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ABSTRACT 
 
 

This study focuses on power and probability expressions belong to normalized frequency and normalized 
propagation constant of electric field in the rectangular quantum well. The confinement effects of the properties 
of confined carriers in the energy levels have been studied. Normalized frequency and normalized propagation 
constant are especially functions of the ordinates and abscissas of the energy eigenvalues for electrons or holes in 
the rectangular quantum well in the normalized coordinate system (ζ-η). Our calculations also give more 
accurate results, and present more sensitive comparative examples. 
 
Key Words : Normalize propagation constant, Quantum well lasers  

 
 

DİKDÖRTGEN KUANTUM ÇUKURLARINDA GÜÇ ORANLARI VE 
OLASILIKLARINA BİR YAKLAŞIM VE BU NİCELİKLERİN YORUMU 

 
 

ÖZET 
 
 

Bu çalışmada, dikdörtgen kuantum çukuru içindeki elektrik alanının normalize propagasyon sabiti ve normalize 
frekansına ait güç ve olasılık ifadeleri üzerinde durulmuştur. Enerji seviyelerinde bulunan taşıyıcıların 
özelliklerinden olan hapsedilme etkileri araştırılmıştır. Normalize frekans ve normalize propagasyon sabiti, 
dikdörtgen kuantum çukurundaki elektron ve deliklerin enerji özdeğerlerinin normalize koordinat sistemindeki 
(ζ-η) ordinat ve absislerinin  fonksiyonudur. Yapılan hesaplamalar ile daha kesin sonuçlar elde edilmiş olup bu 
anlamda daha hassas karşılaştırmalı örnekler sunulmuştur. 
 
Anahtar Kelimeler : Normalize propagasyon sabiti, Kuantum çukurlu lazerler 
 
 

1. INTRODUCTION 
 
 

With the rapid growth presently taking place in the 
aspect of optoelectronics there is considerable 
interest in finding suitable structure for use in the 
semiconductor laser devices. Lasers and similar 
devices have been increasingly using the quantum 
effect. Especially, discrete behavior of subatomic 
particles such as electrons and holes has been 
confined to ultra minute realms in the rectangular 

quantum wells (RQWs) in fewer than three 
dimensions. 
 
In recent years the technologies that make a 
confinement possible by building nanostructures out 
of individual atomic layers or molecules have been 
advancing at a remarkable step. By controlling 
precisely the structure and the composition of layers 
of material with tens of atoms or even just a few 
atoms thick, it is provided that we can program the 
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electronic characteristics that we want to put into a 
compound material.  
 
By making use of clever material design, electrons 
can be induced to jump from one energy level to 
another in one organized way, causing them to 
perform useful trick in some optoelectronic devices 
such as rectangular quantum well lasers (RQWLs). 
One of the keys to understand the basic principles 
that govern the operations of the RQWLs requires a 
basic comprehension of simple quantum well 
problem. The working principles of the RQWLs are 
based on the confinements of the carriers in the 
single rectangular quantum wells (RQWs). The 
RQWLs is widely used to read the information 
stored on the compact disk. 

 
 

2. PROPERTIES OF MATERIAL 
USED 

 
 

The single rectangular quantum well (RQW) is just 
one of the three basic regions of the quantum 
devices, as shown in Figure 1 These are made by 
growing gallium arsenide (GaAs) films less than, for 
example, 10 nm thick, between barrier layers of 
aluminum gallium arsenide (AlGaAs) obtained from 
usually using molecular epitaxy.  
 
When the semiconductors materials GaAs and the 
AlGaAs with different band gaps are grown on the 
top of one another to form sub energy levels in the 
conduction and valance bands in the RQW, a 
discontinuities at the band edges are instituted. 
These man-made structures have been revealing for 
the salient features of quantum confinement. 
Reducing the number of dimensions forces the 
carriers to behave in a more atomlike manner 
(Kapon, 1999). 
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Figure 1. Basic regions of the RQW and the energy-
band structure 
 
The only significant difference between an ordinary 
semiconductor laser and the rectangular quantum 

well laser (RQWL) is the relative size of each 
device’s active region (AR), where electrons and 
holes recombine, neutralizing one another and 
causing a photon to be emit. In a conventional 
semiconductor laser, when the physical width 2a of 
the AR is comparable to the characteristic lengths 
such as the Broglie wavelength, the Bhor radius or 
the mean free path of the electron, a quantum 
confined size effect (QCSE) occurs which are 
exhibited as the quantization of carrier’s energy in 
one of its three degrees of freedom, i.e. the energy is 
restricted to a certain allowed (quantized) values. 
Electrons are not really confined by physical barrier; 
instead, researchers must erect the barrier of energy. 
This physical event introduces new electronic 
properties, forming new electron and hole energy 
levels in the GaAs layer which is called AR. 
Namely, electrons confined within such a layer of 
thin material permit quantized energy levels between 
conduction and valance bands, as shown in Figure 2. 
 
