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A BST R AC T  

Vibrations that occur between the workpiece and the cutting tool during machining processes that 

are frequently used in the manufacturing sector, may pose serious problems in applications. These 

vibrations have a negative impact on the process in terms of quality, cost and efficiency. In this 

study, firstly the differential equations of these vibrations cited from the literature and are called as 

self-excited oscillations, have been reduced to the first order equations. Then, the chaoticity of the 

system were investigated using time series, phase portraits, Lyapunov exponents and bifurcation 

diagrams and the initial shear force intervals that the system exhibits chaos behavior were 

determined. 
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1 Introduction 

Machining has been one of the important methods in the study of the production. In machining, cutting 

forces are variable and cause vibrations between workpiece and cutting tool. Usually these vibrations 

are called chatter in the literature and they cause fluctuations on the workpiece [2, 3]. In this case, the 

surface quality, life, cost and efficiency of the product is negatively affected, as well as a serious risk in 

terms of tool, machine and work safety. Especially in milling machines, these types of vibrations are 

much more critical because the cutting forces vary considerably due to the nature of the cutting process 

[4, 5]. In cutting processes, undesirable increases in the amplitude of these vibrations arise and that 

makes the system even more unstable. As a natural consequence of that, oscillations grow steadily. 

Therefore, this phenomenon is called self-excited oscillations in the literature [6]. The behavior of such 

systems can be analyzed non-linearly, since they contain many interactive parameters in their structure 

[7]. When the vibrating cutting tool is examined mathematically, it can be seen that the structure of the 

equations of motion varies according to the degree of freedom of the model. In recent years, there has 

been a greater focus is placed upon one degree of freedom [8, 9, 10] and two degrees of freedom models 

within the literature [1, 2, 6, 11, 12, 13]. 

Studies on nonlinear dynamic systems in the world of science reveal the existence and importance of 

chaotic behaviors in many practical applications such as machining and mixing. Because of 

improvements in cutting tool materials and machine design, upper limits in parameters such as cutting 

speed, feed and cutting depth have been exceeded. These developments result in increased working 

efficiency of the machine tools. However, especially when high cutting depths are reached, the chatter 

occurs which reduces the process quality. This issue is still up to date and is the subject of the studies of 

many researchers [14, 15]. In this study, whether the interaction between the workpiece and the cutting 
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tool shows chaotic behavior is examined mathematically via time series, phase portraits, Lyapunov 

exponents and bifurcation diagrams, as in many studies in the field of chaos [16-19]. In the study, when 

the equations used in the literature are examined, the relative movement between the workpiece and the 

cutting tool is assumed as continuous and unidirectional for mathematical convenience. Thus, conditions 

such as discontinuity or non-derivative are prevented at certain points that will be caused by unit step 

and signum functions. 

2 Expression of Equations of Cutting Process 

In the contact of the cutting tool with the workpiece, the mathematical model can be constructed from 

simple mass-spring-damper system given below Figure 1 and expressed in sets of second degree 

equations [13]: 

 

 

𝑥, 𝑦: Movement directions 

𝑘𝑥 , 𝑘𝑦: Spring constants in x and y directions 

𝑐𝑥 , 𝑐𝑦: Damping constants in x and y directions 

m: Mass of the oscillating system 

𝑓𝑥, 𝑓𝑦: x and y components of cutting force 

𝑣0: Velocity of workpiece 

Figure 1. 2 DOF Model of Workpiece and Cutting Tool system [13] 

 

Here, the cutting tool is considered as a simple mechanical model consisting of spring and dampers in 

the x and y directions and the mass of the cutting tool. The relative speed and the contact forces in the 

x and y directions resulting from the movement of the cutting tool on the workpiece are expressed 

visually. In the studies carried out in the literature, a system of equations such as the geometry of the 

removed chip, contact angle and material properties has been introduced including the following [1, 2, 

12]. The equations used in the study are shown in Equation 1-6 [7]: 

 

𝐹𝑥 = 𝐹0𝐻[𝐶1(𝑉𝑟 − 1)2 + 1]   𝐹𝑦 = 𝜇𝐹𝑥 (1) 

𝜇 = 𝜇0 [𝐶2(𝑉𝑝 − 1)
2

+ 1] [𝐶3(𝐻 − 1)2 + 1] (2) 

𝐻 = ℎ0 − Y  𝑉𝑟 = 𝑣0 − Ẋ  𝑉𝑝 = 𝑉𝑟 − 𝑅Ẏ (3) 

𝑅 = 𝑅0[𝐶4(𝑉𝑟 − 1)2 + 1] (4) 

These equations can be shown as a second order differential equation system as follows: 

 

Ẍ = 𝐹 − 𝐴X             𝐴𝑚𝑤0
2 = 𝑘𝑥 (5) 

Ÿ = 𝜇𝐹 − 𝐵Y          𝐵𝑚𝑤0
2 = 𝑘𝑦 (6) 

Denote that 𝐶1−4: cutting process constants,  𝑅0: shear plastic deformation constant, 𝑅: variable shear 

plastic deformation constant, 𝜇0: static friction coefficient, 𝐹0: initial cutting force, 𝑉𝑝: relative speed 

between cutting tool and the workpiece in y direction, 𝑉𝑟: relative speed between cutting tool and the 

workpiece in x direction, 𝜇 : the relative friction coefficient of the material removed from the surface, 

ℎ0: initial cutting depth and 𝑤0: natural frequency of cutting process. Considering the studies carried 
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out in the literature, natural frequency is chosen as 𝑤0 = 27.103𝑠−1. There are a large number of 

published studies [9, 12] that implement values of cutting process parameters determined by material 

properties and cutting speed are A=1, B=0.25, C1=0.3, C2=0.7, C3=1.5, C4=1.2, μ0=0.35, R0=2.2, v0=0.5, 

m=15 and h0=0.25 respectively. Chaoticity of the system can be investigated by replacing these values 

in the equations (1-6). The new form of these second order equations given below: 

