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ABSTRACT

In the present study, an elastic-plastic stress analysis is carried out in a metal matrix composite cantilever beam
loaded by a single force at its free end. A composite consisting of stainless-steel reinforced aluminium was
produced for this work. The orientation angle of the fibers is chosen as 0°, 30°, 45°, 60° and 90°. The material is
assumed to be perfectly plastic in the elasto-plastic solution. An analytical solution is performed for satisfying
both the governing differential equation in the plane stress case and boundary conditions for small plastic
deformations. The solution is carried out under the assumption of the Bernoulli-Navier hypotheses. The
composite material is assumed as hardening linearly. The Tsai-Hill theory is used as a yield criterion.

Key Words : Exact solution, Elasto-plastic analysis, Metal-matrix composite, Perfectly plastic

SERBEST UCUNDAN TEKİL YÜKE MARUZ ANKASTRE METAL MATRİSLİ
KOMPOZİT KİRİŞİN ELASTO-PLASTİK ÇÖZÜMÜ

ÖZET

Bu çalışmada, serbest ucundan tekil yüke maruz ankastre metal matrisli kompozit kirişin elasto-plastik gerilme
analizi yapıldı. Paslanmaz çelik takviyeli alüminyum kompozit malzemesi kullanıldı. Fiberin oryantasyon açısı
0°, 30°, 45°, 60° ve 90° olarak seçildi. Malzeme elasto-plastik çözüm için tam plastik olarak kabul edildi.
Analitik çözüm, hem düzlem gerilme durumundaki diferansiyel denklemi hem de küçük plastik deformasyonlar
için sınır şartlarını sağlayacak şekilde uygulandı. Çözümde Bernoulli-Navier Teorisi kabulu yapıldı. Kompozit
malzeme lineer sertleştirilmiş olarak kabul edildi. Akma teorisi olarak Tsai-Hill teorisi kullanıldı.

Anahtar Kelimeler : Tam çözüm, Elasto-plastik analiz, Metal matris kompozit, Tam plastik

1. INTRODUCTION

Metal matrix composites reinforced by fibers give
high strengths, specific stiffness, ductility, yield
point and good temperature performance. The
technology of metal matrix composite material is
being developed very rapidly. Aluminium matrix
composites, which are particularly cited for their
superior performance-to-weight advantage, have
many applications in the aerospace and other
industries Canumalla et all., (1995) have

investigated discontinuously are viewed as candidate
materials for elevated temperature applications
because of their attractive high temperature strength
properties and wear resistance. Jeronimidis and
Parkyn (1998) investigated residual stresses in
carbon fiber-thermoplastic matrix laminates.
Karakuzu and Özcan (1996) carried out an elasto-
plastic stress analysis in an aluminium matrix
composite cantilever loaded by single and uniformly
distributed forces by using an exact analytical
solution. Sayman (1998) has investigated elasto-
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plastic stress analysis of aluminium metal matrix
composite laminated plates under in-plane loading.
Ananth and Chandra (1995) studied the application
of push out test to characterize the mechanical
behaviour of interfaces in metallic and intermetallic
matrix composites by using finite element method.
Elasto-plastic stress analysis by using finite element
method the metal matrix composites were
investigated (Karakuzu and Sayman, 1994;
Karakuzu et all., 1997). Kang and Ku (1995)
investigated the infiltration limits in the fabrication
of Al2O3 short fiber reinforced composites for
various processing conditions. Arnould et all.,
(1990) have studied elastic-plastic analysis of
advanced composites. They have investigated the
use of the compliant-layer concept in reducing
residual stresses resulting from processing. Cöcen et
all., (1997) produced SiC aluminium metal matrix
composites to strengthen the aluminium matrix.
Residual stresses in the composite materials are
important because they can lead to premature failure.
The vanishing fiber-diameter model, together with
the thermoviscoplasticity theory based on overstress
and including a recovery of state formulation, was
introduced by Yeh and Krempl (1993). Akay and
Özden (1994) measured the thermal residual stresses
in injection moulded thermoplastics by removing
thin layers from specimens. Akay and Özden
(1995; 1996) investigated the influence of residual
stresses on the mechanical and thermal properties of
injection moulded thermoplastics.

In the present study, an elastic-plastic stress analysis
is carried out in a metal matrix composite cantilever
beam loaded by a single force at its free end. During
the solution of the problem, the beam is assumed as
linearly hardening. Bernoulli-Navier hypotheses are
used in the investigation.  Sample problems are
given for 0°, 30°, 45°, 60° and 90°orientation angles.
The Tsai-Hill theory is used as a yield criterion.

