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 Land surface temperature (LST) is a direct impact of urbanization and a crucial factor in global 
climate and land cover changes. In this research, we aim to identify the impact of land use/land 
cover (LULC) on LST as well as analyze the relationship between LST and three spectral 
indices using linear, polynomial and multiple regression models. The LST was first retrieved 
from Landsat imagery using single-channel algorithm. Afterwards, LULC maps were developed 
using maximum likelihood (ML) classifier and three spectral indices, namely Normalized 
Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI) and 
Normalized Difference Water Index (NDWI). Finally, regression analysis was conducted to 
model the relationship between LST and the three spectral indices. Landsat 8 OLI/TIRS 
imagery of year 2019 of Dakahlia Governorate in Egypt was processed for LST retrieval as well 
as LULC classification. The ML classifier achieved an overall accuracy and kappa coefficient of 
95.14% and 0.857, respectively, while of those based on spectral indices were 94.86% and 
0.777, respectively. The results demonstrated an average temperature of 35.8°C, 31.2°C and 
27.6°C for urban, vegetation and water, respectively. The LST statistics difference between 
classification methods of the three land covers was less 2°C. Based on the regression analysis, 
the NDVI and NDWI indicated a negative correlation with LST, while the NDBI indicated a 
positive correlation with LST. The polynomial regression analysis of LST against NDVI and 
NDWI demonstrated a better coefficient of determination (R2) than linear regression analysis 
of 0.341 and 0.305, respectively. For NDBI, linear and polynomial regression analysis 
demonstrated very close R2 of 0.624 and 0.628, respectively. The multiple regression analysis 
of LST against NDVI, NDBI and NDWI revealed R2 of 0.699. Consequently, the three spectral 
indices can be used as effective indicators for separating terrain into different classes, and 
hence relate their LST.   

 
 
 

1. INTRODUCTION  
 

Earth’s surface is alerted by extreme modifications 
caused by human activities, especially the change of 
land use (i.e., urbanization) (Oke 2002; Arnfield 2003). 
Urbanization has a great impact on the environment 
such as changes to cloud cover, temperatures, winds 
and precipitation (Changnon 1992; Roth 2000; Dousset 
and Gourmelon 2003; Fan and Sailor 2005). Land 
surface temperature (LST) is an obvious example on 
how the urbanization that often takes place rapidly in 
cities and governorates affects Earth’s climate (Oke 
2002; Arnfield 2003; Fan and Sailor 2005). This is 
attributed to a variety of factors. These factors 
contribute to increase temperatures of the surface or 

atmosphere in the urban areas, compared to the 
surrounding environment.  

Several studies have been reported on the retrieval 
of LST from Landsat imagery (Sobrino et al. 2004; Sun 
et al. 2010; Ibrahim et al. 2019; Sekertekin and 
Bonafoni 2020). Al-Lami (2015) estimated the LST 
using Landsat-7 ETM+ imagery of year 2001 for 
Baghdad city in Iraq. Results showed that the 
maximum difference of LST between the built-up and 
the surrounding areas reached to about 12.0C. The 
LST was retrieved from Landsat 8 thermal infrared 
band 10 of year 2015 and compared with the near-air 
temperature for a part of Ontario and Quebec in 
Canada (Avdan and Jovanovska 2016). They obtained 
2.6C as an average standard deviation of LST. 

https://dergipark.org.tr/en/pub/ijeg
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Other studies have been reported on the retrieval of 
LST and the determination of the relationship between 
LST, land use/land cover (LULC) and spectral indices 
(Saleh 2010; Fu and Weng 2016; El-Hattab et al. 2018; 
Tran et al. 2017; Nse et al. 2020; Guha and Govil 2021). 
For instance, Fu and Weng (2016) studied the LULC 
change over the Atlanta metropolitan area and its 
effect on LST difference. A 507 time series of Landsat 
imagery from 1984 to 2011 was used. The LULC 
classification accuracy was 89%, while the change 
detection accuracy was 92%. Results illustrated that 
the urban area had the highest mean LST of 21.8C. El-
Hattab et al. (2018) used a neural network approach to 
develop land cover maps from Landsat TM/ETM+/OLI 
of the Southern region of Cairo Governorate in Egypt 
for years 1984, 200 and 2015. They achieved an 
average overall classification accuracy of 99%. Landsat 
thermal bands for the same years were used to 
estimate the LST for the same area. Results showed 
that urban areas have been expanded from 1984 to 
2015; and hence LST increased in those areas. 

