Article

A New Kumaraswamy Class of Generalized Distributions with Applications to Exponential Model

Mohamed Ali AHMED ${ }^{1, *}$
${ }^{1}$ Department of Statistics, Mathematics and Insurance, Al Madina Higher Institute of Management and Technology, Giza, Egypt, mrmohamedali2005@yahoo.com
Orcid: 0000-0002-8320-6631 ${ }^{1}$
*Correspondence Author, e-mail: mrmohamedali2005@yahoo.com

Abstract

In this paper, a new class of generalized distributions, so-called the alpha power Kumaraswamy ($A K$) class, is derived, three important classes of distributions are nested by the $A K$ class. Some mathematical properties are studied and a parameters estimation method using maximum likelihood (MLE) is obtained. A simulation study using bootstrapping approach is applied to study the alpha power Kumaraswamy-exponential (AKE) distribution estimators' behavior. A real data set is used to investigate the $A K E$ distribution flexibility.

Keywords: the alpha power Kumarasamy distribution; moments; order statistics; maximum likelihood estimation; bootstrapping approach.

1. Introduction

Adding parameters using alpha power transformation $(A P T)$ is a flexible method depending on the alpha power function, [1], having the following cumulative distribution function (CDF) and probability density function (PDF) for a continuous random variable X, respectively
$F_{A P T}(x)=\left\{\begin{array}{l}\frac{\alpha^{F(x)}-1}{\alpha-1} ; \alpha>0, \alpha \neq 1, \\ F(x) ; \alpha=1,\end{array}\right.$
and
$f_{A P T}(x)=\left\{\begin{array}{l}\frac{\log \alpha}{\alpha-1} f(x) \alpha^{F(x)} ; \alpha>0, \alpha \neq 1, \\ f(x) ; \alpha=1 .\end{array}\right.$
Ahmed [2] presented for the first time the $A K$ distribution having the following $C D F$ and $P D F$, respectively,

$$
\begin{equation*}
F_{\alpha K}(x)=\frac{\alpha^{1-\left(1-x^{\beta}\right)^{\theta}}-1}{\alpha-1}, 0<x<1 ; \alpha, \beta, \theta>0 ; \alpha \neq 1, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{\alpha K}(x)=\frac{\beta \theta \log \alpha}{\alpha-1} \alpha^{1-\left(1-x^{\beta}\right)^{\theta}} x^{\beta-1}\left(1-x^{\beta}\right)^{\theta-1} \tag{2}
\end{equation*}
$$

The main object of this manuscript is to derive an extended class of generalized distributions naming the $A K$ class of generalized distributions depending on the $A K$ distribution, Ahmed [2], as a simple generator, also it aims to study some properties of the class and gives some applications to $A K E$ distribution.
The rest of this paper is organized as follows: In section 2, the generalized class is presented. In section 3 , some properties are derived. In section 4, the Hazard function is given. In section 5, order statistics are obtained. In Section 6, the MLE method is used. In section 7, a simulation study using bootstrapping is performed for the $A K E$ distribution. Finally, in Section 8, an application is investigated, practically, for the $A K E$ distribution.

2. The New Class of $A K$ Distributions

Many classes of generalized distributions are derived based on generating method, Wahed [3], the Kumaraswamy (KW) class [4] and [5], the Kummer beta class [6], the McDonald class [7] and [8], the Kumaraswamy- Kumaraswamy (KW-KW) class [9] and [10]. Replacing x in (1) with the generalized parent $G(x ; \Lambda)$ gives

$$
\begin{equation*}
F(x)=\frac{\alpha^{1-\left(1-G^{\beta}(x ; \Lambda)\right)^{\theta}}-1}{\alpha-1} ; \alpha, \beta, \theta>0 ; \alpha \neq 1 \tag{3}
\end{equation*}
$$

differentiating (3) with respect to x yields

$$
\begin{equation*}
f(x)=\frac{\beta \theta}{\alpha-1}(\log \alpha) \alpha^{1-\left(1-G^{\beta}(x ; \Lambda)\right)^{\theta}} g(x ; \Lambda) G^{\beta-1}(x ; \Lambda)\left(1-G^{\beta}(x ; \Lambda)\right)^{\theta-1} \tag{4}
\end{equation*}
$$

where $G(x ; \Lambda)$ and $g(x ; \Lambda)$ are the $C D F$ and $p d f$ of the parent distribution, Λ is the parameter vector of the parent distribution. When $\alpha=1$, the $A K$ class gives Kumaraswamy (Kw) class [4] and [5], setting $\theta=1$ gives the alpha power (AP) class and setting $\alpha=1, \theta=1$ gives the power function (P) class [11]. Many distributions can be derived via the class of $A K$ as the alpha power Kumaraswamy exponential ($A K E$) distribution, the CDF and PDF of the $A K E$ distribution, respectively, can be given by

$$
F(x)=\frac{\alpha^{1-\left[1-\left(1-e^{-\lambda x}\right)^{\beta}\right]^{\theta}}-1}{\alpha-1} ; \alpha, \beta, \theta, \lambda>0 ; \alpha \neq 1
$$

and

$$
f(x)=\frac{\beta \theta \lambda}{\alpha-1}(\log \alpha) \alpha^{1-\left(1-\left(1-e^{-\lambda x}\right)^{\beta}\right)^{\theta}} e^{-\lambda x}\left(1-e^{-\lambda x}\right)^{\beta-1}\left(1-\left(1-e^{-\lambda x}\right)^{\beta}\right)^{\theta-1}
$$

some density function shapes for the $A K E$ distribution are given in figure 1.