For a carrier in the AR with the thickness 2a of the 
RQW having no barrier potential, the energy 
eigenvalues (EEVs) En (Schiff, 1982) at n th  energy 
level are given by 
 

2*/8m22π2nnE a= ,   n = 1, 2, 3, ...                 (1) 
 
for the optical even electric fields (OEEFs), 
corresponding to n=1, 3, 5…, and for the optical odd 
electric fields (OOEFs) corresponding to n=0, 2, 4, 
…,. In the equation En=n2E1, n=1, 2, 3, …, E1 is the 
ground state energy. If there is a confined state with 
the barrier potential Vo in the RQW with finitely 
high barriers, the EEVs Eν becomes 
 

2 2 2 2 2 2e V n π /8m* V n E ν eν o o 1 1
n 0,1,2,3,...

= − = − =

ν = =

a
     (2) 

 
Where  is normalized Planck constant as 

h / 2= π  and m* effective mass for a carrier. 
(Schiff, 1982; Verdeyen, 1989). 
 
The barrier potential Vo in equation (2) is 
determined by the construction of the semiconductor 
material used (Chow, 1999). In Figure 2, three levels 
have predicted for electrons and 5 for heavy holes, 
arising the difference from the large discrepancy 
between the effective masses of these carriers (Syms 
and Cozens, 1992). 
 
Motion of the carriers in the single RQWs is 
quantized in the energy levels perpendicular to the 
well as shown in Figure 2. The band gap of the 
structure of the AR is determined primarily by the 
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well length of a and the composition of the barrier 
and well layers, as they determine the energy of the 
confined states and therefore the transition energies 
in the structure. However, the band gap structure 
may be modified by changing the confinement 
profile of the structures of the AR since its form 
determines the energy of allowed transitions in the 
structures of the RQWs. Referring to equation (2), 
the number of allowed quantised bound states is 
given by π/nE-o(V*8m )a=ν . This equation 
shows that the existence of quantised energy levels 
depends on the barrier potential Vo (energy depth of 
the single RQW), the length a of the AR as well as 
the effective mass m* of the carrier in the single 
RQW and the EEVs En with mode number n. As the 
width 2a and energy depth Vo of the single RQW are 
reduced, the number of quantised states is reduced to 
the minimum value one. Thus, the photon energy 
depends on the well thickness and increases as the 
thickness decreases.  
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Figure 2. Band diagram for a AlGaAs 
/GaAs/AlGaAs RQW 

 
 

3. PRELIMINARIES 
 
 

Electric field which is generally used in the 
electrical engineering is a special potential per unit 
length. Therefore, we shall use the electric field in 
this work, instead of the potential. The particle is 
allowed to exist in a certain confined (bound) states 
which can be described by a wave function such as 
electric field. 
 
The electric field and its total energy of an electron 
can be obtained by solving the Schrödinger equation  
 

2 2m*En2 V ]E(x,y,z) E(x, y,z)o 22m*

n=1, 2, 3, ...              

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
−∇ + =

,          (3) 

Where E(x,y,z) is the electric field describing an 
electron or a hole in the conduction or valance band. 
The EEV En of the electron/hole in three-
dimensional (Schiff, 1982) can be given by  
 

]2
zk2yk2/42n2[π*/2m2)zk,y(n,knE ++= a (4) 

 
Where ky and kz are wave numbers in the directions 
y and z, respectively. The evanescent the electric 
fields (Buck, 1994) in the cladding layers (CLs) can 
be respectively expressed as 
 

E A exp (x )yI,III I,III I,III= ±α ±⎡ ⎤
⎣ ⎦a           (5) 

 
for the symmetric rectangular quantum wells 
(SRQWs), where the minus sign on the exponential 
expression corresponds to the region III, while 
positive sign shows the region I. A A coseI,III = ζ  

and A A sinoI,III = ζ  are taken for the OEEFs and 

OOEFs respectively. The field in the AR is given by 
 

n xE A cos( x ) A cos( )y II 2II
π= α − θ = − θa            (6) 

 
where if  we take as θ=0 and n=1, 3, 5,... it is 
obtained the OEEFs (Verdeyen, 1989) as  
 

e n xE y A cos , n=1, 3, 5,...II 2
π= a                          (7) 

 
and also we take as θ=90o and n=0, 2, 4,... we obtain 
the OOEFs as 
 

o n xE y A sin , n 0, 2, 4, ...II 2
π= =a             (8) 

 
 is interpreted as the probability of finding 2׀EyII(x)׀
the carriers at the position x in the RQW. By 
denoting complex conjugate with (*), constant A in 
equation (6)-(8) is determined by  
 

1dx
2

yIIEdx*yIIEyIIE =∫
−

=∫
−

a

a

a

a
,           (9) 

 
Which defines the total probability for all possible 
events is unity in the AR.  
 
Electron need not to be part of an atom to exhibit the 
quantum energy effect. It is necessary only for the 
electron to be confined to region whose dimensions 
are measured anywhere from a few to a few hundred 
atoms. These properties for sizes approximate the 
hypothetical, indistinct cloud consisting of myriad 
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points, each of which represents the probability of 
the electron occupying that position. 
 
