMP algorithm

Suppose that there exist a d-point DFT map for
some principal root of unity ω in Zq, and X (t)
and Y (t) are transform pairs of x(t) and y(t)
respectively where x(b) = x and y(b) = y for
some x, y < n and b > 0. Let NF = {N1 (t), N2 (t),
. . . , Nu (t)} be the set of special polynomials as
described above;

Input: X (t), Y (t) and a basis set NF
Output: Z (t) = DF T (z(t)) where z xy2−db mod
n and z(b) = z,

3. COMPARING SaSIMA AND MSMP

Notice that both of the algorithms perform their
multiplication in the spectral domain. However,
they employ different reduction process. To be
more informative; the reduction in Alg. 1 takes
place in time whereas Alg. 2 computes the
modular reduction in spectral domain. Therefore,
we particularly probe this difference to compare
the arithmetic and ASIC performances of these
algorithms through a step-by-step evaluation.

3. 1. Arithmetic Performance

In order to perform the Montgomery reduction,
the least significant word of the partial sum
has to be known in advance at each iteration.
Therefore, Alg. 2 requires partial returns to
time domain to determine the least significant
words. With the help of these partial returns,
reduction calculations are performed in spectral
domain.

On the other hand, Alg. 1 performs the
Montgomery reduction in time domain.
Naturally, such a reduction needs a full return
of the multiplication result to the time domain.
Once the reduction is completed using redundant
Montgomery method, a forward DFT transform
is applied to grasp the spectral coefficients.

At first glance, the partial return of the Alg. 2
seems advantageous over Alg. 1 requiring full
forward and backward DFTs. However, if the
arithmetic requirements of both algorithms are
evaluated step-by-step (i.e. given in Tables 1
& 2) and further summed up in Table 3, it is
easily seen that full return algorithm needs less
additions and hence behaves better than the
partial return one.

Another comparison concern is the memory
requirements of both algorithms. As both
algorithms enjoy the performance gain comes
with the high radix Montgomery reduction,
one has to pre-compute and store the basis sets.
Observe that Alg. 1 and Alg. 2 require u and q
sized words respectively for such allocations. If
the relation 2u<q is considered (see “Saldamli,
2005” for the exact ratio), one sees that Alg. 1 is
advantageous over Alg. 2.

Comparing Partial and Full Return Spectral Methods

99

Pamukkale Üniversitesi, Mühendislik Bilimleri Dergisi, Cilt 18, Sayı 2, 2012

Table 1. Step by step arithmetic requirements of
Alg. 1.

3. 2. ASIC Performance Evaluation

Since spectral methods exploit massive
parallelism, ASIC architectures are utmost
suitable for their employments. In this respect,
precise ASIC analysis for both algorithms
have to be given for a healthy comparison. As
the complexity of the multiplication for both
algorithms is same, we exclude its cost from our
analysis. Alg. 1 consists of three stages, namely;
iDFT, reduction steps and DFT. Among those
three, DFT and iDFT can be calculated with the
same FFT hardware, preferably with a butterfly
network taking logarithmic time with respect to
the operand size.

If Alg. 1 is considered, it has a single stage,
consists of reduction steps and partial return
embeddings.

Table 2. Step by step arithmetic requirements of
Alg. 2.

This stage loops d times and calculates a single
reduction step in one clock cycle as seen in
Figure 2.

Figure 2. Steps of Alg. 1.

On the other hand, the loop of Alg. 2 contains a
partial return, which calculates the value z0. As
mentioned before this single word computation
takes the same logarithmic time as the full iDFT
calculation. Since this partial return is computed
at every iteration of the loop as it can be seen in
Figure 3, the rest of the remaining steps in both
algorithms have similar complexities.

Moreover, if redundancy and bound control,
and smaller sized precomputation (see “Sal-
damli, 2005”) are considered Alg. 1 again out-
performs. If presented formally; let reduction
and iDFT times are denoted by Tred and TiDF T

respectively, then

and

Here, note that TDF T < TiDF T because of the
constant multiplication.

Table 3. Arithmetic performance of Alg. 1 & Alg. 2.

Step 1 contains d multiplications.
Step 2

contains d multiplications.

contains d(d−) additions and
d(d−1) rotations and d constant
multiplications

Step 3 none.

Step 4 none (loop d times).

Step 5 contains 1 addition.

Step 6

contains 1 addition (step 5 and 6 uses a
temporary variable to avoid one addition).

contains (u − 1)d + d additions, which
Step 7

makes ud.

contains only memory mappings.

Step 8 none (end loop d times).
Step 9 contains 1 addition.

Step 10 contains d(d − 1) additions and d(d − 1)

Step 11 rotations.

Step 12 none.

Step 1 contains d multiplications.
Step 2 none.

Step 3 none (loop d times).