2.1. The CDF Expansion

Applying the exponential expansion for (3) leads to

$$
F(x)=\frac{1}{1-\alpha}\left\{1-\sum_{i=0}^{\infty} \frac{\left[1-\left(1-G^{\beta}(x ; \Lambda)\right)^{\theta}\right]^{i}(\log \alpha)^{i}}{i!}\right\}, \alpha, \beta, \theta>0 ; \alpha \neq 1
$$

then, using binomial expansion gives

$$
F(x)=\frac{1}{1-\alpha}\left\{1-\sum_{i=0}^{\infty} \frac{(\log \alpha)^{i}}{i!} \sum_{j=0}^{i}(-1)^{j}\binom{i}{j}\left(1-G^{\beta}(x ; \Lambda)\right)^{\theta j}\right\}
$$

replacing $\sum_{i=0}^{\infty} \sum_{j=0}^{i}$ with $\sum_{j=0}^{\infty} \sum_{i=j}^{\infty}$ yields

$$
F(x)=\frac{1}{1-\alpha}\left\{1-\sum_{j=0}^{\infty} \sum_{i=j}^{\infty} \frac{(\log \alpha)^{i}}{i!}(-1)^{j}\binom{i}{j}\left(1-G^{\beta}(x ; \Lambda)\right)^{\theta j}\right\}
$$

using binomial expansion, again, leads to

$$
F(x)=\frac{1}{1-\alpha}\left\{1-\sum_{j=0}^{\infty} \sum_{i=j}^{\infty} \sum_{k=0}^{\infty}(-1)^{j+k} \frac{(\log \alpha)^{i}}{i!}\binom{i}{j}\binom{\theta j}{k} G^{\beta k}(x ; \Lambda)\right\}
$$

where β is an integer, when β is real non integer yields

$$
F(x)=\frac{1}{1-\alpha}\left\{1-\sum_{j=0}^{\infty} \sum_{i=j}^{\infty} \sum_{k=0}^{\infty}(-1)^{j+k} \frac{(\log \alpha)^{i}}{i!}\binom{i}{j}\binom{\theta j}{k}[1-(1-G(x ; \Lambda))]^{\beta k}\right\}
$$

then, using binomial expansion two times gives
$F(x)=\frac{1}{1-\alpha}\left\{1-\sum_{j=0}^{\infty} \sum_{i=j}^{\infty} \sum_{k=0}^{\infty} \sum_{p=0}^{\infty} \sum_{q=0}^{p}(-1)^{j+k+p+q} \frac{(\log \alpha)^{i}}{i!}\binom{i}{j}\binom{\theta j}{k}\binom{\beta k}{p}\binom{p}{q} G^{q}(x ; \Lambda)\right\}$,
replacing $\sum_{p=0}^{\infty} \sum_{q=0}^{p}$ with $\sum_{q=0}^{\infty} \sum_{p=q}^{\infty}$ leads to

$$
\begin{equation*}
F(x)=\frac{1}{1-\alpha}\left\{1-\sum_{q=0}^{\infty} w_{q} G^{q}(x ; \Lambda)\right\} \tag{5}
\end{equation*}
$$

where

$$
w_{q}=\sum_{j=0}^{\infty} \sum_{i=j}^{\infty} \sum_{k=0}^{\infty} \sum_{p=q}^{\infty}(-1)^{j+k+p+q} \frac{(\log \alpha)^{i}}{i!}\binom{i}{j}\binom{\theta j}{k}\binom{\beta k}{p}\binom{p}{q} .
$$

2.2. The PDF Expansion

Differentiating (5) with respect to x gives

$$
f(x)=\frac{1}{1-\alpha}\left\{\sum_{q=1}^{\infty} w_{q} q G^{q-1}(x ; \Lambda) g(x ; \Lambda)\right\}
$$

shifting q leads to

$$
f(x)=\frac{1}{1-\alpha}\left\{\sum_{q=0}^{\infty} w_{q+1}(q+1) G^{q}(x ; \Lambda) g(x ; \Lambda)\right\}
$$

then,

$$
\begin{equation*}
f(x)=\sum_{q=0}^{\infty} w_{q}^{*} G^{q}(x ; \Lambda) g(x ; \Lambda) \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
w_{q}^{*}=\frac{1}{1-\alpha} w_{q+1}(q+1) . \tag{7}
\end{equation*}
$$

The Condition for the PDF Expansion

since,

$$
\sum_{q=0}^{\infty} w_{q}^{*} \int_{-\infty}^{\infty} G^{q}(x ; \Lambda) g(x ; \Lambda) d x=1
$$

then,

$$
\sum_{q=0}^{\infty} w_{q}^{*}\left[\frac{G^{q+1}(x ; \Lambda)}{(q+1)}\right]_{-\infty}^{\infty}=1
$$

hence,

$$
\begin{equation*}
\sum_{q=0}^{\infty} \frac{w_{q}^{*}}{q+1}=1 \tag{8}
\end{equation*}
$$

Figure 1: The $A K E$ density functions

3. The $A K$ Class of Distributions Properties

In this section some properties of the $A K$ class of distributions will be given as follows:

3.1. The r-th Moment

Basically, a continuous random variable X has the following r-th moment [12]

$$
E\left(X^{r}\right)=\int_{x} x^{r} f(x) d x
$$

substituting (6) into last equation yields

$$
\begin{equation*}
E\left(X^{r}\right)=\sum_{q=0}^{\infty} w_{q}^{*} \int_{-\infty}^{\infty} x^{r} g(x ; \Lambda) G^{q}(x ; \Lambda) d x \tag{9}
\end{equation*}
$$

then,

$$
\begin{equation*}
E\left(X^{r}\right)=\sum_{q=0}^{\infty} w_{q}^{*} \tau_{r, q, 0}, \tag{10}
\end{equation*}
$$

where τ is the probability weighted moment (PWM), Greenwood et. al. [13].
Obviously, setting $r=0$ and using (9) leads to

$$
E\left(X^{0}\right)=\sum_{q=o}^{\infty} w_{q}^{*} \int_{-\infty}^{\infty} g(x ; \Lambda) G^{q}(x ; \Lambda) d x
$$

then,

$$
E\left(x^{0}\right)=\sum_{q=o}^{\infty} w_{q}^{*}\left[\frac{G^{q+1}(x ; \Lambda)}{q+1}\right]_{-\infty}^{\infty},
$$

substituting (8) into last equation gives

$$
E\left(X^{0}\right)=1
$$

Using the Parent Quantile Function

Setting $G(x ; \Lambda)=u, x=Q(u)$ and substituting into (9) gives

$$
E\left(X^{r}\right)=\sum_{q=o}^{\infty} w_{q}^{*} \int_{0}^{1} Q^{r}(u) u^{q} d u
$$

then,

$$
E\left(X^{r}\right)=\sum_{q=o}^{\infty} w_{q}^{*} \tau_{r, q, o} .
$$

3.2. The PWM

Basically, the PWM of a continuous random variable X, Greenwood et. al. [13], is given by