 

Ẍ = −X + 𝐹0(0.075Ẋ2 + 0.075Ẋ + 0.26875 − 0.3YẊ2 − 0.3YẊ − 1.075Y) 

Ÿ = −0.25Y + 𝐹0(0.075Ẋ2 + 0.075Ẋ + 0.26875 − 0.3YẊ2 − 0.3YẊ − 1.075Y)                              (7) 

(1.5Y2 + 2.25Y + 1.84375)[0.245(2.64Ẋ2Y + 2.64ẊẎ + 2.86Ẏ + Ẋ + 0.5)2 + 0.35] 

 

3 Times Series, Phase Portraits and Lyapunov Exponents of 2-DOF Metal Cutting 

In order to examine the chaoticity of the system graphically, two previously obtained second order 

equations should be arranged as four first order equations. With this approach, the state variables of the 

system can be examined according to time and each other. In the equations given above, variable 

transformations are made such that 𝑥1=X, 𝑥2=Ẋ, 𝑥3=Y, 𝑥4=Ẏ. The equations are rearranged as, 

 

𝑥 = ẋ1 = 𝑥2 

𝑦 = ẋ2 = −𝑥1 + 𝐹0(0.075𝑥2
2 + 0.075𝑥2 + 0.26875 − 0.3𝑥3𝑥2

2 − 0.3𝑥3𝑥2 − 1.075𝑥3) 

𝑧 = ẋ3 = 𝑥4 

𝑤 = ẋ4 = 0.25𝑥3 + 𝐹0(0.075𝑥2
2 + 0.075𝑥2 + 0.26875 − 0.3𝑥3𝑥2

2 − 0.3𝑥3𝑥2 − 1.075𝑥3) 

(1.5𝑥3
2 + 2.25𝑥3 + 1.84375)[0.245(2.64𝑥2

2𝑥3 + 2.64𝑥4𝑥2 + 2.86𝑥4 + 𝑥2 + 0.5)2 + 0.35] 

 

in the form of 4 dimensional non-linear equation system is obtained. For initial cutting force amplitude 

value 𝐹0 =0.17, this equation system is solved numerically. The initial conditions are selected as 

[𝑥 y z w]𝑇 = [0 0 0 0]𝑇. The time series, the phase portraits and the 3-D plot graphs of signals are 

shown in Figures 2, 3, 4 and 5 respectively. 

 

 
Figure 2. Time series graph of signals x, y, z and w 
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Figure 3. Phase portrait of x and y signals 

 

Figure 4. Phase portrait of z and w signals 

  

  

 
Figure 5. 3-D plot of x, y and w signals 

 

In the Figure 3 and 4, these 2-dimensional graphs in which the changes of x, y, z and w signals are 

expressed visually are called phase portraits. When the phase portraits are checked, it is observed that 

the signals do not change randomly and there is a complex but regular relationship between them that 

cannot be explained in the time series graphs in Figure 2. These graphs, which give an idea that the 

system is chaotic, are confirmed by the calculation of Lyapunov exponents (λ). The graph of Lyapunov 

exponents is given in Figure 6. 
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Figure 6. Lyapunov exponents graph of cutting process system 

Lyapunov exponents describe the tendency of the trajectories of dynamic system variables to move away 

from each other, and any positive Lyapunov exponent to be calculated is considered to be one of the 

most concrete evidence that the system is chaotic. In theory, this process can only give the final result 

in infinite time or iteration. In the study, 𝜆1= 0.03484, 𝜆2= -0.04575, 𝜆3=0 and 𝜆4= -0.16116 results in 

5000 iterations. The positive Lyapunov exponent found proves that the system exhibits chaotic behavior. 

4 Chaoticity Analysis of Variation in Amplitude of Initial Shear Force in Cutting 

Process 

Changes in the parameters in the non-linear equation set directly affect the behavior of the system. In 

such a case, the system may exhibit features such as point stability, limit cycle stability, semi-periodic 

and semi-chaotic stability, chaotic state and instability. The effect of changes in the amplitude of the 

initial shear force on the chaotic behavior of the system can be found in the bifurcation diagrams. In the 

study, the bifurcation graph plotted for -0.4<𝐹0 <0.25 values is given in Figure 7. 

 
Figure 7. Bifurcation diagram plotted for −0.4<𝐹0<0.25 values 
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When the graph given above is examined, it can be easily seen that the system loses its chaotic property 

and shows stable behavior at shear force values less than 0.02. Likewise, it is seen that the system shows 

double-period behavior between 0.07-0.13 and exhibits limit cycle stability. Negative values of the force 

verify the calculation of the termination of the chaotic behavior as this means losing the contact between 

the workpiece and the cutting tool. Although 0.19-0.21 can be interpreted as 4-period behavior of the 

system, the graph can be drawn in more detail (by arranging the sample numbers taken during the 

iteration) and a final judgement can be reached. 

5 Results and Discussion 

In the study, equations related to vibrations arising from dynamic interactions between cutting tool and 

workpiece were obtained from literature and transformed into 4-dimensional equation systems by using 

variable transformations and chaotic properties of the process were presented as time series, phase 

portraits, Lyapunov exponents and bifurcation diagrams. 

As a result of the analyzes, it was shown that possible changes in the amplitude of the initial shear force 

lead to periodic, semi-periodic, chaotic and unstable behaviors of the system and it was shown that the 

chaotic and unstable behaviors encountered as undesirable situation can be prevented by selecting the 

appropriate value ranges to be obtained from the bifurcation diagrams. 
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