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ABSTRACT

In the present study, an elastic-plastic stress analysis is carried out in a metal matrix composite cantilever beam
loaded by a single force at its free end. A composite consisting of stainless-stedl reinforced aluminium was
produced for this work. The orientation angle of the fibersis chosen as 0°, 30°, 45°, 60° and 90°. The material is
assumed to be perfectly plastic in the elasto-plastic solution. An analytical solution is performed for satisfying
both the governing differential equation in the plane stress case and boundary conditions for small plastic
deformations. The solution is carried out under the assumption of the Bernoulli-Navier hypotheses. The
composite material isassumed as hardening linearly. The Tsai-Hill theory isused as ayield criterion.

Key Words : Exact solution, Elasto-plastic analysis, Metal-matrix composite, Perfectly plastic

SERBEST UCUNDAN TEKIL YUKE MARUZ ANKASTRE METAL MATRISLI
KOMPOZIT KIRISIN ELASTO-PLASTIK COZUMU

OZET

Bu ¢alismada, serbest ucundan tekil yike maruz ankastre metal matrisli kompozit kirisin elasto-plastik gerilme
analizi yapildi. Paslanmaz ¢elik takviyeli aiminyum kompozit malzemesi kullanildi. Fiberin oryantasyon agis
0°, 30°, 45°, 60° ve 90° olarak secildi. Malzeme elasto-plastik ¢dzim igin tam plastik olarak kabul edildi.
Analitik ¢ozim, hem diizlem gerilme durumundaki diferansiyel denklemi hem de kiigiik plastik deformasyonlar
icin sinir sartlarini saglayacak sekilde uygulandi. Coziimde Bernoulli-Navier Teorisi kabulu yapildi. Kompozit
malzeme lineer sertlestirilmis olarak kabul edildi. Akmateorisi olarak Tsai-Hill teorisi kullanildi.

Anahtar Kelimeler : Tam ¢6zim, Elasto-plastik analiz, Metal matris kompozit, Tam plastik

1. INTRODUCTION

Metal matrix composites reinforced by fibers give
high strengths, specific stiffness, ductility, yield
point and good temperature performance. The
technology of metal matrix composite material is
being developed very rapidly. Aluminium matrix
composites, which are particularly cited for their
superior performance-to-weight advantage, have
many applications in the aerospace and other
industries Canumalla et adl., (1995) have
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investigated discontinuously are viewed as candidate
materials for elevated temperature applications
because of their attractive high temperature strength
properties and wear resistance. Jeronimidis and
Parkyn (1998) investigated residua stresses in
carbon fiber-thermoplastic  matrix ~ laminates.
Karakuzu and Ozcan (1996) carried out an elasto-
plastic stress analysis in an auminium matrix
composite cantilever loaded by single and uniformly
distributed forces by using an exact analytica
solution. Sayman (1998) has investigated elasto-
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plastic stress analysis of aluminium metal matrix
composite laminated plates under in-plane loading.
Ananth and Chandra (1995) studied the application
of push out test to characterize the mechanical
behaviour of interfaces in metallic and intermetallic
matrix composites by using finite element method.
Elasto-plastic stress analysis by using finite element
method the metal matrix composites were
investigated (Karakuzu and Sayman, 1994;
Karakuzu et al., 1997). Kang and Ku (1995)
investigated the infiltration limits in the fabrication
of Al,O; short fiber reinforced composites for
various processing conditions. Arnould et al.,
(1990) have studied elastic-plastic analysis of
advanced composites. They have investigated the
use of the compliant-layer concept in reducing
residual stresses resulting from processing. Cocen et
al., (1997) produced SIC auminium metal matrix
composites to strengthen the auminium matrix.
Residual stresses in the composite materials are
important because they can lead to premature failure.
The vanishing fiber-diameter model, together with
the thermoviscoplasticity theory based on overstress
and including a recovery of state formulation, was
introduced by Yeh and Krempl (1993). Akay and
Ozden (1994) measured the thermal residual stresses
in injection moulded thermoplastics by removing
thin layers from specimens. Akay and Ozden
(1995; 1996) investigated the influence of residua
stresses on the mechanical and thermal properties of
injection moulded thermoplastics.

In the present study, an elastic-plastic stress analysis
is carried out in a metal matrix composite cantilever
beam loaded by a single force at its free end. During
the solution of the problem, the beam is assumed as
linearly hardening. Bernoulli-Navier hypotheses are
used in the investigation. Sample problems are
given for 0°, 30°, 45°, 60° and 90°orientation angles.
The Tsai-Hill theory is used as ayield criterion.