Step 4 contains d − 1 additions and 1 constant
multiplication.

Step 5

contains 1 addition.

Step 6

contains 1 addition (step 5 and 6 uses

a temporary variable to avoid one
addition).

Step 7

contains (u − 1)d + d additions, which
makes ud.

Step 8 contains d + 1 additions.
Step 9 contains d rotations.

Step 10 none (loop d times).

Step 11 contains d additions.

Step 12 none.

Step 1 contains d multiplications.
Step 2 none.

Step 3 none (loop d times).

Step 4 contains d − 1 additions and 1 constant
multiplication.

Step 5

contains 1 addition.

Step 6

contains 1 addition (step 5 and 6 uses

a temporary variable to avoid one
addition).

Step 7

contains (u − 1)d + d additions, which
makes ud.

Step 8 contains d + 1 additions.
Step 9 contains d rotations.

Step 10 none (loop d times).

Step 11 contains d additions.

Step 12 none.

 Alg. 1 Alg. 2
Multiplication d d

Constant

Multiplication

d d

Addition (u+2)·d2 +1 (u+3)·d2+2d

Shift and Rotate 2d(d-1) d.d

Stored Memory
(bits)

u.b.d q.b.d

Figure 3. Steps of Alg. 2.

Above analysis demonstrates a fair comparison
of both algorithms. In fact, one can equipped
Alg. 1 with more features that one can not do
that with Alg. 2. For instance; better parameters
on the encoding and decoding can be chosen
while transforming to the non-redundant form.
With these parameters, Montgomery reduction
requires less values to store and can be calculated
faster as described by some references (Tenca
and Koc, 1999; Todorov et al., 2001; Bunimov
and Schimmler, 2003).

As a last remark, we remind that in our analysis
we reference the worst case DFT and iDFT
computa- tion. The analysis of fast Fourier
transform algorithms are beyond the scope of
this text. However; in real world applications one
should benefit the fruits of this mature methods.
We refer the reader to textbook presentations
for such discussions (Nussbaumer, 1982;
Blahut, 1985).

4. SPECTRAL MODULAR
ARITHMETIC FOR FINITE FIELD

EXTENSIONS

In this section, we turn our attention to the
arithmetic in the extension fields and revisit two
methods of multiplication including an adaption
of Schönhage and Strassen’s algorithm and
the algorithm of Baktir et al. (Schönhage and
Strassen, 1971; Baktir et al., 2007).

Abstractly, a finite field consists of a finite
set of objects together with two binary
operations (addition and multiplication) that
can be performed on pairs of field elements.
These binary operations must satisfy certain
compatibility properties. There is a finite field
containing q field elements if and only if q is a
power of a prime number, and in fact for each
such q there is precisely one finite field denoted
by GF (q). When q is prime the finite field is
called a prime field whereas if q = pk for a prime
p and k>1, the finite field GF (pk) is called an
extension field. The number p is named as the

characteristic of the finite field and in case of
p = 2, the extension field is called a binary
extension field.

The extension field GF (pk) can be represented
by the set of polynomials with polynomial
addition and multiplication modulo an
irreducible polynomial f (t) over GF (p) having
degree k. The degree of the polynomial f (t) is
also referenced as the degree of the extension. In
fact, the defining polynomial f (t) characterizes
the structure of the mathematical object consist
of the polynomial congruent classes. Since for
every prime power q there exists a unique finite
field, the structure of the finite field does not
depend on the choice of the defining polynomial
as long as it is an irreducible having degree k.

Being a polynomial ring, the arithmetic
in extension fields is the familiar modular
polynomial arithmetic. Since the characteristic is
p, addition is performed by adding polynomials
modulo p whereas multiplication involves a
polynomial multiplication and a reduction with
respect to the defining irreducible polynomial
f (t).

We assume that the parameter p and f (t) can
arbitrarily be chosen without concerning about
the security of a cryptosystem defined over
the extension field. Certainly, our first choice
for p would be a Mersenne prime enjoying the
one’s complement arithmetic. Similarly we
would tend to choose f (t) as a low hamming
weight polynomial such as a binomial or a
trinomial. Moreover, we would insist on fixing
the coefficients of f (t) to powers of two, so that
multiplications on the coefficients enjoys shifts
instead of full multiplications.

Obviously, the above extension field selection
exploits the spectral algorithms built over it.
If this is furnished with the selection of DFT
parameter ω as a power of 2, one would utilize
the best performing spectral algorithm setup.
For instance, in a study, such a selection is
presented by choosing f (t) = tk − 2, ω = −2 and
p a Mersenne prime such as 213 − 1 or 219 − 1
(Baktir et al., 2007).