The propagation constants (PCs) αI, αII and αIII, 
which are the wave numbers in special case for the 
OEEFs and OOEFs of the carriers in the single 
asymmetric quantum well (ARQW) (Buck, 1994), 
are defined (Verdeyen, 1989; Temiz, 2002) as 
 

Inok
c

In
Ik ,2

Ik2
z

2)
c

In
(2

z
2

I =
ω

=−β=
ω

−β=α ,     (10) 

 
n2 2 2 2 2II( ) kz zII IIc

nIIk k noII IIc

ω
α = −β = −β

ω
= =

         (11) 

 
n2 2 2 2 2III( ) k ,  z zIII IIIc

nIIIk k noIII IIIc

ω
α = β − = β −

ω
= =

        (12) 

 
n

k ,k k / c 2 /o oc

ω
= = =ω = π λ .         (13) 

 
The letter A in equation (6)-(8) is a constant in terms 
of propagation constant (PC) αII and the length a of 
the AR. The symbols nI, nII and nIII shown in Fig.1 
are indices of the regions. This usual relationship 
between the indices in the three regions is 
n n nII I III〉 〉  which gives inequalities kI<βz<kII and  
kIII<βz<kII between the waves numbers and βz. In the 
SRQW, there are the relations αI=αII=αI,III and so 
nI=nIII=nI,III. βz  is phase constant and k is the wave 
number. Where c is the velocity of the light in a 
vacuum. λ is wavelength and ko  is free space wave 
number. Every frequency defines a free space wave 
number according to the formula at the right hand of 
equation (13) (Temiz, 2002). 
 

The optical evanescent field EyI,III relevant the 
OEEFs and OOEFs in the SRQWs is respectively 
extending significantly into the cladding wide-band 
gap semiconductor layers surrounding the AR. EyI,III  
stands for EyI, or EyIII.  
 

The PC αII in equation (11) which is also called 
spatial frequency is given (Temiz, 2001, 2002) by 
 

[ ]

3,... 0,1,2,n,2
z

2
ok2

IIn

nEoV*m2/1II

=⎥⎦
⎤

⎢⎣
⎡ β−

=−=α
                        (14) 

in the another form. Referring to equation (10) and 
(12) for the single SRQWs, we get αI,III as 
 

...,3,2,0n,2)okIII,In(2
z/nE*m2III,I =−β==α      (15) 

 
in the CLs for the single SRQWs. By defining 
parameters ζ=αIIa and η=αI,IIIa, which form 
parametric coordinate variables of the EEVs for 
carriers, as it will be explained in the below, the 
variables are obtained (Temiz, 2001; 2002) as 
 

[ ]nEoV*m2 −=ζ
a           (16) 

 

2m*E ,n=0,1, 2, 3, ...
n

η=
a

             (17) 

 
As it will be expressed in the future, the normalized 
propagation constant and the depth of the single 
RQW strongly depends on the parametric 
coordinates ζ and η of the EEVs for carriers. 
 
The relation between the PCs αI, αII and αIII in the 
RQW are generally (Temiz, 2001, 2002) given by 
 

/ tan( )I II IIα α = α θa + , / tan( )III II IIα α = α θa -  (17) 
 
Where θ can be mπ/2, m=0, 2, 4,..., for the OEEFs 
and m=1, 3, 5,..., for the OOEFs  (Buck, 1994).  
 
The normalized frequency (NF) V is given by 
 

o
2 2 *V 2 ( / )NA k NA 2m V0ζ +η == π λ = = aa a  (18) 

 

Which yields a circle with radius o
*2m Va/  

(Buck, 1994). 2 2NA n nII I,III= −  ≅ 2∆IIn  is 

called numerical aperture of the SRQW. Here ∆ is 
given by as 

2 2 2∆ (n n ) / 2n (n n ) / nII I,III II II I,III II= − ≅ − . The 

intersections of the tangent equation in (17) with the 
circles in equation (18) yield the points of the EEVs 
for carriers in the SRQW as shown in ref. (Temiz, 
2001, 2002). 
 
For the single SRQWs, normalized propagation 
constant (NPC) α is defined as  
 

2V/2η=α                         (19) 
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Which is a real quantity and must be α<1 
(Bhattacharya, 1998). Just as, one can write, 
 

α−=ζ→ζ=η−=α− 1V2V/22V/211                    (20) 
 
That allows us to determine the abscissas  ζ of the 
EEVs for the given NF V and NPC α. Note that 
equation  (17), (18) and (19) yield 
 

E / V , n=1, 2, 3, ...         
n o

   α =                           (21)  

 
Equation (21) permits us to calculate the NPC α 
(barrier potential Vo) for given Vo (α) and E n .  
 
The NPC α can be calculated as follows: α 
=(1.1428Ve-0.99602)/V2, which has approximately a 
linear feature in the range of 1.5 〈 V 〈 2.5 (Rudolf, 
1976). 