$$
\tau_{r, \mathrm{~s}, 0}=\int_{x} x^{r} f(x) F^{s}(x) d x
$$

substituting (5) and (6) into last equation leads to

$$
\tau_{r, s, o}=\left(\frac{1}{1-\alpha}\right)^{s} \int_{-\infty}^{\infty} x^{r} g(x ; \Lambda)\left[\sum_{q=o}^{\infty} w_{q}^{*} G^{q}(x ; \Lambda)\right]\left[1-\sum_{q=0}^{\infty} w_{q} G^{q}(x ; \Lambda)\right]^{s} d x
$$

using binomial expansion yields

$$
\tau_{r, s, o}=\left(\frac{1}{1-\alpha}\right)^{s} \sum_{k=0}^{s}(-1)^{k}\binom{s}{k} \int_{-\infty}^{\infty} x^{r} g(x ; \Lambda)\left[\sum_{q=o}^{\infty} w_{q}^{*} G^{q}(x ; \Lambda)\right]\left[\sum_{q=0}^{\infty} w_{q} G^{q}(x ; \Lambda)\right]^{k} d x
$$

since, $\left[\sum_{q=0}^{\infty} w_{q} G^{q}(x ; \Lambda)\right]^{k}=\left[\sum_{q=0}^{\infty} c_{q} G^{q}(x ; \Lambda)\right]$, Gradshteyn and Ryzhik [14], then,

$$
\tau_{r, s, o}=\left(\frac{1}{1-\alpha}\right)^{s} \sum_{k=0}^{s}(-1)^{k}\binom{s}{k} \int_{-\infty}^{\infty} x^{r} g(x ; \Lambda)\left[\sum_{q=o}^{\infty} w_{q}^{*} G^{q}(x ; \Lambda)\right]\left[\sum_{q=0}^{\infty} c_{q} G^{q}(x ; \Lambda)\right] d x
$$

where

$$
c_{0}=w_{0}^{k}, c_{m}=\frac{1}{m w_{0}} \sum_{q=1}^{m}(q k-m+q) w_{q} c_{m-q} ; m \geq 1,
$$

since, $\left[\sum_{q=o}^{\infty} w_{q}^{*} G^{q}(x ; \Lambda)\right]\left[\sum_{q=0}^{\infty} c_{q} G^{q}(x ; \Lambda)\right]=\sum_{q=o}^{\infty} d_{q} G^{q}(x ; \Lambda)$, Gradshteyn and Ryzhik [14], hence,

$$
\tau_{r, s, o}=\left(\frac{1}{1-\alpha}\right)^{s} \sum_{k=0}^{s}(-1)^{k}\binom{s}{k} \int_{-\infty}^{\infty} x^{r} g(x ; \Lambda)\left[\sum_{q=o}^{\infty} d_{q} G^{q}(x ; \Lambda)\right] d x
$$

where

$$
d_{m}=\sum_{q=0}^{m} w_{q}{ }_{q}^{*} c_{m-q},
$$

since,

$$
\begin{equation*}
\tau_{r, s, o}=\sum_{q=o}^{\infty} h_{q} \int_{-\infty}^{\infty} x^{r} g(x ; \Lambda) G^{q}(x ; \Lambda) d x \tag{11}
\end{equation*}
$$

where

$$
h_{q}=\left(\frac{1}{1-\alpha}\right)^{s} \sum_{k=0}^{s} \sum_{q=o}^{\infty} d_{q}(-1)^{k}\binom{s}{k}
$$

then,

$$
\tau_{r, s, o}=\sum_{q=o}^{\infty} h_{q} \tau_{r, q, o} .
$$

Using the Parent Quantile Function

Setting $G(x ; \Lambda)=u, y=Q(u)$ and substituting into (11) yields

$$
\tau_{r, s, o}=\sum_{q=o}^{\infty} h_{q} \int_{0}^{1} Q^{r}(u) u^{q} d u
$$

then,

$$
\tau_{r, s, o}=\sum_{q=o}^{\infty} h_{q} \tau_{r, q, o} .
$$

3.3. The Moment Generating Function

A continuous random variable X moment generating function (MGF) can be written as

$$
\begin{equation*}
M_{x}(t)=E\left(e^{t x}\right)=\int_{x} e^{t x} f(x) d x \tag{12}
\end{equation*}
$$

applying the exponential expansion yields

$$
E\left(e^{t x}\right)=E\left(\sum_{r=0}^{\infty} \frac{t^{r} x^{r}}{r!}\right)
$$

then,

$$
E\left(e^{t x}\right)=\sum_{r=0}^{\infty} \frac{t^{r} E\left(x^{r}\right)}{r!}
$$

substituting (10) into last equation gives

$$
E\left(e^{t x}\right)=\sum_{r=0}^{\infty} \sum_{q=0}^{\infty} \frac{t^{r}}{r!} w_{q}^{*} \tau_{r, q, 0}
$$

Using the Parent Quantile Function

Substituting (6) into (12) leads to

$$
E\left(e^{t x}\right)=\int_{-\infty}^{\infty} e^{t x} \sum_{q=0}^{\infty} w_{q}^{*} G^{q}(x ; \Lambda) g(x ; \Lambda) d x
$$

then,

$$
E\left(e^{t x}\right)=\sum_{q=0}^{\infty} w_{q}^{*} \int_{-\infty}^{\infty} e^{t x} G^{q}(x ; \Lambda) g(x ; \Lambda) d x
$$

setting $G(x ; \Lambda)=u, x=Q(u)$ and substituting into last equation yields

$$
E\left(e^{t x}\right)=\sum_{q=o}^{\infty} w_{q}^{*} \int_{0}^{1} e^{t Q(u)} u^{q} d u
$$

using exponential expansion gives

$$
E\left(e^{t x}\right)=\sum_{q=0}^{\infty} w_{q}^{*} \sum_{r=0}^{\infty} \frac{t^{r}}{r!} \int_{0}^{1} Q^{r}(u) u^{q} d u
$$

hence,

$$
E\left(e^{t x}\right)=\sum_{q=o}^{\infty} w_{q}^{*} \sum_{r=0}^{\infty} \frac{t^{r}}{r!} \tau_{r, q, 0}
$$