Notice that the choice of the field generation
polynomial as tk −2 makes the reduction simpler.
Indeed, instead of sequential Montgomery

İ. H. Akın, G. Saldamlı, M. Aydos

100

Pamukkale University, Journal of Engineering Sciences, Vol. 18, No. 2, 2012

 

Comparing Partial and Full Return Spectral Methods

101

Pamukkale Üniversitesi, Mühendislik Bilimleri Dergisi, Cilt 18, Sayı 2, 2012

reduction taking tk = 2 and simple adding at once
has better approach in time domain. The next
algorithm presented under this consideration.
Therefore; it does not includes a Montgomery
reduction step.

Algorithm 3 Standard DFT modular
multiplication for GF (pk).

Suppose that there exist a d-point DFT map for
some principal root of unity ω in Zq, and X (t)
and Y (t) are transform pairs of x(t) and y(t)
respectively

Input: d > 2k − 1, f (t) = tk − ω , X (t), Y (t),
Output: Z (t) where iDF T (Z (t)) x(t) · y(t) Є
GF (pk)

1: Z (t) := X (t) Y (t)
2: z(t) := I DF Ttw (Z (t))
3: for j = 0 to k − 2 do
4: zj (t) := zj (t) + ωzj+k
5: end for
6: Z (t) := DF T (z(t))
7: return Z

DFT Modular Algorithm, which is defined by
(Baktır, 2008) performs Montgomery reduction
in spectral domain. Let fN (t) = f (t)/f(0) be
normalized field generating polynomial and
FNi = fi /f (0).

Algorithm 4 DFT modular multiplication for GF
(pk) Suppose that there exist a d-point DFT map
for some principal root of unity ω in Zq, and
X (t),Y (t), A(t) and fN (t) are transform pairs
of x(t),y(t),a(t) and fN (t) respectively, where
a(t) = t

Input: d > 2k − 1, N (t) , X (t), Y (t),
Output: Z where iDF T (Z) x(t) · y(t) · x(k−1)

GF (pk)

1: for i = 0 to d − 1 do
2: Zi := Xi · Yi
3: end for
4: for j = 0 to k − 2 do
5: S := 0
6: for i = 0 to d − 1 do
7: S := S + Zi
8: end for
9: S := −S/d
10: for i = 0 to d − 1 do

11: Ci := (Zi + FNi · S) · Ai-1

12: end for
13: end for
14: return (Z)

5. COMPARISON OF ALGORITHMS 3
AND 4

5. 1. Arithmetic Performance

In fact, the discussion in Section 3 while
comparing Algorithms 1 and 2 is clearly valid
in here also. Notice that likewise in Alg. 2 there
exist a partial return in Alg. 4. However, this
time not all of inverse DFT is calculated by Alg.
2 over the loop, since we have d > 2k − 1. More
precisely d = 2k, see (Baktır, 2008).

The selection of tk − 2 does not only improve
performance of the Al. 4 but also of the
Alg. 3. With this selection as we mentioned
above there is no need for a sequential reduction
or Montgomery process. That is the reason why
Alg. 3 has no reduction loops. Tables 4 & 5
tabulated the arith- metic requirements of both
algorithms. Table 6 simply summarizes these
two tables in addition to memory requirements
for necessary pre-computations. From this
analysis, we conclude that Alg. 4 has better
arithmetic performance over Alg. 3.

Table 4. Step by step arithmetic requirements of
Alg. 3.

5. 2. ASIC Performance Evaluation

The ideas of Section 3.2 discussing the ASIC
performance evaluation can be applied in here
also. In the light of these ideas, the simple
reduction of the Alg. 3 gives much better
performance.

Step 1
Step 2

Step 3
Step 4

Step 5
Step 6

Step 7

contains 2k multiplications.
contains 2k2 additions and 2k2 −2k
rotations and 2k − 1 constant

multiplications.
none (loop k times).
contains 1 constant multiplications and 1

addition.
none (end loop k times).
contains k2 + k additions and k2 rotations.

none.

İ. H. Akın, G. Saldamlı, M. Aydos

102

Pamukkale University, Journal of Engineering Sciences, Vol. 18, No. 2, 2012

Putting these in a more formal setting gives the
following analysis. Suppose that TsRed and Tred
are the time of the reductions of Algorithms 3
and 4, respectively. Let TDF T and TiDF T be the
times of DFT and inverse DFT to be performed,
respectively, then

and

Clearly, the above analysis shows the superiority
of the Alg. 3 over Alg. 4.

Table 5. Step by step arithmetic requirements of
Alg. 4.

6. CONCLUSIONS

In this study, we compare partial and full return
modular multiplication algorithms proposed
for ring of integers and finite field extensions.
Our comparison is based on a step-by-step
evaluation of their arithmetic operations and
ASIC performance.