2. ELASTIC SOLUTION

A composite cantilever beam loaded by a single
force at its free end, as shown in Figure1.
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Figure 1. Composite cantilever beam

The governing differential equation for the plane
stress case is given as (Lekhnitskii, 1981).
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Where F is a stress function and aij are the
components of the compliance matrix (Jones, 1975).
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The stress function F is chosen as a polynomial to
satisfy both the governing differential equation and
the boundary conditions;
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Putting in Equation (1) gives;
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Boundary conditions for this beam are given as ;

h
h
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0xy =τ  at cy m=          (7)

0y =σ  at cy m=                         (8)
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 at 0x =                         (9)

Where t is thickness of the beam. At the free end, the
resultant of xσ  and bending moment are equal to
zero;
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Stress components are obtained as ;
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The constants are determined from the boundary
conditions, and the stress components become;
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where I is the inertia moment of the cross section of

the beam, and it is given as, 3tc
3
2

I = . Thus, both

the governing differential equation and all the
boundary conditions are satisfied.

2. 1. Displacement Components

By using the stress-strain relation, the strain
components can be written as follows;
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The integration of the above two equations gives the
displacement components as ;
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Substituting them in xyε  gives following relations;
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From the solutions of these ordinary differential
equations, the displacement components are found
as ;
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43 c,c  and 1K  are determined by using the
boundary conditions at the fixed end, as ;

0
x
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∂
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Putting them at Eqn. (26) gives the displacement
components in the elastic region as follows ;
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3. ELASTIC-PLASTIC SOLUTION

In this solution Bernoulli-Navier assumptions are
used. By using these assumptions, the unit strain for
the elastic and elastic-plastic cases can be written as;

ρ
=ε

y
x        (30)

Where ρ  is the radius of the curvature. When the
Tsai-Hill theory is used as a yield criterion, the
equivalent stress is given as (Jones, 1975).
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Where X and Y are the yield points in the material
direction 1st, 2nd  respectively, S is the yield point in
the 1-2 plane for the simple pure shear. The yield
point, Z, in the 3rd principal material direction is
equal to Y, due to the same fiber alignment in these
directions. In the plastic region, the equations of
equilibrium are written as,
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from the first equation xσ  is found as C(y). As a
result of this, at any section xσ  is only the function
of y. For a linear strain-hardening material the yield
stress is given by the Ludwik equation as ;
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Where oσ  is equal to X which is the yield point in
the first principal material directions are ;
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Substituting them in Eqn. (31) gives the yield
condition for the fiber direction oriented as θ ;
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The plastic strain increments in the principal
material directions are found by using the potential
function f (Owen and Hinton, 1980).





























λ
τ∂
∂

λ
σ∂
∂

λ
σ∂
∂

=
















ε
ε
ε

df

df

df

d
d
d

12

2

1

p
12

p
2

p
1

       (37)

The total strain increments in the principal material
directions are written as ;
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For the orientation angle θ , the stress component
xσ  can be written as ;
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Putting 21, σσ  and 12τ  into Eqn (38) and
integrating them gives ;
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Plastic and elastic strain components are equal on
the boundary of the elastic and plastic regions.
Writing 0p =ε  and equating the elastic and the
plastic strains gives the integration constants;
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The transformation matrix from the principal
material axes to x-y axes is written as ;
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By using this matrix, the strain components in the
plastic region are found as ;
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The stress component xσ  varies linearly in the
elastic region, it can be written  as ;

1111

x
xx

a
y

a
E

ρ
=

ε
=ε=σ         (50)
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yε  is related to v as ;
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Putting pε  in the equation, and integrating v gives ;
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the integration of these equations gives u and v as ;
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The elastic and plastic displacement components
have to be equal on the boundary of the elastic and
plastic regions. By using this condition, the
integration constants are determined and u and v are
written as ;
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3. 1. Determination of h

The moment of xσ  at any section to be equal to the
bending moment (-Px). The moment of xσ  is
obtained as ;
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The integration gives a third order algebraic
equation as;

0DBhh3 =++        (67)

Where ;
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The root of the equation is found as ;

3

3
2

3

3
2

2
27
B4DD

2
27
B4DD

h
+−−

+
++−

=        (68)

4. PRODUCTION OF LAMINATED
PLATES

The composite layer consists of stainless steel fiber
and aluminum matrix. The production has been
realized by using moulds which consist of upper and
lower parts. Electrical resistance has been used to
heat the moulds and material which are insulated, as
illustrated in Figure 2.
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Figure 2. Press operation

The hydraulic press has been used to obtain a
pressure of 30 MPa to the upper mould.
Manufacturing set has been heated to 600 °C. In this
conditions, the yield strength of aluminum
is  exceeded  and  good  bonding between matrix and
fiber has been realized. The mechanical properties,
yield points and plastic parameters are given in
Table 1. It is assumed that the yield point Z (in the z
direction) is equal to the yield point Y (in the y
direction), the yield points of yzxz , ττ  are equal to S.