 
 

4. POWER QUANTITIES AND 
CONFINEMENT FACTOR 

 
 

The ratio of power, which is the ratio of total 
evanescent power P , (PI+PIII) in the region I and III 
to the active field power (PII) in the AR, denoting the 
complex conjugate with (*), can generally be 
expressed as 
 
 
 

PPI III R
P PII II

* *P E (x)H (x) E (x)H (x) dxxI yI yI xI

* *[ E (x)H (x) E (x)H (x) dx]xIII yIII yIII xIII

* *P E (x)H (x) E (x)H (x) dxII xII yII yII xII

+ = =

−
= − +∫
−∞

∞
−∫

= −∫
−

⎡ ⎤
⎣ ⎦

⎡ ⎤
⎣ ⎦

⎡ ⎤
⎣ ⎦

a

a
a

a

  (22) 

 
 
 
 

or by taking Ex=0 for only Ey component  
 
 
 
 

[ ] [ ]
[ ]∫

−

∫
∞

+∫
−

∞−== a

a

a

a

dx*(x)xII(x)HyIIE

dx*(x)xIII(x)HyIIIEdx*(x)xI(x)HyIE
R

IIP

P   (23) 

 
 
 
 

Taking the impedances of the fields                         
Z=-Ey/Hx→Hx=-Ey/Z into account in the optical 
medium (Pozar, 1998), the power ratio R becomes 

* *E (x)E (x) dx E (x)E (x) dxyI yI yIII yIII
R

*E (x)E (x) dxyII yII

2 2
E (x) dx E (x) dxyI yIII

2
E (x) dxyII

− −∞
+∫ ∫

−∞ −= −
∫
−

− −∞
+∫ ∫

−∞ −=
−
∫
−

⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎣ ⎦

a

a
a

a
a

a
a

a

(24) 

 
Only in terms of electric field. The parameter R for 
the OEEFs (Temiz, 2002) and the parameter r for the 
OOEFs can be respectively calculated by 
 

P P1
R , r

P PII II

′− α α
= = = =

η + α η − α
l l                       (25) 

 
The parameter K (Temiz, 2002) for the OEEFs and 
the parameter q for the OOEFs, that is, for the ratio 
of the loss powers, P , ( P′ ) to the input powers, Pi, 

( P′i ) for the fields are 
 

2 E (x)E (x) *dxyIII yIII

2 E (x)E (x) * dx 2 E (x)E (x) *dxyII yII yIII yIII0

, q

P
K

Pi

P '1 1 1

1 1 1/ R P ' 1 1/ ri

a
a

a

∞
∫

∞
+∫ ∫

= = =

= =

−α α
= =

η+ + η +

(26) 

 
The confinement factors (CFs) ГII and ΛII (Temiz, 
2002) for the OEEFs and OOEFs respectively 
become: 
 
P PII II

IIP P P 1IIi
P' P' 1 qII II 1 qIIP ' P' P' 1 r r

i II
= =

α+η
= =Γ =

+ +η

η−α
= Λ = = − =

+ η +

        (27) 

 
and therefore one can writes K+ГII=1, q+ΛII=1. 
 
Pi, PII and P  ( P 'i , P 'II  or P ' ,) powers mentioned 

above are respectively optical input power, active 
region power and the loss power (the total power of 
the CLs) (Temiz, 2002) for the OEEFs (OOEFs) in 
the SRQWs, as shown in Figure 4. The apostrophe 
denotes the parameters about the OOEF (Temiz, 
2002). 
 
The parameters r, q and ΛII for the OOEFs are 
respectively obtained in terms of the parameter R, K 
and ГII for the OEEFs as  
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P I, III/ 2 2/P=  

P I, III/ 2 2/P=  

P II 
P i                - a  ( I )  

( I I )  

( I I I )  
0  V ( x )

x  

+ a  

P o = P II 

 
 
Figure 4. The different powers in the AR and the 
CLs in the SRQWs 
 

(1 η)1- K(η 1) IIr (1 ηR)/(η -1), q ,ΛIIη η

+ Γ+
= − = =   (28) 

 
Equation (28) are the transformation relations 
between some parameters for the OEEFs and the 
OOEFs. The values nI=nI,III=3.350, nII=3.351, 
λ=1.55 µm and a=5 Ao give the NF V, the NPC α, 
the coordinates of the EEVs for the carriers ζ, η, the 
power ratios R, K and confinement factor ГII, the 
input probability Ie

i, the loss probability Ie  and the 
active region probability Ie

II as V=1.6592x10-004 and 
α=0.0161, ζ=1.6458x10-004, η=2.1058x10-005, 
R=61.0012, K=0.9839, ГII=0.0161, Ie

i=62.0012, 
Ie =61.0012 and Ie

II =1 for the OEEFs, respectively. 
In this example, there is only one solution 
corresponding to the OEEFs for these given values; 
because there is not a solution for the OOEFs since 
V<1.57 (Iga, 1994). The transformations between 
some quantities such as K=1/[1+(1/R)], ГII=K/R=1-
K are current (Temiz, 2002).  