The impact of LULC on the LST was studied using 
multi-spectral/multi-temporal satellite data of English 
Bazar Municipality (Pal and Ziaul 2017). Images from 
Landsat 5 and Landsat 8 of 1991, 2010 and 2014 were 
used. Results revealed that LST increased on year basis 
by about 0.070C during winter and 0.114C during 
summer. LST variations were existed over different 
LULC types. The built-up area retained highest LST in 
the studied cases. The relation between LST against 
NDVI and NDBI was modelled using linear regression, 
whereas the coefficient of determination (R2) ranged 
from 0.441 to 0.62 for NDVI and from 0.470 to 0.607 
for NDBI. R2 for NDBI increased from 1991 to 2014 for 
winter and summer periods, which establishes the fact 
that urban areas retain highest LST. However, they 
reported that the relationship between LST and 
spectral indices is not always linear (Tran et al. 2017). 
This is attributed to LULC type, geographic location and 
season of data acquired.  

Dakahlia Governorate in Egypt has documented 
urban expansion over the past decade due to its 
accelerated economic growth. This results in a shift of 
land use from agriculture to other activities such as 
housing, road construction and industrial activities. All 
these transformations lead to change in temperatures. 
This research aims to retrieve the LST of Dakahlia 
Governorate from Landsat 8 OLI (Operational Land 
Imager) and TIRS (Thermal Infrared Sensor) imagery 
of year 2019 and study its relationship with LULC and 
spectral indices. These indices are the Normalized 
Difference Vegetation Index (NDVI), the Normalized 
Difference Built-up Index (NDBI) and the Normalized 
Difference Water Index (NDWI). This research (1) 
analyzes the relationship between the LST and the 
spectral indices using linear, polynomial and multiple 
regression models, (2) evaluates using spectral indices 
in land cover classification against widely used 
supervised classification, maximum likelihood (ML) 
classifier, and (3) verifies the consistency of LST 
estimated for LULC extracted based on spectral indices 
with LST estimated for LULC obtained from ML 
classifier. The paper is structured as following. Section 

2 describes the materials used and methods conducted. 
Section 3 explains the results and discussion. Section 4 
concludes the findings of this research. 
 
2. MATERIALS AND METHODS 

 
2.1. Study Area and Dataset 

 

Dakahlia Governorate, one of the top agricultural 
production governorates, is located at the northeast of 
Nile-Delta in Egypt. It covers an area of about 3985.76 
km2 and it extends from 30° 35′ 10″ N to 31° 34′ 02″ N, 
and from 31° 12′ 47″ E to 32° 07′ 25″ E as shown in Fig. 
1 (Abuzaid et al. 2021). It has a population of about 
6,697,569 people in 2019 as reported by the Central 
Agency for Public Mobilization and Statistics. The 
digital elevation model of the study area, obtained from 
the Shuttle Radar Topography Mission, varies from 
zero to 45 m above the sea level as shown in Fig. 2(a). 
The study area is characterized by a hot dry summer 
and rainy winter with minimum temperature of 15°C, 
maximum temperature of 33°C, and a mean 
temperature of 20°C/year (Abuzaid et al. 2021). The 
study area earth’s physical structure (geology) consists 
of sand dunes, sabkha-deposits and Nile-deposits 
(Elnaggar et al. 2020). Dakahlia Governorate is 
characterized by high density vegetation compared to 
urban constructions. However, the development of 
those constructions such as institutions, commercial 
and industrial buildings and roads network leads to an 
increase in the anthropogenic activities which in turn 
alters the natural surface characteristics. 