3.4. The Mean Deviation

Basically, a random variable X having the mean deviation about mean and median, respectively, can be written as

$$
S_{1}(x)=\int_{x}|x-\mu| f(x) d x \quad \text { and } \quad S_{2}(x)=\int_{x}|x-M| f(x) d x
$$

which is given by, Ali Ahmed [15],

$$
S_{1}(x)=2 \mu F(\mu)-2 t(\mu) \text { and } S_{2}(x)=\mu-2 t(M)
$$

where $T(z)=\int_{-\infty}^{z} x f(x) d x$ is the linear incomplete moment.
Substituting (6) into $T($.$) yields$

$$
T(z)=\int_{-\infty}^{z} x \sum_{q=o}^{\infty} w_{q}^{*} g(x ; \Lambda) G^{q}(x ; \Lambda) d y
$$

then,

$$
T(z)=\sum_{q=o}^{\infty} w_{q}^{*} \int_{-\infty}^{z} x g(x ; \Lambda) G^{q}(x ; \Lambda) d y
$$

Using the Parent Quantile Function

Setting $G(x ; \Lambda)=u, x=Q(u)$ and substituting into last equation gives

$$
T(z)=\sum_{q=o}^{\infty} w_{p}^{*} \int_{0}^{G(z)} Q(u) u^{q} d u
$$

4. The Hazard Function of the MLN Class of Distributions

A random variable X survival function [16] can be written as

$$
S(x)=1-F(x)
$$

substituting (3) into last equation gives

$$
\begin{equation*}
S(x)=\frac{\alpha-\alpha^{1-\left(1-G^{\beta}(x ; \Lambda)\right)^{\theta}}}{\alpha-1} ; \alpha, \beta, \theta>0 ; \alpha \neq 1 \tag{13}
\end{equation*}
$$

moreover, the Hazard function [16] can be written as

$$
H(x)=\frac{f(x)}{S(x)}
$$

substituting (4) and (13) into last equation yields

$$
H(x)=\frac{\beta \theta(\log \alpha) \alpha^{1-\left(1-G^{\beta}(x ; \Lambda)\right)^{\theta}} g(x ; \Lambda) G^{\beta-1}(x ; \Lambda)\left(1-G^{\beta}(x ; \Lambda)\right)^{\theta-1}}{\alpha-\alpha^{1-\left(1-G^{\beta}(x ; \Lambda)\right)^{\theta}}}
$$

The $A K E$ Hazard function can be given by

$$
H(x)=\frac{\beta \theta \lambda(\log \alpha) \alpha^{1-\left(1-\left(1-e^{-\lambda x}\right)^{\beta}\right)^{\theta}} e^{-\lambda x}\left(1-e^{-\lambda x}\right)^{\beta-1}\left(1-\left(1-e^{-\lambda x}\right)^{\beta}\right)^{\theta-1}}{\alpha-\alpha^{1-\left(1-\left(1-e^{-\lambda x}\right)^{\beta}\right)^{\theta}}}
$$

some Hazard function shapes for the $A K E$ distribution are given in figure 2.

Figure 2: The $A K E$ Hazard functions

In figure 2, Hazard functions curves four types for the $A K E$ distribution are illustrated as follows: A decreasing then constant Hazard curve, a constant Hazard curve, an increasing then constant Hazard curve and a constant then increasing then constant Hazard curve.

5. Order Statistics of the $A K$ Class of Distributions

The u-th order statistics density function $f\left(x_{u: v}\right)$ for $u=1,2, \ldots, v$ from iid random variables $X_{1}, X_{2}, \ldots, X_{v}$ following any $A K$ generalized distribution [17] can be written as

$$
f\left(x_{u: v}\right)=\frac{f\left(x_{u}\right)}{B(u, v-u+1)} F^{u-1}\left(x_{u}\right)\left\{1-F\left(x_{u}\right)\right\}^{v-u}
$$

applying binomial expansion for the last equation leads to

$$
f\left(x_{u v}\right)=\sum_{p=0}^{v-u} \frac{(-1)^{p}\binom{v-u}{p}}{B(u, v-u+1)} f\left(x_{u}\right) F^{u+p-1}\left(x_{u}\right),
$$

substituting (5) and (6) into last equation leads to
$f\left(x_{u v \nu}\right)=\sum_{p=0}^{v-u} \frac{(-1)^{p}\binom{v-u}{p}}{B(u, v-u+1)}\left[\sum_{q=0}^{\infty} w_{q}^{*} G^{q}\left(x_{u} ; \Lambda\right) g\left(x_{u} ; \Lambda\right)\right] \times\left[\frac{1}{1-\alpha}\left(1-\sum_{q=0}^{\infty} w_{q} G^{q}\left(x_{u} ; \Lambda\right)\right)\right]^{u+p-1}$, then,
$f\left(x_{u, v}\right)=\sum_{p=0}^{v-u} \frac{(-1)^{p}\binom{v-u}{p}\left(\frac{1}{1-\alpha}\right)^{u+p-1}}{B(u, v-u+1)}\left[\sum_{q=0}^{\infty} w_{q}^{*} G^{q}\left(x_{u} ; \Lambda\right) g\left(x_{u} ; \Lambda\right)\right]\left[1-\sum_{q=0}^{\infty} w_{q} G^{q}\left(x_{u} ; \Lambda\right)\right]^{u+p-1}$, using binomial expansion gives

$$
\begin{aligned}
f\left(x_{u v}\right) & =\sum_{p=0}^{v-u} \frac{(-1)^{p}\binom{v-u}{p}\left(\frac{1}{1-\alpha}\right)^{u+p-1}}{B(u, v-u+1)}\left[\sum_{q=0}^{\infty} w_{q}^{*} G^{q}\left(x_{u} ; \Lambda\right) g\left(x_{u} ; \Lambda\right)\right] \\
& \times \sum_{s=0}^{u+p-1}(-1)^{s}\binom{u+p-1}{s}\left(\sum_{q=0}^{\infty} w_{q} G^{q}\left(x_{u} ; \Lambda\right)\right)^{s},
\end{aligned}
$$