2. ELASTIC SOLUTION

A composite cantilever beam loaded by a single
force at its free end, as shown in Figurel.

Plastic
Region

Elastic
Region

14

2c=

. t=6.4

Figure 1. Composite cantilever beam

The governing differential equation for the plane
stress caseis given as (Lekhnitskii, 1981).

- 0*F - 0°F - - o'F
ay 4—28.26 T 2ai2+ aes >
OX ox oy ox“oy
1)
_ 4 _ A4
—2ai16 +a11£:0

Where F is a stress function and g are the
components of the compliance matrix (Jones, 1975).

ai1r a2 ae
€ X G X
E€y(=|a12 Qa2 a|\0y @
€ - - - T
z a6 ax Aases Xy

Where;

a11 = ay; c0s* 0+ (2a;, + agg )sin? 0cos? 6+ ay, sin 6
a12 = (ayq +ay, —agg)sin? 0cos? 6+ a12(5in4 6+ cos* 9)
az = ay1Sn* 0+ (2ay, +agg )sin? 0cos? 6+ ay, cos? O

a1e = (284, — 281, — agg )SiNBCos® 0

—(2ay, —2ay, —agg)sin®Hcosd )
azs = (2ay; — 22y, — agg )Sin3 6 oSO

—(2ay, — 22y, —agg)cos® Hsind
566 = 2(2a11 + 2a22 - 46.12 —dgg )SI n2 GCOSZ 0

+ a%(sin4 0 +cos* 6)
and

V12 1 1
uu=—dp=——"8p=—"",8p=-— 4
Eq B E, G2

The stress function F is chosen as a polynomia to
satisfy both the governing differential equation and
the boundary conditions;

F:%xy3+%y4+a—22y2+b2xy (5)

Putting in Equation (1) gives;

—2a,53d,+285,€,=0

e, =mdy,, mzﬁ (6)
ap

Boundary conditions for this beam are given as;
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Ty=0a y=%c @) _ _
€y =a116, =aun

2
Xy + md4y2—%d4J (18)
oy =0 a y="7%cC (8)

T tdy=-P a x=0 (9) - - 2
I xy £, =120, :alz[d4xy+ md,y? —%d“J (19)

Wheret is thickness of the beam. At the free end, the

H _ _ 2
resultant of o, and bending moment are equal to Y = 3160, =%a15{d4xy+md4y2 B m;: d4J (20)

zero;
C
I c, tdy=0 (10) The integration of the above two equations gives the
% displacement components as ;
f a4 XY s mdxy? - (y) 21
chtydy=0 (11) U=au) dg —=+Mdgxy” ——2=Xdg |+ lY (21)
-C
. 2 3 2
: = X mc

Stress components are obtained as ; v=a12(d4 ); erd4y?_ E yd4]+c2(x) 22)

o°F 2 )
Ox =—— = Ugxy +egy° +ap = dgxy + mdgy“ +a, (12) o ) _ _ _

Substituting themin ¢, givesfollowing relations;
0°F - d 1 ac4(y) -
Oy =2 (13) B2y g T My A =Ky (23)
9°F d, = dy o 10c,(x) o

=- =——y®-b 14 an— X"+ o——=0, (24)

‘CXY axay 2 y ( ) 4 2 ox
i mc? - mc? -
The constants are determined from the boundary Ky+Gy =—aied, = Gy = —K, +——aged,  (25)
3 3

conditions, and the stress components become;

From the solutions of these ordinary differential
P 2 M - . .
o, = —T(xy+ my _EC ) (15) equations, the displacement components are found
as;
Gy = 0 (16) _ 2 2
u= al{d4 X—Zy+md4xy2 —%de
P
Txy :_E(Cz_yz) (17) 3

+2K1y—512 y?dzl +§md4y3516 +Cy

where | is the inertia moment of the cross section of 2 3 2 (26)
- Xy y® mc
V= 312[d4 T'F md4 ——Tyd4J

the beam, and it is given as, | =%tc3. Thus, both 3

the governing differentia equation and all the

2G,x— L and x°
boundary conditions are satisfied. Feo X T ANl X+ Cy

2. 1. Displacement Components i, ¢, and K, are determined by using the

By using the stressstrain relation, the strain boundary conditions at the fixed end, as;
components can be written as follows; 5
u:v:a—)\zzoatx=L,y:O 27
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Putting them at Eqgn. (26) gives the displacement
components in the elastic region as follows;;