 
 

5. POWERS AND PROBABILITIES IN 
THE REGIONS OF THE RQWs 

 
 

The efficiency of the power of the RQWs, the ratio 
of the evanescent power (Ploss= P ) in the CLs to the 
total field power (Pinput=Pi-input power) in the AR is 

/K P Pi= . Here, by supposing that the power of 
the AR (region II) is normalized as unity due to Eq. 
(9), we obtain the following expressions (Temiz, 
2002) for the SRQWs (αI=αIII=αI,III). By reminding 
the modulus tj=|Eyj| of the even field Eyj, j=I, II, III, 

the integrating 2I t dxj j
= ∫  represents physically 

the probability of finding an electron or a hole at a 
point x in the j th region of the RQW. We denote the 
input power, loss power and the active region power, 

respectively, with / ZP Ii i= , / ZP I=  and 

/ ZP III II= , for example for the OEEFs, by 
reminding the obtaining from general power 

expression Z/Idx
0

2t
Z

1
P =∫=

a
, the powers and 

probabilities for the regions in the single SRQWs are 
 

i

22 22P (t t )dx (I I )II I,III II I,IIIZ Z

∞
= + = +∫

a
       (29) 

 
and 
 

iI I I 1 I
II

= + = +             (30) 

 
According to Figure 1. By using L=ζ2/V2 which will 
be interpreted in the future, the powers and the 
probabilities for the OEEFs in the AR (region II) are 
 

22 A cos ζ2 η αe e eP E (x) dx ( )II yIIZ Zα L0
I, III

2A η αeI, III ( )
Zα L

I, III

+
= =∫

+
=

a

   (31) 

 

)
L

αη
(

IIII,α
IIIeI,

2A

)
L

αη
(

IIII,α

ζ2coseA
dx

0

2
(x)yIIeE2IIeI

+
=

+
=∫=

a

        (32) 

 
and for the OOEFs in equation (8) 
 

)
α

αη
(

IIII,Zα
IIIoI,

2A

)
α

αη
(

IIII,Zα

ζ2sino
2A

dx
0

2
(x)yIIoE

Z

2
IIoP

−
=

−
=∫=

a

,    (33) 

 

)
α

αη
(

IIII,α
IIIoI,

2A

)
α

αη
(

IIII,α

ζ2sino
2A

dx
0

2
(x)yIIoE2IIoI

−
=

−
=∫=

a

        (34) 
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Equation (32) and (34) are equal to 1 due to equation 
(9).  
 
In general, the loss power and the probability in the 
ARQW become the sum of the powers PI, PIII and 
the probabilities II, IIII in the regions I and III, 
respectively:  
 
P =PI+PIII.                 (35) 
 
I =II+IIII.              (36) 
 
We obtain the powers and the probabilities as 
 

eP
22 1 Le eE (x) dx I /ZyI,IIIaZ Z η α

=
∞

= =∫
+

    (37) 

 

αη

L

IIII,α
IIIeI,

2A
dx

a

2
(x)IIIyI,eE2eI

+
==∫

∞
=      (38) 

 
for the OEEFs and  
 

22 1 αo o oP E (x) dx I /ZyI,IIIZ Z η - α

∞
= = =∫

a
     (39) 

 

α-η

α

IIII,α
IIIoI,

2A
dx

2
(x)IIIyI,oE2oI ==∫

∞
=

a
     (40) 

 
for the OOEFs and Therefore, the equations between 
equation (32) and (34) give  
 

e e o oI I ( ) 1, I I ( ) 1IIII L

η + α η − α
= = = =

α
        (41) 

 
 
Which denote that for the each of OEEFs and the 
OOEFs the probabilities of the finding carriers in the 
regions II (in the AR) becomes % 100. 
 
 
[cf.(36)and (46)] and equation (30) yields 
 
 

α η L Le e eI I I I
i II IIα η α η

1 1 α η L 1 Le e eP (I I ) (I )
i II IIZ Z α η Z α η

+ +
= + = = +

+ +

+ +
= + = = +

+ +

,(42) 

 
for the OEEFs and  
 

η ηo o o oI I I I ,
i II α η α

1 1 η 1 ηo o o oP (I I ) (I )
i IIZ Z α Z η α

= + = =
−

= + = =
−

,       (43) 

 
for the OOEFs. The loss power and loss probability 
are given in ref. (Buck, 1994) as 
 
P P 2 Pav iav
I I 2 Iav iav

= ≅ γ

= ≅ γ

l l

l l
                       (44) 

 
Where γ av is approximate (average) loss coefficient. 
Equation (38)-(43) and (44) give, respectively, as 
 

η1
L

η1
α1

ηLα
L

ave2γavK
iaveP
aveP

iaveI
aveI

+
=

+
−

=
+++

=

===
                 (45) 

 
for the OEEFs and  
 

η
α

avo2γavq
avioP

avoP

avioI

avoI
====         (46) 

 
for the OOEFs. Therefore, the output power and 
probability (Buck, 1994) are given by 
 

2γ 2γav avP P e , I I eoav iav oav iav
− −

≅ ≅              (47) 

 
which give  
 

e2γe e avP P e
oav iav

e2γe e avI I e
oav iav

−
≅

−
≅

          (48) 

 
for the OEEFs and  
 

o2γo o avP oav P e
iav

o2γo oI I e av
oav iav

−
≅

−≅

                       (49) 

 
for the OOEFs, respectively.  
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For an extract solution, we can get the following 
applications: 
 