since, $\left(\sum_{q=0}^{\infty} w_{q} G^{q}\left(x_{u} ; \Lambda\right)\right)^{s}=\left[\sum_{q=0}^{\infty} a_{q} G^{q}\left(x_{u} ; \Lambda\right)\right]$, Gradshteyn and Ryzhik [14], then,

$$
\begin{aligned}
f\left(x_{u, v}\right) & =\sum_{p=0}^{v-u} \frac{(-1)^{p}\binom{v-u}{p}\left(\frac{1}{1-\alpha}\right)^{u+p-1}}{B(u, v-u+1)}\left[\sum_{q=0}^{\infty} w_{q}^{*} G^{q}\left(x_{u} ; \Lambda\right) g\left(x_{u} ; \Lambda\right)\right] \\
& \times \sum_{s=0}^{u+p-1}(-1)^{s}\binom{u+p-1}{s}\left(\sum_{q=0}^{\infty} a_{q} G^{q}\left(x_{u} ; \Lambda\right)\right),
\end{aligned}
$$

where

$$
a_{0}=w_{0}^{s}, a_{m}=\frac{1}{m w_{0}} \sum_{q=1}^{m}(q s-m+q) w_{q} a_{m-q} ; m \geq 1,
$$

since, $\left(\sum_{q=0}^{\infty} w_{q}^{*} G^{q}\left(x_{u} ; \Lambda\right)\right)\left(\sum_{q=0}^{\infty} a_{q} G^{q}\left(x_{u} ; \Lambda\right)\right)=\left[\sum_{q=0}^{\infty} b_{q} G^{q}\left(x_{u} ; \Lambda\right)\right]$, Gradshteyn and Ryzhik [14], then,

$$
f\left(x_{u v}\right)=\sum_{p=0}^{v-u} \frac{(-1)^{p}\binom{v-u}{p}\left(\frac{1}{1-\alpha}\right)^{u+p-1}}{B(u, v-u+1)} \sum_{s=0}^{u+p-1}(-1)^{s}\binom{u+p-1}{s} g\left(x_{u} ; \Lambda\right)\left[\sum_{q=0}^{\infty} b_{q} G^{q}\left(x_{u} ; \Lambda\right)\right],
$$

where

$$
b_{m}=\sum_{q=0}^{m} w_{q}^{*} a_{m-q},
$$

hence,

$$
\begin{equation*}
f\left(x_{u, v}\right)=\sum_{q=0}^{\infty} d_{q} g\left(x_{u} ; \Lambda\right) G^{q}\left(x_{u} ; \Lambda\right), \tag{14}
\end{equation*}
$$

where

$$
d_{q}=\sum_{p=0}^{v-u} \frac{(-1)^{p}\binom{v-u}{p}\left(\frac{1}{1-\alpha}\right)^{u+p-1}}{B(u, v-u+1)} \sum_{s=0}^{u+p-1}(-1)^{s}\binom{u+p-1}{s} b_{q} .
$$

The order statistics r-th moment of the $A K$ class of distributions can be written as

$$
E\left(x_{u: v}^{r}\right)=\int_{x_{u}} x_{u}^{r} f\left(x_{u: v}\right) d x_{u}
$$

substituting (14) into last equation yields

$$
E\left(X_{u, v}^{r}\right)=\sum_{q=o}^{\infty} d_{q} \int_{-\infty}^{\infty} X_{u}^{r} g\left(x_{u} ; \Lambda\right) G^{q}\left(x_{u} ; \Lambda\right) d x_{u}
$$

hence,

$$
E\left(X_{u, v}^{r}\right)=\sum_{q=o}^{\infty} d_{q} \tau_{r, q, o}
$$

6. Estimation for Parameters of the AK Class of Distributions Using MLE Method

Let $X_{1}, X_{2}, \ldots, X_{\mathrm{n}}$ be iid random variables following any $A K$ generalized distribution $(x ; \Delta)$ and the vector of parameter $\Delta=(\alpha, \beta, \theta, \Lambda)$ likelihood function [18] can be written as

$$
L(x)=\left(\frac{\beta \theta}{\alpha-1}\right)^{n}(\log \alpha)^{n} \prod_{i=1}^{n} g\left(x_{i} ; \Lambda\right) \prod_{i=1}^{n} G^{\beta-1}\left(x_{i} ; \Lambda\right) \prod_{i=1}^{n}\left(1-G^{\beta}\left(x_{i} ; \Lambda\right)\right)^{\theta-1} \prod_{i=1}^{n} \alpha^{1-\left(1-i^{\beta}\left(x_{i} i, \lambda\right)\right)^{\theta}},
$$

the \log likelihood function is given by

$$
\begin{aligned}
\ell(x) & =n \log \frac{\beta \theta}{\alpha-1}+n \log (\log \alpha)+\sum_{i=1}^{n} \log g\left(x_{i} ; \Lambda\right)+(\beta-1) \sum_{i=1}^{n} \log G\left(x_{i} ; \Lambda\right) \\
& +(\theta-1) \sum_{i=1}^{n} \log \left(1-G^{\beta}\left(x_{i} ; \Lambda\right)\right)+(\log \alpha) \sum_{i=1}^{n}\left[1-\left(1-G^{\beta}\left(x_{i} ; \Lambda\right)\right)^{\theta}\right],
\end{aligned}
$$

the score functions for the parameters α, β, θ and Λ can be obtained by

$$
\begin{gathered}
\frac{\partial \ell(x)}{\partial \alpha}=\frac{n}{1-\alpha}+\frac{n}{\alpha \log \alpha}+\frac{1}{\alpha} \sum_{i=1}^{n}\left[1-\left(1-G^{\beta}\left(x_{i} ; \Lambda\right)\right)^{\theta}\right] \\
\begin{aligned}
\frac{\partial \ell(x)}{\partial \beta} & =\frac{n}{\beta}+(\log \alpha) \theta \sum_{i=1}^{n} G^{\beta}\left(x_{i} ; \Lambda\right)\left[1-G^{\beta}\left(x_{i} ; \Lambda\right)\right]^{\theta-1}\left[\log G\left(x_{i} ; \Lambda\right)\right]+\sum_{i=1}^{n} \log G\left(x_{i} ; \Lambda\right) \\
& -(\theta-1) \sum_{i=1}^{n} \frac{\left[G^{\beta}\left(x_{i} ; \Lambda\right) \log G\left(x_{i} ; \Lambda\right)\right]}{1-G^{\beta}\left(x_{i} ; \Lambda\right)}, \\
\frac{\partial \ell(x)}{\partial \theta}= & \frac{n}{\theta}-(\log \alpha) \sum_{i=1}^{n}\left[1-G^{\beta}\left(x_{i} ; \Lambda\right)\right]^{\theta} \log \left[1-G^{\beta}\left(x_{i} ; \Lambda\right)\right]+\sum_{i=1}^{n} \log \left[1-G^{\beta}\left(x_{i} ; \Lambda\right)\right]
\end{aligned}
\end{gathered}
$$