- 2 2
u=a11(d4x—2y+md4xy2 —%xdllj

3

2 1- Y
+3 mczd4y—5a11L2yd4—a12 5 da (28)
2 37 1- 2
+—md,y°aie + —auimc-Ld,
3 3
_ 2 3 2
Vzalz[d4%+md4y?_%yd4J
(29)

1- 1- 1-
+EallL2Xd4 —Ea11d4x3 +§a11d4L3

3. ELASTIC-PLASTIC SOLUTION

In this solution Bernoulli-Navier assumptions are
used. By using these assumptions, the unit strain for
the elastic and elastic-plastic cases can be written as;

ex =2 (30)
p
Where p is the radius of the curvature. When the

Tsai-Hill theory is used as a yield criterion, the
equivalent stress is given as (Jones, 1975).

(31)

2y 2 2y 2
= o5X X
G:\/Gf—6102+ $2 +1;—2:X

Where X and Y are the yield points in the material
direction 1%, 2™ respectively, S is the yield point in
the 1-2 plane for the simple pure shear. The yield
point, Z, in the 3 principal material direction is
equal to Y, due to the same fiber alignment in these
directions. In the plastic region, the eguations of
equilibrium are written as,

dox , Ty _

ox oy

ot oo
XY

=0 (32)

from the first equation o, is found as C(y). As a

result of this, at any section o, isonly the function

of y. For alinear strain-hardening material the yield
stressis given by the Ludwik equation as;

(33)

6y =05 +Kg,

Where o, isequal to X which is the yield point in
the first principal material directions are ;

6, =0, C0S’ 0
6,=0,8n%0

Ty =—0, €0SOSNO

(34)

Substituting them in Egn. (31) gives the yield
condition for the fiber direction oriented as 0 ;

X, =20 =2 (35)
Where;
2 and
cos* 0—sin? 0 cos? 6+XS—29
N = Y (36)

X2 sin? @.cos? O
e
The plastic strain increments in the principal

material directions are found by using the potential
function f (Owen and Hinton, 1980).

RN
def a;f'l
deb =1L 37)
p 6(52
d812 of
dxr
a‘clz

The total strain increments in the principal material
directions are written as ;

- - 26,-0
de; = aido, +axdo, + ———2di
20,
2
—0, + 2('52 2

d82 = 512d01 + 522(102 + dr (38)
2c y
X 2
a 12 2
e, = 206002 S”
2 2c

For the orientation angle 0, the stress component
o, Canbewritten as;

o
ox=— dh=dep
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Putting o;,0, and
integrating them gives ;

1, into Egn (38) and

&) = 81161 + 81265 + %(Zcos2 0 —sin? e)sp +C5 (39

— — 2
€9 = a12(51+a22(52+i —COSZG+25in26X— €p + Co (40)
2N v2

2
- 26, cosesinex—2

PV

2 2c (41)

y

Plastic and elastic strain components are equal on
the boundary of the éastic and plastic regions.
Writing ¢,=0 and equating the elastic and the

plastic strains gives the integration constants;

(5 2 = ;02

a11 —a44Jcos® 0+ la2 —a,, )SIN“ 6

Cs =X, (il u) 2 - 42)
| +a16 SiN6 cosO

Co = Xl_(z_m —ay )Sin2 0+ (512 - a12)0052 e} 43)

| —a16 SINO cosO

(512 —all)Siﬂ 0.cos0+ 22 cos? 0

—a—;6§n90036

The transformation matrix from the principal
material axesto x-y axesiswritten as;

£y cos? 6 sin?6  —2sin6cosh |[ &
gy = sin?o cos?6 2sin6cosb | €;
sinOcosd —sinBcos®  cos?sinZ 6

(45)

Exy €12

By using this matrix, the strain components in the
plastic region are found as;;

€y =auoy, +Byg, , &y =ano, +Bye,,

as (46)
Sxy :TGX +B38p
Where;
X2
2cos* 0—2cos? 0sin® 0+ 2sin® 0=
Y
2
+4sin? 0 cos? OX—Z
B, = > (a7)

2N

2co0s’0sin?0—sin*0—cos* 0

" X2 o, L, X?
+2sin”0cos* 0, —4sin*0cos’ 0
B, - Y S )
2N
X2
2cos3esin6—sin3ecose—2sin36cosew
2
+(—25in6cos36+25in36cose)X?
Bsi (49)