 

 
Figure 1. Dakahlia Governorate 

 
The study area was covered by two images from 

Landsat 8 (path 176, rows 38 and 39) and acquired 
during the summer season on July 3rd, 2019, Fig. 2(b). 
The Landsat 8 OLI/TIRS images were downloaded 
from http://earthexplorer.usgs.gov/. These images are 
cloud free and consist of eleven spectral bands; eight of 
them (form 1 to 7 and 9) are 30 m spatial resolution, 
while band 8 is panchromatic with 15 m spatial 
resolution. TIRS bands (10 and 11) have 100 m spatial 
resolution and can be used to obtain surface 
temperatures. In this research, bands (1 to 7) and 
thermal band (10) were used.  
 

http://earthexplorer.usgs.gov/


International Journal of Engineering and Geosciences– 2022; 7(3); 272-282 

 

  274   

 

  

  
(a) (b) 

Figure 2. Landsat images; (a) Digital Elevation Model and (b) False Color Composite 
 
2.2. Overall Work Scheme 

 
Fig. 3 shows the overall workflow of Landsat images 

processing for LST estimation, spectral indices 
calculations and supervised image classification. The 
Landsat images were used to study the LST at different 
LULC types of Dakahlia Governorate in 2019. The 
workflow started with atmospheric and radiometric 
corrections of the images. Then, land cover map was 
developed and spectral indices, including NDVI, NDBI 
and NDWI were derived. In parallel, LST was retrieved 
from band 10 and its relationship with the spectral 
indices was modelled as explained in the following 
subsections.  

The two images were georeferenced to UTM, Zone 
36N, datum WGS 1984 projection. Each OLI/TIRS file 
was composed of independent single-band images. 
Firstly, the images were atmospherically and 
radiometrically corrected using the dark-object 
subtraction function embedded in ENVI 5.3 software 
package. Secondly, the ERDAS Imagine 2015 software 
package was used to resample the images to have the 
same pixel size (i.e., 30 m). Thirdly, the layer stacking 
tool was used to combine the single-band images to a 
multi-band image. Finally, the two images were 
mosaicked and clipped to form one image covering the 
study area using a histogram matching and stitching 
processes. 
 

 
Figure 3. Overall workflow 

 

2.3. Development of the LULC Map 
 

The LULC pattern was mapped using ML supervised 
classification method including bands from 1 to 7. Four 
classes were considered for the study area, namely 
urban, water, vegetation and sand beach. Accuracy 
assessment was then carried out by compiling a 
confusion matrix, where a 350 random points were 
generated over the study area. Accuracy measures (i.e., 
overall, producer’s and user’s accuracies) as well as 
Kappa coefficient were then calculated (Campbell and 
Wynne 2011).  
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2.4. Spectral Indices Calculations and Classification 
 
The spectral indices, NDVI, NDBI and NDWI, were 

derived from the multispectral Landsat imagery. The 
spectral vegetation, built-up or water index is a single 
number, between -1 and 1, derived for each pixel from 
an arithmetic operation on two spectral bands. The 
reflection from features at different wavelengths is the 
base of bands selection for any spectral index. A 
suitable threshold for each index was then identified to 
distinguish one feature from other land covers (i.e., 
urban, vegetation or water) based on the spectral 
characteristics. The Jenks natural breaks optimization 
method was applied to define a threshold value for 
each index, and hence separate vegetation, urban and 
water from NDVI, NDBI and NDWI, respectively. 

The NDVI is considered as a measure of healthy 
green vegetation, and what makes it strong is the use of 
the highest areas of reflection and absorption of 
chlorophyll. This index is derived from near  infrared 
(NIR) and red (Red) bands as in Equation 1 (Rouse et 
al. 1974). The range values of green vegetation are 
usually from 0.2 to 0.8 (Weng et al. 2004; Avdan and 
Jovanovska 2016). The NDVI is useful for extracting 

and mapping vegetation (Chen et al. 2009, MacFaden et 
al. 2012). 