and

$$
\begin{aligned}
\frac{\partial \ell(x)}{\partial \Lambda} & =(\log \alpha) \beta \theta \sum_{i=1}^{n}\left[1-G^{\beta}\left(x_{i} ; \Lambda\right)\right]^{\theta-1} G^{\beta-1}\left(x_{i} ; \Lambda\right) \frac{\partial G\left(x_{i} ; \Lambda\right)}{\partial \Lambda}+\sum_{i=0}^{n} \frac{1}{g\left(x_{i} ; \Lambda\right)} \frac{\partial g\left(x_{i} ; \Lambda\right)}{\partial \Lambda} \\
& +\sum_{i=0}^{n} \frac{(\beta-1)}{G\left(x_{i} ; \Lambda\right)} \frac{\partial G\left(x_{i} ; \Lambda\right)}{\partial \Lambda}-\sum_{i=0}^{n} \beta(\theta-1) \frac{G^{\beta-1}\left(x_{i} ; \Lambda\right)}{\left(1-G^{\beta}\left(x_{i} ; \Lambda\right)\right)} \frac{\partial G\left(x_{i} ; \Lambda\right)}{\partial \Lambda} .
\end{aligned}
$$

7. A Simulation Study

In this study, MLEs for parameters of the $A K E$ distribution are obtained using random numbers to study the MLEs finite sample behavior via the bootstrapping resample approach. Obtaining parameters estimates algorithm is detailed in the following steps:

Step (1): Generating a random sample $X_{1}, X_{2}, \ldots, X_{n}$ of sizes $n=(5,15,30,50,100,300)$ using the $A K E$ distribution.
Step (2): Selecting parameters different set values as: set (1): ($\alpha=2, \beta=0.5, \theta=0.5, \lambda=0.2$), set (2): ($\alpha=2, \beta=0.5, \theta=0.5, \lambda=0.5$) and set (3): ($\alpha=2, \beta=0.5, \theta=0.5, \lambda=2$).
Step (3): Solving normal equations of the $A K E$ distribution via iteration to estimate distribution parameters.
Step (4): Replacing set (1), set(2) and set (3) with its estimators and repeating step (3) to compute, biases, MLEs, RMSE (the root of mean squared error) and the Pearson type [19] of parameters estimators of the $A K E$ distribution.
Step (5): Repeating step (1) to step (4), 10000 times.
In this study, the conjugate gradient iteration method is performed in order to generate random numbers samples using Mathcad package v15. All results are included in tables and indicated in the appendix.
From study results, indicated in the appendix, one can see that: When sample size increases, biases, estimators, and RMSEs decrease. As sample size increases, the estimators can be consistent. $\hat{\alpha}$ and $\hat{\lambda}$ sampling distributions can be the Pearson type IV distribution in all times, $\hat{\beta}$ and $\hat{\theta}$ sampling
distributions differ according to sample size. When λ increases, for fixed values of α and β, the biases and MSEs of $\hat{\alpha}$ and $\hat{\beta}$ decrease.

8. Application

A real data set is given using the MLE method to study the new model performance by Mathematica package version 10, some distributions are used as: The $A K E$ distribution, the gamma distribution (2 parameters), the normal distribution, the Weibull distribution, the Kumaraswamy exponential (KE) distribution, the alpha power - power exponential (APE) distribution and the power exponential (PE) distribution. The following data set represents the classic lamps lifetime (Hours) for 40 devices, the data are given from the UK National Physical Laboratory, http://www.npl.co.uk/,
$1.104,0.285,0.627,0.282,0.542,0.439,0.884,1.021,0.281,0.737,0.504,0.713,1.186,0.380,0.583,0.769$, $0.334,1.030,0.242,0.386,0.936,1.313,0.263,0.508,0.654,0.481,0.353,0.614,0.736,0.727,0.264,0.528$, $0.588,0.535,0.590,0.420,0.458,0.278,0.405,0.381$
Some goodness of fit measures results are indicated in the table (1), the likelihood ratio tests results are indicated in the table (2), the figure (3) describes probability density functions for some distributions having skewness and kurtosis values similar to the $A K E$ distribution (the gamma distribution with 2 parameters, the Normal distribution, the Weibull distribution), the figure (4) shows the empirical CDF compared to CDFs for some distributions (the gamma distribution with 2 parameters, the normal distribution, the Weibull distribution) and the figure (5) describes the probability density functions for special cases from the $A K E$ distribution (the Kumaraswamy exponential (KE) distribution, the alpha power - power exponential (APE) distribution and the power exponential (PE) distribution).

Figure 3: Probability density functions for some distributions having skewness and kurtosis Values similar to $A K E$

Figure 4: The empirical $C D F$ compared to $C D F$ s for some distributions

Table 1: The parameter(s) $M L E$ and the associated $A I C$ and BIC values.

Distribution	MLE_parameters						KS		Log Likel-ihood	AIC	BIC	CAIC
	α	β	θ	λ								
AK-E	2	4	3	2	0.058	2.403	0.08	0.938	-0.555	7.111	8.488	7.777
	(0.013)	(0.033)	(0.247)	(0.182)								
Weibull	2.307	0.762	-	-	0.451	2.961	0.203	0.062	-3.901	11.802	15.180	12.127
	(0.272)	(0.048)										
Gamma	4.503	0.111	-	-	0.942	4.332	0.144	0.338	-2.649	9.299	12.677	9.624
	(1.088)	(0.026)										
Normal	0.458	0.249	-	-	0	3	0.193	0.086	-10.05	24.115	27.492	24.439
	(0.042)	(0.0303)										

In table 1, the distributions parameters MLEs, parameters standard error (SEs), in parentheses, Kolmogorov-Smirnov (KS) test statistic, AIC (Akaike Information Criterion), CAIC (the consistent Akaike Information Criterion) and BIC (Bayesian information criterion), Merovcia and Puka [20], are computed for distributions having similar skewness and kurtosis values. Since, the $A K E$ distribution has the smallest $K S, A I C, C A I C, B I C$, SEs and the largest p-value, hence the $A K E$ distribution can be the best fitted distribution to the data compared with other distributions which have similar skewness and kurtosis values.