2 2I I I I I e , I I e
i o i i o i

− γ − γ= − = − = ,               (50) 

 
where IO is the output probability (Buck, 1994). 
Therefore, the loss probability and loss power are 
obtained as 
 

2γ2I I (1 e ), P P (1 e )
i i

−− γ= − = −          (51) 

 
which give 
 

2γ2e e e e e eI I (1 e ), P P (1 e )
i i

−− γ= − = −             (52) 

 
for the OEEFs and 
  

2γ2o o o o o oI I (1 e ), P P (1 e )
i i

−− γ= − = −        (53) 

 
for the OOEFs. Equations (52) and (53) yield the 
power ratios 
 

e2e1K
ieP

eP

ieI

eI γ−−===                       (54) 

 
for the OEEFs and  
 

o oI P o2q 1 e
o oI P

i i

− γ= = = −          (55) 

 
for the OOEFs. Equations (54) and (55) give 
respectively the loss factors as  
 

e α η2e 1 K
1 η
+− γ = − ==
+

          (56) 

 
for the OEEFs and the loss factor  
 
 

o η2e 1 q− γ = − =
η−α

          (57) 

 
 
for the OOEFs. Therefore, percentages of 
sensibilities over the approximation cases of our 
formulations for the loss coefficients in terms of our 
parameters for the OEEFs and OOEFs can be 
respectively given by 

K1
1ln

K
K1

1ln

ηα
η1

ln

K
ηα
η1

ln

e2γ

ave2γe2γe∆γ

−

−
−=

+
+

−
+
+

=
−

= (58) 

 

q1
1ln

q
q1

1ln

α-η
ηln

q
α-η
ηln

o2γ

avo2γo2γo∆γ

−

−
−

=
−

=
−

= (59) 

 
For example, we have the error percentage of 
∆ eI =( eI - I

av
)/ eI =-2.9508x10-005 for the 

values nI=nI,III=3.350, nII=3.351, λ=1.55 µm and a=5 
Ao given above example for the OEEFs, so that it is 
therefore reasonable to prefer our approach over the 
approximation procedure given in (Buck, 1994). 
Consequently, equation (50)-(59) are novel 
expressions about our approach. 

 
 
 

6. THE DEPT OF ENERGY LEVELS IN 
THE RQWs 

 
 
 

Using equation (16), (18) and equation (18), (20), 
(21) and (26) for the OEEFs and referring to the 
defining K= e eP / P i  in equation (54), we obtain 
 

K (V E ) / V (1 ) e
o n o

= − + η = ν⎡ ⎤
⎣ ⎦                      (60) 

 
eν  represents the energy levels in the RQW as 
 

2 2 2 2 2e π /8m * e , 0,1, 2, 3, ...
1

= ν = ν ν =
ν

a    (61) 

 

Where 2*m8/22
1e aπ=  which is the lowest 

energy level (Schiff, 1982) in existence of carrier 
confinement in the single RQWs. That is, e1  is the 
first energy level in the bottom of the RQW and is 
equal to the ground energy in equation (1), namely 
E1= e1 . Here n denotes the mode number of the 
field, while ν  determines the energy levels in the 
single RQW from the bottom of the well [cf.(2)]. 
Note that for n= ν =0 that equations (2) and (61) give 
Vo=Eo=0, which points out that there is not induced 
field in most bottom of the RQW. Referring to 
equations (60) and (61), we have 
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2 2 2 2K K [ π /8m * ]/[V (η 1)]
n o

2e
1

V (η 1)
o

= = ν +

ν
=

+

a

       (62) 

 
from which we get the quantum energy level number 
ν as 
 

ν KV (η 1)8m *
oπ

= +
a

.                      (63) 

 
Equation (63) imply that the energy levels in the 
RQW depend on the parameter K, the barrier 
potential Vo apart from the ground potential e1  and 
ordinates of the EEVs for the carriers. The values 
nI=nI,III=3.350, nII=3.351, λ=1.55 µm and a=5 Ao in 
the above example give e1=21.9241 eV, K=0.9839, 
Vo=22.2830 eV and η=2.1058x10-005 for the OEEFs 
with the single mode and so the quantum energy 
level number in the RQW is obtained as 1. This is 
also estimated as Vo/e1≅ 1 for n=0 and ν =1 in 
equation (2) approximately. If we define  
 

2e V E L V ν eν o n o 1= − = =                        (64) 

 
where L, (0 L 1)〈 〈 , represents percent of Vo from 
bottom edge of the well, equation (60) gives, 
 

K L / 1 V 1 L= + −⎡ ⎤⎣ ⎦                        (65) 

 
where  L=ζ2/V2 and by referring to equation (20) 
 
L 1= − α .                        (66) 
 
The quantity L can be regarded as a quantum well 
depth parameter in the RQWs, as shown in Figure 5. 
Equation (64) yields L=ν2e1/Vo, ν=1, 2, 3, …n or 
from equation (66) we get 
 