 

Re

Re

NIR d
NDVI

NIR d

−
=

+  

(1) 

 
The reflection of built-up areas in the Short Wave 

Infrared (SWIR) region is higher than in the NIR region 
(Zha et al. 2003, Xu 2007). Therefore, the NDBI 
highlights the build-up areas and can be derived by 
Equation 2.  

 

SWIR NIR
NDBI

SWIR NIR

−
=

+  

(2) 

  
McFeeters (1996) defined the NDWI using Green 

and NIR wavelengths as in Equation 3. The NDWI index 
was developed for the purpose of using green 
wavelengths to maximize the reflection of water. As a 
result, soil and vegetation covers have zero or negative 
values and thus are suppressed, while the water has 
positive values which are optimized (McFeeters 1996). 

 

Green NIR
NDWI

Green NIR

−
=

+  

(3) 

  
In this research, the Jenks breaks optimization 

method was used to classify all spectral indices. Jenks 
optimization method or Jenks natural breaks, is 
designed to increase the deviation between classes and 
reduce the deviation within-class which represents the 
best similar values. In another sense, threshold values 
(breaks) were identified to increase the contrast 
between classes and reduce it within-class. 

Consequently, each index was separated into two 
classes (Chen et al. 2013).  

 
2.5. LST Retrieval from Landsat 8 Imagery 

 
The LST was retrieved using single-channel 

algorithm developed by (Jiménez-Muñoz et al. 2014) 
and employed in (Pal and Ziaul 2017, El-Hattab et al. 
2018, Salih et al. 2018). Thermal band 10 was used to 
calculate at-satellite brightness temperature (BT) and 
land surface emissivity (LSE). Thermal constants of 
band 10 extracted from the satellite images metadata 
were required in calculations as provided in Table 1. 
The LST was retrieved from Landsat images using a 
series of steps as following. 

 
Table 1. Thermal constant of band 10 

Constant Value  

K1 774.885 

K2 1321.079 

RADIANCE-MULT (ML) 3.3420E-04 

RADIANCE-ADD (AL) 0.1000 

 
The input of band 10 was used to convert quantized 

and calibrated digital numbers (QCal) to radiation 
values (L) as indicated in Equation 4, where ML and AL 
are band-specific multiplicative and additive rescaling 
factors, respectively.  

  

L Cal LL M Q A =  +
 

(4) 

 
Afterwards, 𝐿𝜆 was converted to BT using the 

constants (K1 and K2) of band 10 shown in Table 1 as 
indicated in Equation 5 (Avdan and Jovanovska 2016). 

 

2

1
1

K
BT

K
Ln

L

=
  
 + 
    

 

 
(5) 

 
Land surface emissivity (Ɛ) was then calculated 

using as in Equation 6. The Ɛ is a proportionality factor 
that measures blackbody radiation and predicts the 
emitted radiation (Salih et al. 2018).  

 

0.004 0.986PV =  +
 

(6) 

 

Where PV is proportion vegetation and is calculated 
using the NDVI values (NDVImin and NDVImax) using 
Equation 7 (Salih et al. 2018). 

 
2

min

max min

NDVI NDVI
PV

NDVI NDVI

 −
=  
 −   

(7) 

 
The final step was to retrieve LST using Equation 8 

as follows (Salih et al. 2018). LST calculated from 
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Equation 8 was in Kelvin (K), and it was converted to 
degree Celsius by subtracting 273.15. 

 

( )1

BT
LST

BT
Ln

P
 

=
 

+   
 

 

 
(8) 

 

Where  is the radiance wavelength of band 10 
(11.5 m). P is calculated as P= h * c / s, where h is 
Planck’s constant and equals 6.626 * 10-34 Js, s is 
Boltzmann constant and equals 1.38 * 10-23 J/K, c is 
light speed of 2.998 * 108 m/s, and finally P = 1.438 * 
10-2 m K. 