Figure 5: Probability density functions for special cases from the $A K E$ distribution

Table 2: The log-likelihood function, the likelihood ratio tests statistic and p-values.

Distribution	Parameters				ℓ (\log likelihood)			p-value
	α	β	θ	λ		(The likelihood ratio test statistic)	(degrees of freedom)	
KE	-	2.176	1.647	1.928	-8.214	15.318	1	9.085×10^{-5}
		(0.418)	(0.329)	(0.284)				
APE	1.275	3.217	-	1.099	-10.247	19.384	1	1.069×10^{-5}
	(0.214)	(1.517)		(0.314)				
$P E$	-	7.782	-	4.626	-14.869	28.628	2	6.074×10^{-7}
		(2.567)		(0.684)				

${ }^{*}$ Note that the $A K E$ distribution \log likelihood $=-0.555$

In table 2, upon the likelihood ratio test, the null hypothesis is the data follow the nested model and the alternative is the data follow the full model, where the $K E$ distribution, the $A P E$ distribution and the $P E$ distribution are nested by $A K E$ distribution, one can see that, all null hypotheses can be rejected at significance level is 0.05

9. Conclusion

The alpha power Kumaraswamy class has an explicit form gives more flexibility in mathematical properties and random number generating. The alpha power Kumaraswamy class generalizes some important classes of distributions as the Kumaraswamy class, the alpha power class and the power function class. The alpha power Kumaraswamy exponential distribution has wide applications in real data sets and in some cases it can be the best fitted distribution. Author encourages researchers to study more cases from that flexible class.

Competing interests: The author declare that he has no competing interests
Data and Material Availability: One can find the date set at: http://www.npl.co.uk/
Code availability: Not applicable
Acknowledgements: The author thanks anyone gave an advice or any comment for this manuscript.

References

[1] Mahdavi, A. \& Kundu, D. (2017). A new method for generating distributions with an application to exponential distribution. Communications in Statistics-Theory and Method, 46, 6543-6557 .
[2] Ahmed, M.A. (2020). On the alpha power Kumaraswamy distribution: Properties, simulation and application. Revista Colombiana de Estadística, 43, 285-313.
[3] Wahed, A.S. (2006). A general method of constructing extended families of distributions from an existing continuous class. Journal of Probability and Statistical Science, 4, 165-177.
[4] Kumaraswamy, P. (1980). A generalized probability density function for double- bounded random-processes. Journal of Hydrology, 46, 79-88.
[5] Cordeiro, G.M., \& de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation \& Simulation, 81, 883-898.
[6] Pescim, R.R., Cordeiro, G.M., Demétrio, C.G., Ortega, E.M. \& Nadarajah, S. (2012). The new class of Kummer beta generalized distributions. SORT-Statistics and Operations Research Transactions, 153-180.
[7] McDonald, J.B. (1984). Some generalized functions for the size distribution of income. Econometrica, 52, 647-664.
[8] Alexander, C, Cordeiro, G.M., Ortega, E.M.M. \& Sarabia J.M. (2012). Generalized beta-generated distributions. Comput Stat Data Anal., 56, 1880-1897.
[9] El-Sherpieny, E.A. \& Ahmed, M.A. (2014). On the kumaraswamy Kumaraswamy distribution. International Journal of Basic and Applied Sciences, 3, 372-381.
[10] Mahmoud, M.R., El-Sherpieny, E.A. \& Ahmed, M.A. (2015). The new Kumaraswamy Kumaraswamy family of generalized distributions with application. Pakistan Journal of Statistics and Operations Research, 11, 159-180.
[11] Meniconi, M. \& Barry, D. (1996). The power function distribution: A useful and simple distribution to assess electrical component reliability. Microelectronics Reliability, 36, 1207-1212.
[12] Johnson, N.L., Kotz, S. \& Balakrishnan, N. (1995). Continuous Univariate Distributions. John wiley and Sons, New York .
[13] Greenwood, J.A., Landwehr, J.M., Matalas, N.C. \& Wallis, J.R. (1979). Probability weighted moments definition and relation to parameters of several distributions expressable in inverse form. Water Resources Research, 15, 1049-1054.
[14] Gradshteyn, I.S. \& Ryzhik, I.M. (2000). Tables of Integrals, Series and Products.Academic Press, San Diego, CA.
[15] Ali Ahmed, M. (2021). The new form Libby-Novick distribution. Communications in Statistics-Theory and Methods, 50, 540-559.
[16] Meeker, W.Q. \& Escobar, L.A. (1998). Statistical Methods for Reliability Data. John Wiley, New York.
[17] Arnold, B.C., Balakrishnan, N. \& Nagaraja, H.N. (1992). A First Course in Order Statistics. John Wiley and Sons, Inc., New York.
[18] Garthwait, P.H., Jolliffe, I.P. \& jones, B. (2002). Statistical Inference. Prentice HallInternational (UK) Limited, London.
[19] Pearson, K. (1895). Contributions to the mathematical theory of evolution. II. Skew variations in homogeneous material. Philosophical Transactions of the Royal Society of London, Series A, 186, 343-414.
[20] Merovcia, F. \& Puka, L. (2014). Transmuted Pareto distribution. Prob Stat Forum, 7, 1-111.