2N

The stress component o, varies linearly in the
elagtic region, it can be written as;

y

£ (50)
pai1

€
- _Sx _
6, =e,E=="=

If the plastic region expands from the lower and
upper surfaces up to h;and h,, at the yield point ;

Oy = Xl = _L
par1

(51)

Hence from the above reation, it is found that
h; = h,=h. The curvature of the radius is determined
as;

h

p=—" (52)
Xja11

The total strain in the plastic region is equal to the

summation of the elastic and plastic strain as;

- O
_ y
=an W + 818p (53)

o <

Writing o in the relation, ¢, is determined as a

y
linear function of y ;

—Godul N

—a+by=a=— b=——=
Kau+BN'  plKaw+BN)

€p (54

For small deformations, the relation between the
strain and displacement components can be written
as;

ou 'y
S e (55)
the integration gives;
_y
u=>x+cg(y) (56)
p
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€y isrelatedtov as;

Gy B
gy, =a2 —+bye
N p

(57)

y

Putting &, inthe equation, and integrating v gives;

p

212 o K a2
:—°y+
N

2

by J+c9(x) (58)

\V A
2

+B, [ay+

2

2p
awsK by?
Co(y) = Gyy +( = ZB?J Yo (60)
Where ;
5—16 5-16
K1+G1:WGO(KW+ 283}’;‘{ (61)

the integration of these equations givesuand v as;
v=2% y{Kai’\ﬂ Bz}ay

N
512 :| by2 x2

(62)
+|:Kw+82 ——2—p+K1X+C_|_0

2

u:lx+ K%+ZB3 bL+
N 2

i (63)

{a%\le% + K%a-’— 2Ba— Kl}y+ Ci1

The elastic and plastic displacement components
have to be equal on the boundary of the elastic and
plastic regions. By using this condition, the
integration constants are determined and u and v are
written as;

A 2 A 2
TN P DTSN L A . Py L
p N 2 N 2

aie

+(%Go+Kwa+ ZBga* Kl}y (64)

h—"+—[%co + K%a+ 2Bsa— Kl]h

p

- - - 2
26, a2 a2 by
V= +K—+B +|K—+By |—
N { N Z}ay { N 2} 2
2 2 -
XK kL -2, (65)
2p 2p N

- - 2
k32, B, -k X2, 5, |2N°
N N 2

3. 1. Determination of h

The moment of o, at any section to be equal to the
bending moment (-Px). The moment of o, is

obtained as ;
—P><—2X1h2t+I60+K(a+by)* dy (66)
REE N

The integration gives a third order algebraic
equation as;

(o}

h®+Bh+D=0 (67)
Where ;
c$0C2+KaC2 _Px
B_._ 2N 2N 2t
X1 0o _Ka_Kd, '
3 2N 2N 3N
Kd,c? _
sz 3NK — d, = Xy Nan
p Z
21 %0 Ra_ B4 K az+ BN
3 2N 2N 3N
Theroot of the equation isfound as;
3 3
3—D+‘/D2+£ 4-D- p2.48°
h- 27, 27 (68)

2 2

4. PRODUCTION OF LAMINATED
PLATES

The composite layer consists of stainless steel fiber
and auminum matrix. The production has been
realized by using moulds which consist of upper and
lower parts. Electrical resistance has been used to
heat the moulds and material which are insulated, as
illustrated in Figure 2.
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clamp

—_ Steel plate
acetate
Aluminium plate

A\ VL /

[ |
7
=

Figure 2. Press operation

mould
Aluminium plate
acetate
— Stedl plate
clamp

The hydraulic press has been used to obtain a
pressure of 30 MPa to the upper mould.
Manufacturing set has been heated to 600 °C. In this
conditions, the vyield strength of auminum
is exceeded and good bonding between matrix and
fiber has been realized. The mechanical properties,
yield points and plastic parameters are given in
Table 1. It is assumed that the yield point Z (in the z
direction) is equal to the yield point Y (in the y
direction), the yield points of t,,, t,, areequal to S.

Table 1. Mechanical Properties and Yield Points of

The Composite Beam
E 86 GPa X 230 MPa
E 74 GPa Y 24 MPa
Gup 32 GPa S 48.9 MPa
V12 0.3 K 1254 MPa

5. RESULTS AND DISCUSSION

Elastic-plastic  stress anadysis is carried out
analytically in the cantilever beam. The yield points
from the free end are given at Table 2.