 
3. RESULTS AND DISCUSSION 
 
3.1. LULC Map Production  

 
The LULC map of the study area was developed 

from the Landsat imagery using ML classifier. Fig. 4 
shows the LULC map, including water, sand beach, 
vegetation and urban area. It was observed that the 
highest area was for vegetation representing more than 
80% of the total study area, while the sand beach 
covered the lowest area with less than 2% of the total 
study area.  

 

 
Figure 4. LULC map  

 
The classified image was compared with the actual 

land use for year 2019. The confusion matrix was 
computed and accuracy measures (producer’s and 

user’s accuracies) were calculated as shown in Table 2. 
The overall accuracy was 95.14% and Kappa was 
0.857. Results showed that the lowest producer's 
accuracy of 65.38% was for water because many water 
pixels were wrongly classified as other classes, 
especially sand beach and vegetation. The lowest user's 
accuracy was for sand beach (50.00%) because pixels 
from other classes, especially water and urban, were 
wrongly classified as sand beach. 

 
Table 2. Producer’s and User’s accuracies of LULC map. 
Class Producer’s Acc. (%) User’s Acc. (%) 

Water 65.38 100.00 

Sand Beach 100.00 50.00 

Vegetation 99.28 97.54 

Urban 83.78 93.94 

 
3.2. LULC Based on Spectral Indices Classification 

 
The NDVI, NDBI and NDWI were derived using 

Equation 1, Equation 2 and Equation 3, respectively. 
Fig. 5 shows the spatial distribution of three indices. 
The NDVI map ranged from -1 representing no 
vegetation area and water bodies to 1 representing 
high density vegetation area. The vegetation cover has 
a wide range of NDVI values because it includes 
different crops and is distributed throughout the study 
area (Elnaggar et al. 2020). The NDBI values ranged 
from 1 at area covered by urban area to -1 at no urban 
cover and water bodies. The NDWI was developed to 
identify water bodies in remote sensing digital images. 
The values ranged from 1 at area covered by water to -
0.78 at the area of no water.  

The Jenks break optimization was then applied to 
separate land covers from each index. Table 3 provides 
threshold values based on Jenks break optimization to 
separate vegetation, urban area and water from NDVI, 
NDBI and NDWI, respectively. Fig. 6 shows the three 
classified indices. 

 
Table 3. Threshold values for each index 

Index Class Threshold 

NDVI Vegetation  0.3 

 Non-vegetation < 0.3 

NDBI Built-up  - 0.23 

 Non-built-up < - 0.23 

NDWI Water  0 

 Non-water < 0 
 

Similar to LULC from ML classifier, the classified 
images, based on spectral indices, were evaluated for 
year 2019. The confusion matrix was computed for all 
classes from the three indices and accuracy measures 
as well as kappa coefficients were calculated as 
provided in Table 4.  
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(a) (a) 

  
(b) (b) 

  
(c) (c) 

Figure 5. Spectral indices maps; (a) NDVI, (b) NDBI and 
(c) NDWI 

Figure 6. Spectral indices classes; (a) NDVI, (b) NDBI and 
(c) NDWI 
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Table 4. Accuracy measures for classes from spectral 
indices 

Class 
Producer's 
Acc. (%) 

User's 
Acc. (%) 

OA 
(%) 

K 

Vegetation 90.68 98.44 91.43 0.762 

Non-
vegetation 

94.37 72.04   

Built-up 64.86 85.71 95.14 0.712 

Non- 
built-up 

98.72 95.96   

Water 88.46 85.19 98.00 0.857 

Non-water 98.77 99.07   

 
It was observed from Table 4 that the LULC was 

classified with high accuracy using the three spectral 
indices. They revealed more than 90% and 0.7 for 
overall accuracy and Kappa coefficient, respectively. 
Thus, the use of spectral indices can be directly used 
for LULC classification without time consuming in 
training data acquisition as required for ML classifier 
(i.e., supervised classification). 