,21 ν e /V 0,1, 2, 3, ...
1 o

α = − ν =  ,                      (67) 

 
Equation (2) yields 

22 2e n Eπ2ν 1α 1 n 1 ,n, 0,1,2,...
2V V8V m*o oo

= = − = − ν=
a

        (68) 

 
or from equations (67) and (68) we have 
 

2 2ν e n E1 1α 1 1 ,n, 0,1,2,3...
Vo Vo

= − = − ν=          (69) 

 
With the remembering E1= e1  for n= ν =1, equation 
(69) shows that the NPC α does not change in the 
single mode (n=1) However, in general equation 
(69) implies that the NPC  α depends on the mode 
number in the condition given the relation 
α=En/Vo=1-ν2E1/Vo. Referring to equation (21), 
equations (67) and (69) are equal to each other in the 
RQW for n=ν=1, 2, 3, ... with remembering 
Eo=Vo=0 for n=ν =0, so that eν=0 in equations (64) 
and (66) for Eo=Vo=0 gives that L=0 (See Figure 5). 
Equations (60)-(69) are also true for the OOEFs. The 
depth parameter L in equation (66) is a novel result.  
 
If the bottom edge of the single RQW is selected as 
starting of the dept L of the RQW, as shown in 
Fig.5, L=0 in equation (66) gives α=1 due to ζ=0 in 
equations (18) and (19) or according to equation 
(66) and therefore we obtain the confinement factor  
ΓII as ΓII=1 (Temiz, 2002), while L=1 yields α as 
α 0=  and so indirectly K=1. In this case we obtain 

2 2 2 2 2V n π /8m* n E
o 1
= =a  that gives eν=0 in equation 

(2) which means that quantum confined states are 
not instituted. 
 
Consequently, the power ratios and the confinement 
factors are function of the parameter α or L of the 
RQW. If there is no quantum confined states, then L 
is unity which means that the quantum well does not 
institute and therefore the power PII of the AR can 
not be exist. If L is zero then there is no induced 
field at the deepest of the well. Therefore, the 
existence of effectiveness of the AR corresponds to 
the values between 0 and 1 of the depth parameter L 
or the NPC α. 

 
 

7. RESULTS 
 
 

In this paper we have studied the powers and 
pobabilities for the regions of the single RQWs to 
interprete some field parameters affecting confined 
states in the wells. 
 
The NPC α and the depth parameter L are 
respectively functions of the NF and the ordinate 
and the abscissa of the EEV. The depth parameter L 
is a novel result. That is, the depth of the RQWs 
depends on the abscissas of the EEVs as shown in 
equation (66) and the barrier potential VO influences 
the NPC α with the respect to equation (21). The 
indice ν determines the energy levels towards up 



An Approach to Power Ratios and Probabilities and Interpretations of These…, M. Temiz, Ö. Ö. Karakılınç, A. Ükte, H. Şentürk 
 

Mühendislik Bilimleri Dergisi  2005 11 (2)  171-181 180 Journal of Engineering Sciences 2005  11 (2) 171-181 

 

from the bottom edge of the single RQW. Here, 
there are some special manners: The parameter K in 
equation (65) is zero when the depth L of the well 
becomes 0 (or the NPC α also becomes 1 according 
to equation (66) for ν=0 at the bottom edge of the 
well (Temiz, 2002). L=0 (ν=0) gives eo=0 and 
Vo=En=0 in equation (64), which implies that there 
is not induced field at the bottom edge of the well as 
shown in Figure 5. 
 
 For the electric field which has the mode n=1, 2, 3, 
..., the number of energy levels in the single RQW is 
described by the ν=n-1, (ν=0, 1, 2,…,) in the EEVs 
e ν =En-1 (Schiff, 1982). That is, in this case, the 
induced electric field with the mode ν within the 
single RQW has the number of energy levels ν=n-1. 
n=0 then (n-1) corresponds to E-1, and ν=-1  
respectively, which has no physical significance 
Even and Odd values of the n are for the OOEFs and 
OEEFs, respectively. In the case of 
Eo

yII=A=0=constant which corresponds to n=0, there 
is not an induced field and therefore EEV En=Eo=0 
for n=0 and eo=0 for ν=0. Consequently, we take the 
mode indice n as n=1, 2, 3, ..., for the electric field 
and the energy levels ν  in the RQW as ν=0, 1, 2,…, 
for induced field. The OEEF with the single mode 
for n=1 has only the EEV E1 but induced field has 
EEV eo=0 in the well. (2) L=1 gives K=1 in equation 
(65), which means that K is maximum as a unity and 
the confinement factor in equation (27) is obtained 
as ΓII=0 and the confinement can not be obtained 
because of no bound state at the topest edge of the 
single RQW, as shown in Figure 5. This manner 
means that there is not an AR, which corresponds to 
α=0 with respect to equation (66). The larger 
percentages of the L from the bottom edge of the 
well is, the larger loss power increases according to 
equation (37). On the contrary, the losses in the 
energy levels at the points near to the bottom edge of 
the single RQW become small. Therefore, for small 
losses, small quantum energy levels must select at 
the near to the bottom edge of the single RQW such 
as ν=1 except for ν=0. 
 