Our arithmetic performance calculations shows
that although Alg. 1 requires full return to time
domain, it is better choice over Alg. 2 for integer
modular multiplication. When multiplication
over medium size characteristic fields is taken
into account, Alg. 4 is better choice over Alg.
3. Due to the zero memory requirements, Alg.
3 may become a suitable choice over Alg. 4 for
some processing environments.

Table 6. Arithmetic performance of Alg. 3 & Alg. 4.

If the ASIC performance comparison is
considered Algorithms 1&3 do not have better
performance. Interestingly, although Alg. 4 has
better arithmetic performance over Alg. 3, its
ASIC performance is worse than its rival.

As a final remark, we conclude that all
algorithms are evaluated have inputs with
frequency coefficients and complete the result
in spectral domain. However, when ASIC
implementations are considered there must be
some DFT implementations which would give
further stress on these deployments.

7. REFERENCES

ANSI, 2001. X9.62-2001. Public Key
Cryptography for the Financial Services
Industry: Key Agreement and Key Transport
Using Elliptic Curve Cryptography, Draft
Version.

Baktir, S. 2008. Frequency Domain Finite Field
Arithmetic for Elliptic Curve Cryptography,
Ph.D. Thesis, Electrical and Computer
Engineering Department, Worcester Polytechnic
Institute, Worcester, MA, USA, April.

Baktir, S., Kumar, S., Paar, C. and Sunar, B. 2007.
A State-of-the-Art Elliptic Curve Cryptographic
Processor Operating in the Frequency Domain.
Mobile Networks and Applications (MONET).
12 (4), 259–270.

Blahut, R. E. 1985. Fast Algorithms for Digital
Signal Processing, Addison-Wesley Publishing
Company.

Bunimov, V. and Schimmler, M. 2003. Area and
Time Efficient Modular Multiplication of Large
Integers. ASAP’03.

Step 1
Step 2
Step 3

Step 4
Step 5
Step 6

Step 7
Step 8
Step 9

Step 10
Step 11
Step 12

Step 13
Step 14

none (loop d times = 2k times).
1 multiplication.
none (end loop d times = 2k times).

loop (k-1 times).
none.
none (loop d times = 2k times).

1 addition.
none (end loop d times = 2k times).
1 constant multiplication.

none (loop d times = 2k times).
1 additions, 1 rotates.
none (end loop d times = 2k times).

none (end loop k-1 times)
none.

 Alg. 3 Alg. 4
Multiplication 2k 2k

Constant Multiplication 2k-1 k-1

Addition 3k2+2k-1 4k2-4k

Shift and Rotate 3k2-k+1 2k2-2k

Stored Memory (bits) none 2kp

Comparing Partial and Full Return Spectral Methods

103

Pamukkale Üniversitesi, Mühendislik Bilimleri Dergisi, Cilt 18, Sayı 2, 2012

IEEE, 1999. P1363: Standard Specifications
for Public-Key Cryptography, November 12,
Draft Version.

Koblitz, N. 1987. Elliptic Curve Cryptosystems.
Mathematics of Computation. (48), 201–209.

Miller, V. 1986. Use of Elliptic Curves
Cryptography. Advances in Cryptology; Proc.
Crypto’85, LNCS 218, Springer-Verlag.
417–426.

Montgomery, P. L. 1985. Modular Multiplication
without Trial Division. Mathematics of
Computation. 44 (170), 519–521.

NIST, 2009. Fips Pub. 186-3: Digital Signature
Standard (DSS), June.

Nussbaumer, H. J. 1982. Fast Fourier Transform
and Convolution Algorithms, Springer, Berlin,
Germany.

Pollard, J. M. 1976. Implementation of Number
Theoretic Transform. Electronics Letters. 12
(15), 378–379.

Rivest, R. L., Shamir, A. and Adleman, L. 1978.
A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems. Communications
of the ACM. 21 (2), 120–126.

Saldamlı, G. 2005. Spectral Modular
Arithmetic, Ph.D. Thesis. Department of
Electrical and Computer Engineering, Oregon
State University.

Saldamli, G. and Koc¸ C. K. 2007. Spectral
Modular Exponentiation. ARITH’07:
Proceedings of the 18th IEEE Symposium on
Computer Arithmetic. 123–132.

Schönhage, A. and Strassen, V. 1971. Schnelle
Multiplikation Grosser Zahlen. Computing.
(7), 281–292.

Tenca A. F. and Koc, C. K. 1999. A word-
Based Algorithm and Scalable Architecture
for Montgomery Multiplication. Lecture
Notes in Computer Science, Springer-Verlag.
(1717), 94–108.

Todorov, G., Tenca A. F. and Koc, C. K. 2001.
High-Radix Design of a Scalable Modular
Multiplier. Lecture Notes in Computer Science,
Springer-Verlag. (1717), 189–206.