 
3.3. LST Retrieval  

 
The LST was retrieved from Landsat thermal band 

10 using from Equation 4 to Equation 8. The final LST 
image is shown in Fig. 7. It was observed from the 
figure that the lowest temperature of about 27oC was at 
water and vegetation areas, while the highest 
temperature of about 46oC was at urban areas. Thus, 
the modification of natural environment (e.g., 
vegetation and/or water) with man-made, non-
evaporating and non-transpiring structures raised the 
temperature in the urban development.  

 

 
Figure 7. LST map of the study area 

3.4. LST, LULC and Spectral Indices Relationship 
 
To estimate the highest and lowest temperatures 

related to each class; vegetation, urban and water 
classes were separated from the land cover map in Fig. 
5 and then multiplied by the LST map shown in Fig. 7. 
The LST map for each class is shown in Fig. 8 and the 
LST statistics related to each class are provided in 
Table 5. The urban class revealed the highest max, 
mean and standard deviation temperatures, followed 
by vegetation and then water cover.   

 
Table 5. LST statistics of LULC based on ML classifier 

Class Min (C°) Max (C°) Mean(C°) SD (C°) 

Vegetation  21 43 31.2 2.1 

Urban 20 45 35.6 2.2 

Water 26 36 27.3 0.8 

 
Similarly, to estimate the highest and lowest 

temperatures related to each index, the same three 
classes of vegetation, urban and water resulted from 
NDVI, NDBI and NDWI, respectably as shown in Fig. 6 
were multiplied by the LST map shown in Fig. 7. The 
LST map for each class is shown in Fig. 9 and the LST 
statistics related to each class are provided in Table 6.  
 
Table 6. LST statistics of LULC based on spectral 
indices classification 

Class MinoC Max oC MeanoC SD oC 

Vegetation  21 42 31.1 1.9 

Urban 20 46 35.9 2.1 

Water 25 38 27.6 1.2 

 
Usually, high LST is measured in areas with high 

NDBI values due to urban constructions. On the other 
hand, low LST values are measured in areas with 
higher NDWI values, whereas water bodies have a 
great role in reducing the radioactive heat flow to 
Earth’s surface. Thus, the radiation energy is consumed 
through evaporation, which leads to a reduction of LST. 
Similarly, low LST is measured in areas with high NDVI 
values, whereas healthy vegetation reduces the effect 
of Earth’s surface temperature. 

Generally, we found that the higher LST values are 
associated with the lower NDVI values. However, few 
patches of vegetation area in the study area display 
high temperature variation. This is attributed to the 
heterogeneity of vegetation coverage (i.e., different 
crop type and spatial pattern as mentioned in 
(Elnaggar et al. 2020). In addition, high temperature is 
associated with urban land (i.e., high NDBI), where 
densely populated zones and urban constructions are 
existed. As shown in Fig. 8(c) and Fig. 9(c), inland 
water bodies display a lower LST than water areas at 
edges. 
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(a) (a) 

  
(b) (b) 

  
(c) (c) 

Figure 8. LST maps for each LULC based on ML classifier; (a) 
Vegetation, (b) Urban and (c) Water 

Figure 9. LST maps for each LULC based on spectral indices 
classification; (a) Vegetation, (b) Urban and (c) Water 
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Fig. 10 shows LST statistics comparison for each 
LULC based on spectral indices classification and ML 
classifier. LULC based on spectral indices classification 
have LST statistics close to those of LULC based on ML 
classifier as shown in Fig. 10. For instance, the max 
temperatures difference in vegetation and urban are 
only 1oC, while the min temperatures are the same. For 
water, the min temperatures difference is only 1oC, 
while the max temperatures difference is 2oC. All 
classes have revealed less than 0.5oC difference for the 
mean and standard deviation. Thus, no significant LST 
difference was recorded. That means LST can be 
directly extracted based on spectral indices, whereas 
spectral indices are effective indicators for the 
relationship between LULC and LST.  
 

 
Figure 10. LST comparison for LULC based on spectral 
indices classification and ML classifier 

Consequently, regression analysis was carried out 
to model the relationship between LST and the three 
spectral indices. Linear and polynomial regression 
models were applied for LST against NDVI, NDBI and 
NDWI as shown in Fig. 11. 