The barrier potential Vo is selected by material 
process to get the carrier concentration at the certain 
energy level. When the barrier potential Vo is 
smaller, then K or the loss P  is larger Therefore, to 
reduce the loss, the barrier potential Vo must be 
increased. Equation (62) estimates the needed barrier 
potential Vo for given K and the ordinate η of the 
EEV. Equation (62) yieldsν2=Kn/K1which implies 
for the multiple energy levels that the energy 
increases as proportional to the ν2. Therefore, for a 
quantum energy number with ν=1, since carriers are 
distributed over a smaller range of the energy states, 
the single RQWs require less pumping to get the 

population inversion and give greater efficiency. 
Thus, the injected carriers are less sensitive to the 
thermal spreading effects. This reduces the 
temperature dependence of the threshold current 
density. 
 

ν2e1 
1

2eE ν=∆ ν  
2

V(x) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==
==
==

=

0e  ,EV
1L  1,K

0Γ   0,η
0,α

no

II

ν

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

==
==

====

)0K 1,Γ 
  0,ζ  0,L

1,(α0,EV 0,ν

II

oo0 

-a 

e1 

0 

x 

a 

L 

-a +a 

1 

(I) (II (III) 

 
 

Figure 5. Energy levels and the quantity L within the 
RQW 
 
The parameters of R, K and ΓII depend on the NPC 
α. K or R is inversely proportional to the parameter 
η. To get a good confinement, the NPC α and the NF 
V should be large according to α=η V . But in a 
single mode, the NF V should be V<π/2 (Iga, 1994). 
The largest value of η is obtained when ζ=0 and 
therefore V=η  in according to equation (21). For 
this condition (ζ=0), we obtain α=1 (L=0 in equation 
(66) in the equation (19) and ΓII=1 in equation (27) 
and K=0. These results mean that the confinement 
factor ГII becomes % 100 on the axis-η. These 
parameter values correspond to the extreme edge of 
the bottom of the single RQW.  
 
Another way, the confinement factor ГII  in equation 
(27) is equal to zero when η=0 gives V= ζ  in the 
equation (18) and for the OOEFs, ΛII=∞ in equation 
(30) These values of the parameters show that there 
is not confinement on the axis-ζ. This case 
corresponds to the topest of the single RQW. These 
extreme values found for η=0 expresses that they are 
not in agreement for a stable working. Consequently, 
ζ=0 and η=0 correspond to extreme values of α=1 
and α=0, respectively. For the OEEFs and OOEFs; 
when the width 2a of AR  is smaller, then, the 
confinement factors become smaller Therefore, to 
get a large NPC α according to equation (19) and 
also to get an ordinate η=αI,IIIa for a certain length a, 
the propagation constant αI,III must be large. The 
drift velocity v of the carrier according to the 
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==α /nE*m2III,I
2 2p / 2m* v m * / 2=  in 

equation (17) must be large enough. and so it is 
leaded to select the large drift velocity, which is 
roughly v=c/nI,III; namely, the velocity v is limited by 
indices of the CLs. To increase velocity, the indice 
nI,III must be small. Therefore, propagation constant 
αI,III or η=αI,IIIa for the CLs can be obtained in a 
certain value depending on the index nI,III. But, if the 
free space is selected for one of the CLs, then the 
index nI,III can be taken as 1. This case leads to the 
using of the surface wave, indicating a wave guided 
by the dielectric interface (Buck, 1994).  
 
With respect to our formulation, 

e e e e2γ ln(I /(I I )i i= −  gives 4.12715374 which 
yields the output probability 

e2γeieIoeI −= =62.0012xexp(-4.12715374)=1=Ie
II 

for the given example above for the OEEFs. So, we 
obtain the output probability 

=−== eIieIoeIIIeI
e2γeieI −  and the loss 

probability e e eI I I oi= − = 62.0012-1=61.0012 

and e e eI I III i= − =62.0012-61.0012=1, which is a 
result of the normalization in the AR. But in the 

approximation, the loss power coefficient e2γ
av

 

belonging to the OEEFs becomes 0.9839 according 
to iave/IaveIave2γ =  in equation (45), which gives 

I av  as 61.0030. Therefore, the error is obtained as 

∆ eI = eI av - I av =-0.0018. That is, this 
approximation given in ref. (Buck, 1994) is 
erroneous with percent of -2.9508x10-005 according 
to the our approach. These treatments imply that our 
work in this paper presents more accurate 
calculations. Equations (50)-(69) are novel 
expressions in this paper. In addition, here some 
quantities such as loss factor, loss coefficient and 
percentage error have expressed in terms of the 
parameters K for the OEEFs and q for the OOEFs 
for the first time. 
 
Consequently, for a convenient confinement of 
carriers the NPC α and the dept L must satisfy the 
inequalities 0<α<1 or 1>L>0. Therefore, the 
important parameters defined above such as R, r, K, 

q, ΓII  and ΛII  for the single RQWs can contain 
stable results for only these inequalities 0<α<1 or 
1>L>0. 
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