Table 1. Mechanical Properties and Yield Points of
The Composite Beam
E1           86    GPa X       230    MPa
E2           74    GPa Y         24    MPa
G12           32    GPa S         48.9 MPa
υ12             0.3 K     1254    MPa

5. RESULTS AND DISCUSSION

Elastic-plastic stress analysis is carried out
analytically in the cantilever beam. The yield points
from the free end are given at Table 2.

The intensity of the residual stress component of xσ
are given in Table 3, for 0°, 30°, 45°, 60° and 90°. as
seen from this Table the intensity of the residual
stress component of xσ  maximum at the upper and
lower surface of the beam.

It is greatest for the orientation angle of 0° as –78,
16 MPa at the upper surface for h = 4 mm, the
equivalent plastic strain is the greatest for the
orientation angle of 90° as 2, 356.10-5 for h = 4 mm.

Table 2. The Distance Between The Free End and Yield Points
0° 30° 45° 60° 90°Yield point at the upper and lower

surfaces (mm) 225.40 70.00 42.00 30.00 23.52

Table 3. Elastic, Elastic-Plastic and Residual Stress Components and The Plastic Strain At Upper Surface
(X = 0, Y = -C)

Orientation Angles θ x (mm) h (mm) pε exσ pxσ rxσ

0˚
       255.21
       281.22
       302.00

6.00
5.00
4.00

0.00040
0.00100
0.00200

    260.41
    286.95
    308.16

    230.00
    230.00
    230.00

    -30.41
    -56.95
    -78.16

30˚
79.77
87.71
94.22

6.00
5.00
4.00

0.00003
0.00007
0.00014

81.73
89.83
96.47

71.80
71.80
71.80

      -9.93
    -18.03
    -24.67

45˚
47.83
52.58
56.46

6.00
5.00
4.00

0.00001
0.00003
0.00006

48.46
53.31
57.27

43.09
43.09
43.09

      -5.37
    -10.22
    -14.18

60˚
34.21
37.60
41.36

6.00
5.00
4.00

0.00000
0.00001
0.00003

35.09
38.55
42.38

30.82
30.82
30.82

-4.26
-7.72

   -11.56

90˚
26.64
29.28
31.48

6.00
5.00
4.00

0.00000
0.00001
0.00002

27.18
29.88
32.12

24.00
24.00
24.00

-3.18
-5.88
-8.12

The displacement components u and v for
orientation angles of  0°, 30°, 45°, 60° and 90° in the
elastic and the plastic regions at the free end are
given in Table 4. It is seen from this Table that the
vertical displacement v is greater than the horizontal

displacement v. v is the greatest for the orientation
angle of 0° as –34.627 mm for h = 3 mm. The
vertical displacement components v in the plastic
region is greater than v in the elastic region at the
free end.
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Table 4. Displacement at The Free End at Points Middle and Upper
Elastic Displacements at Middle

Point (x = 0, y = 0)
Plastic Displacements at

Upper Point (x = 0, y = -c)

Orientation Angles θ x (mm) h (mm) u (mm) v (mm) u (mm) v (mm)

0˚
      255.21
      281.22
      302.00

6.00
5.00
4.00

0.00
0.00
0.00

-18.72
-18.72
-18.72

1.010
1.010
1.010

-23.10
-27.72
-34.62

30˚
79.77
87.71
94.22

6.00
5.00
4.00

0.00
0.00
0.00

-19.71
-19.71
-19.71

0.308
0.374
0.473

      -7.57
      -9.09

-11.36

45˚
47.83
52.58
56.46

6.00
5.00
4.00

0.00
0.00
0.00

-23.50
-23.50
-23.50

0.198
0.239
0.301

  -4.73
  -5.66
  -7.09

60˚
34.21
37.60
41.36

6.00
5.00
4.00

0.00
0.00
0.00

-21.11
-21.11
-21.11

0.143
0.178
0.224

  -3.48
  -4.18
  -5.22

90˚
26.64
29.28
31.48

6.00
5.00
4.00

0.00
0.00
0.00

-21.49
-21.49
-21.49

      0.12
      0.12
      0.12

  -2.75
  -3.31
  -4.14

6. CONCLUSION

In the present investigation the following
conclusions are obtained from the analytical solution
of the composite cantilever beam.

1. The intensity of the residual stress residual
stress is maximum at the upper and lower
surfaces of the beam.

2. The intensity of the residual stress component of
xσ  is greatest for the orientation angle of 0°.

3. The horizontal displacement component of u is
lower than the vertical displacement component
of v.

4. The vertical displacement component in the
plastic region is greater than vertical
displacement in the elastic region at the same
section.

5. The vertical displacement component at the
upper point (x = 0, y = -c) is the lower for the
orientation angle of 90°.
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