The results of regression models indicated a 
positive correlation between LST and NDBI, while a 
negative correlation was observed for LST against 
NDVI and NDWI. The linear regression revealed a low 
R2 for NDVI and NDWI of 0.009 and 0.010, respectively, 
while for NDBI was 0.624. Despite the quite low R2 
related to NDVI or NDWI, the relationship was 
compatible with previous studies of Pal and Ziaul 
(2017) and Tran et al. (2017). Polynomial regression 
models were then carried out to better understand the 
relationship between LST and the spectral indices. The 
results showed a higher R2 for NDVI and NDWI of 0.341 
and 0.305, respectively and almost the same R2 for 
NDBI of 0.628. Thus, the relationship is not always a 
linear and could be non-linear as reported by Tran et 
al. (2017). A multiple regression model was finally 
developed out for LST against NDVI, NDBI and NDWI 
and defined as Eq.9:  

Equation 9 shows the validity of using spectral 
indices for LST prediction with R2 of 0.699 and average 
absolute residuals of 1.2oC. Thus, the study 
recommends using NDVI, NDBI and NDWI for terrain 
classification, LST estimation of terrain classes and 
prediction of LST in designing and planning urban 
communities. 

 
LST= -21.804 NDVI + 5.583 NDBI – 23.214 NDWI + 34.070 (9) 

 

  
(a) (b) 

 
(c) 

Figure 11. Linear and polynomial regression relationship between LST and (a) NDVI, (b) NDBI and (c) NDWI 
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4. CONCLUSIONS  
 
In this research, Landsat-8 OLI/TIRS imagery was 

used to explore the relationship between the LST, LULC 
and spectral indices of Dakahlia Governorate in Egypt. 
The LST was retrieved from thermal band 10 and the 
LULC was developed based on ML classifier and three 
spectral indices, namely NDVI, NDBI and NDWI. The 
overall accuracy and kappa coefficient achieved from 
ML classifier were 95.14% and 0.857, respectively, 
while the spectral indices achieved an average overall 
accuracy and kappa coefficient of 94.86% and 0.777, 
respectively. Thus, unsupervised classification methods 
(i.e., spectral indices) have achieved comparable 
results to supervised methods. 

Vegetation, urban and water land covers were the 
focus of this research. Urban cover revealed the max 
LST statistics based whether on ML classifier or 
spectral indices with mean value of 35.6oC or 35.9oC, 
followed by vegetation with 31.2oC or 31.1oC, and then 
water with 27.3oC or 27.6oC, respectively. It is clearly 
understood that LST is more in urban area compared to 
other areas, whereas the temperatures range reached 
to 25oC or 26oC, based on ML classifier or spectral 
indices, respectively. The water bodies and vegetation 
area have a great contribution in reducing the surface 
temperatures. The LST statistics difference between 
classification methods of the three land covers vary 
from less than 0.5oC to 2oC. Thus, using spectral indices 
is an effective and reliable method in terrain 
classification, and hence estimating its LST.  

Further, linear and polynomial regression was used 
to model the relationship between LST and spectral 
indices. A negative relationship was observed for LST 
against NDVI and NDWI, while NDBI revealed a 
positive relationship. A multiple regression model was 
also developed for LST against NDVI, NDBI and NDWI.  

Our findings can represent a useful tool for urban 
designers, planners, architects and policy makers by 
predicting LST with R2 of 0.699. It is noted that the 
relationship is subject to LULC type and geographic 
location of the study area as well as the season of data 
acquired.  

In this study, we used a traditional supervised 
classification method (i.e., ML classifier), while recent 
researches have applied machine learning algorithms 
in the classification process and achieved better results 
(e.g., El-Hattab et al. 2018). In addition, monitoring the 
spatial changes of LULC over time and their impact on 
LST is necessary for such dynamic study area. 
Therefore, it is recommended for future work to 
consider recent machine learning algorithms for LULC 
classification and explore the relationship between 
LULC, spectral indices and LST using multi-temporal 
satellite images. 
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