The intensity of the residual stress component of o,

aregivenin Table 3, for 0°, 30°, 45°, 60° and 90°. as
seen from this Table the intensity of the residual
stress component of ¢, maximum at the upper and
lower surface of the beam.

It is greatest for the orientation angle of 0° as —78,
16 MPa at the upper surface for h = 4 mm, the
equivalent plastic strain is the greatest for the
orientation angle of 90° as 2, 356.10° for h = 4 mm.

Table 2. The Distance Between The Free End and Yield Points

Yield point a the upper and lower 0°

30°

45° 60° 90°

surfaces (mm) 225.40

70.00

42.00 30.00 23.52

Table 3. Elastic, Elastic-Plastic and Residual Stress Components and The Plastic Strain At Upper Surface

(X=0,Y =-C)
Orientation Angles 0 X (mm) h (mm) £p Ox, Ox, Oy,

255.21 6.00 0.00040 260.41 230.00 -30.41

0 281.22 5.00 0.00100 286.95 230.00 -56.95

302.00 4.00 0.00200 308.16 230.00 -78.16

79.77 6.00 0.00003 8173 71.80 -9.93

30° 87.71 5.00 0.00007 89.83 71.80 -18.03

94.22 4.00 0.00014 96.47 71.80 -24.67

47.83 6.00 0.00001 48.46 43.09 -5.37

45° 52.58 5.00 0.00003 53.31 43.09 -10.22

56.46 4.00 0.00006 57.27 43.09 -14.18

3421 6.00 0.00000 35.09 30.82 -4.26

60° 37.60 5.00 0.00001 38.55 30.82 772

41.36 4.00 0.00003 42.38 30.82 -11.56

26.64 6.00 0.00000 27.18 24.00 -3.18

0 29.28 5.00 0.00001 29.88 24.00 -5.88

31.48 4.00 0.00002 32.12 24.00 -8.12

The displacement components u and v for
orientation angles of 0°, 30°, 45°, 60° and 90° in the
elastic and the plastic regions at the free end are
given in Table 4. It is seen from this Table that the
vertical displacement v is greater than the horizontal

displacement v. v is the greatest for the orientation
angle of 0° as —34.627 mm for h = 3 mm. The
vertical displacement components v in the plastic
region is greater than v in the elastic region at the
free end.

Muhendidlik Bilimleri Dergisi 2001 7 (3) 313-321

319

Journal of Engineering Sciences 2001 7 (3) 313-321




An Exact Elasto-Plastic Solution Of Metal-Matrix Composite Cantilever Beam Loaded By ..., O. Sayman, U. Esendemir, A. Ondiiriicii

Table 4. Displacement at The Free End at Points Middle and Upper

Elastic Displacements at Middle Plastic Displacements at
Point (x=0,y=0) Upper Point (x =0,y =-¢)

Orientation Angles 6 X (mm) h (mm) u (mm) v (mm) u (mm) v (mm)
255.21 6.00 0.00 -18.72 1.010 -23.10
(0} 281.22 5.00 0.00 -18.72 1.010 -27.72
302.00 4.00 0.00 -18.72 1.010 -34.62

79.77 6.00 0.00 -19.71 0.308 -7.57

30° 87.71 5.00 0.00 -19.71 0.374 -9.09
94.22 4.00 0.00 -19.71 0.473 -11.36
47.83 6.00 0.00 -23.50 0.198 -4.73
45° 52.58 5.00 0.00 -23.50 0.239 -5.66
56.46 4.00 0.00 -23.50 0.301 -7.09
34.21 6.00 0.00 -21.11 0.143 -3.48
60° 37.60 5.00 0.00 -21.11 0.178 -4.18
41.36 4.00 0.00 -21.11 0.224 -5.22
26.64 6.00 0.00 -21.49 0.12 -2.75
o0° 29.28 5.00 0.00 -21.49 0.12 -3.31
31.48 4.00 0.00 -21.49 0.12 -4.14

6. CONCLUSION and Composites  Processing and  App,
25(3), 138-144.
In the present investigation the following

conclusions are obtained from the analytical solution
of the composite cantilever beam.

1. The intensity of the residual stress residual
stress is maximum at the upper and lower
surfaces of the beam.

The intensity of the residual stress component of
o, isgreatest for the orientation angle of 0°.

The horizonta displacement component of u is
lower than the vertical displacement component
of v.

The vertical displacement component in the
plastic region is grester than vertical
displacement in the elastic region at the same
section.

The vertical displacement component at the
upper point (x =0, y = -c) is the lower for the
orientation angle of 90°.
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