Appendix

Results of the simulation study for different data sets:

$\operatorname{Set}(1):(\alpha=2, \beta=0.5, \theta=0.5, \lambda=0.2)$								
Sample Size	Parameters	Mean of Estimators	Biases	Total Bias	RMSE	Total RMSE	Pearson System Coefficients	Pearson Type
10	$\alpha=2$	2.262	0.262	1.474	1.258	2.185	0.202	IV
	$\beta=0.5$	0.759	0.259		0.75		0.27	IV
	$\theta=0.5$	0.92	0.42		0.436		-0.27	I
	$\lambda=0.2$	1.565	1.365		1.563		0.576	IV
20	$\alpha=2$	2.144	0.144	1.054	1.235	1.683	0.392	IV
	$\beta=0.5$	0.602	0.102		0.246		0.827	IV
	$\theta=0.5$	0.844	0.344		0.36		0.054	IV
	$\lambda=0.2$	1.181	0.981		1.058		0.594	IV
30	$\alpha=2$	2.14	0.14	0.898	1.103	1.462	0.461	IV
	$\beta=0.5$	0.568	0.068		0.173		-0.312	I
	$\theta=0.5$	0.808	0.308		0.322		-0.496	I
	$\lambda=0.2$	1.03	0.83		0.888		0.14	IV
50	$\alpha=2$	2.106	0.106	0.760	0.905	1.211	0.438	IV
	$\beta=0.5$	0.537	0.037		0.118		-2.505	I
	$\theta=0.5$	0.776	0.276		0.289		0.021	IV
	$\lambda=0.2$	0.9	0.7		0.742		0.096	IV
100	$\alpha=2$	2.073	0.073	0.224	0.368	0.391	0.44	IV
	$\beta=0.5$	0.511	0.011		0.085		-0.267	I
	$\theta=0.5$	0.637	0.137		0.051		0.011	IV
	$\lambda=0.2$	0.362	0.162		0.091		0.666	IV
300	$\alpha=2$	2.043	0.043	0.050	0.055	0.087	0.105	IV
	$\beta=0.5$	0.507	0.007		0.012		-0.043	I
	$\theta=0.5$	0.506	0.006		0.018		-3.643	I
	$\lambda=0.2$	0.225	0.025		0.064		0.57	IV

Set(2):($\alpha=2, \beta=0.5, \theta=0.5, \lambda=0.8)$								
Sample Size	Parameters	Mean of Estimators	Biases	Total Bias	RMSE	Total RMSE	Pearson System Coefficients	Pearson Type
10	$\alpha=2$	2.239	0.239	3.506	1.234	6.406	0.203	IV
	$\beta=0.5$	0.743	0.243		0.460		0.268	IV
	$\theta=0.5$	0.959	0.459		0.435		-0.372	I
	$\lambda=0.8$	4.26	3.46		6.255		0.583	IV
20	$\alpha=2$	2.125	0.125	2.954	1.053	4.382	0.395	IV
	$\beta=0.5$	0.583	0.083		0.126		0.46	IV
	$\theta=0.5$	0.894	0.394		0.391		0.062	IV
	$\lambda=0.8$	3.724	2.924		4.234		0.592	IV
30	$\alpha=2$	2.117	0.117	2.352	1.002	3.709	0.461	IV
	$\beta=0.5$	0.549	0.049		0.101		-0.281	I
	$\theta=0.5$	0.878	0.378		0.351		-0.221	I
	$\lambda=0.8$	3.118	2.318		3.553		0.692	IV
50	$\alpha=2$	2.104	0.104	1.827	0.704	1.382	0.438	IV
	$\beta=0.5$	0.526	0.026		0.091		-4.266	I
	$\theta=0.5$	0.796	0.296		0.20		0.018	IV
	$\lambda=0.8$	2.6	1.8		1.169		0.095	IV
100	$\alpha=2$	2.053	0.053	1.25	0.171	0.470	0.439	IV
	$\beta=0.5$	0.509	0.009		0.064		-1.288	I
	$\theta=0.5$	0.733	0.233		0.267		0.018	IV
	$\lambda=0.8$	2.036	1.236		0.341		0.046	IV
300	$\alpha=2$	2.031	0.031	0.061	0.027	0.111	0.0018	IV
	$\beta=0.5$	0.504	0.004		0.009		-0.0021	I
	$\theta=0.5$	0.521	0.021		0.037		0.00115	IV
	$\lambda=0.8$	0.848	0.048		0.101		0.529	IV
$\operatorname{Set}(3):(\alpha=2, \beta=0.5, \theta=0.5, \lambda=2)$								
Sample Size	Parameters	Mean of Estimators	Biases	Total Bias	RMSE	Total RMSE	Pearson System Coefficients	Pearson Type
10	$\alpha=2$	2.218	0.218	13.667	1.202	15.709	0.2	IV
	$\beta=0.5$	0.727	0.227		0.384		0.279	IV
	$\theta=0.5$	0.972	0.472		0.518		-0.231	I
	$\lambda=2$	15.656	13.656		15.65		0.561	IV
20	$\alpha=2$	2.113	0.113	9.814	1.004	10.634	0.393	IV
	$\beta=0.5$	0.561	0.061		0.117		0.308	IV
	$\theta=0.5$	0.897	0.397		0.438		0.06	IV
	$\lambda=2$	11.806	9.806		10.577		0.605	IV
30	$\alpha=2$	2.095	0.095	8.307	0.809	8.934	0.454	IV

	$\beta=0.5$	0.524	0.024		0.096		-0.756	I
	$\theta=0.5$	0.885	0.385		0.472		-0.4	I
	$\lambda=2$	10.298	8.298		8.885		0.479	IV
50	$\alpha=2$	2.073	0.073	7.006	0.427	7.443	0.438	IV
	$\beta=0.5$	0.514	0.014		0.058		-4.187	I
	$\theta=0.5$	0.799	0.299		0.342		0.02	IV
	$\lambda=2$	9	7		7.423		0.097	IV
100	$\alpha=2$	2.029	0.029	5.519	0.062	5.756	0.975	IV
	$\beta=0.5$	0.508	0.0084		0.043		-1.329	I
	$\theta=0.5$	0.753	0.253		0.290		0.0079	IV
	$\lambda=2$	7.514	5.514		5.749		0.013	IV
300	$\alpha=2$	2.027	0.027	0.113	0.016	0.160	0.0026	IV
	$\beta=0.5$	0.5025	0.0025		0.007		-0.0031	I
	$\theta=0.5$	0.515	0.015		0.096		-0.0053	I
	$\lambda=2$	2.109	0.109		0.128		0.35	IV

