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Abstract

This research article introduces a new iterative process called MP iteration and proves some convergence
and approximation results for the fixed points of p-nonexpansive mappings in modular function spaces. To
demonstrate that MP iterative process converges faster than some well-known existing iterative processes
for p-nonexpansive mappings, we construct some numerical examples. In the end, the concept of summably
almost T-stability for MP iterative process is discussed.
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1. Introduction

In recent years, the convergence results for the fixed points of mappings by using the iterative process have

been introduced and studied by many researchers. The authors always focus on three aspects as follows: the
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weak property of the constructed map, the speed of the iteration and the spatial constraints. When someone
establishes the existence of fixed point for some mapping then it is not easy to compute the value of that
fixed point and due to this reason we take help of an iterative process for finding the value of fixed point.
In the past decades, a number of iterative processes have been developed to approximate the fixed points of
nonexpansive mappings.

Now, we give a brief introduction of the existing iterative processes. Throughout this section, let T :
E — FE be any mapping where E is a nonempty subset of a Banach space X and {«,},{8,} and {7,} are
the real sequences in (0, 1) satisfying some appropriate conditions where n > 0.

As the Picard iterative process fails to converge to a fixed point of nonexpansive mapping, in 1953, Mann

[11] introduced the following iterative process to approximate the fixed points of nonexpansive mappings:

up € K
(1.1)

Un+1 = (1 — ap)up + anTuy,.

Later, it was discovered that Mann iterative process fails to converge a fixed point of pseudo-contractive
mapping. To overcome this drawback of Mann iterative procedure, in 1974, Ishikawa [7] introduced the

following two step iterative process to approximate the fixed points of pseudo-contractive mappings:
u € B
Un+1 = (1 - an)un + apTvy, (12)
vp = (1 = Bp)un + BT up.

In 2000, Noor [14] introduced the following three step iterative process for general variational inequalities:

,

u, € B
Unt1 = (1 — ap)up + anTo,

Un = (1 - ﬁn)un + BnTwn

Wn = (1 - 'Vn)un + T uy,.

It is well known that the Picard iterative process converges faster than the Mann iterative process for
contraction mappings (see Proposition 3.1 [2]). In 2007, Agarwal et al. [2] introduced the following two step

iterative process to approximate the fixed points of nearly asymptotically nonexpansive mappings:
u € F
Unt1 = (1 — apn)Tup, + oy To, (1.4)
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They claimed that the iterative process defined by them converges to a fixed point of contraction mapping
with same rate of convergence as the Picard iterative process but converges faster than Mann iterative
process.

In 2014, Abbas and Nazir [I] introduced the following three step iterative process to approximate the
fixed points of nonexpansive mappings in uniformly convex Banach spaces:
u € K
Unt1 = (1 — ap)Tv, + anTwy,

(1.5)
Up = (1 - Bn)Tun + 5nTwn

Wy, = (1 = vn)un + YT U,
They also showed that this iterative process converges faster than all of Picard, Mann and Agarwal iterative
processes to a fixed point of contraction mapping.
In 2014, Thakur et al. [25] introduced the following iterative process, we call it Thakur iteration, to
approximate the fixed points of nonexpansive mappings:
uy € K
Unt+1 = (1 — ap)Tup + oy To,
Up = (1 - /Bn>wn + ﬁnTwn

wy, = (1 = yp)un + YT unp.

\

They also claimed that this iterative process converges faster than all of Picard, Mann, Ishikawa, Noor,
Agarwal and Abbas and Nazir iterative processes to a fixed point of contraction mapping in sense of Berinde
In 2016, Sahu et al. [21] and Thakur et al. [24] introduced the following iterative process to approximate

the fixed points of nonexpansive mappings in uniformly convex Banach spaces:
u € F
Unt1 = (1 — ap)Twy, + apyToy,

(1.7)
Up = (1 - Bn)wn + ﬁnTwn

wy, = (1 = yp)un + YT Unp.

The authors [21I] 24] proved that this iterative process converges faster than all known iterative processes to
a fixed point of contraction mapping.
In 2019, Panwar and Reena [19] proved some approximation results for the fixed points of multivalued

p-quasi-nonexpansive mappings for a newly defined hybrid iterative process in modular function spaces as



A. Panwar, R. Morwal, S. Kumar, Adv. Theory Nonlinear Anal. Appl. 6 (2022), 229-{245 232

follows:

ek

fot1 € P](hn)

en = Yntn + (1 = V) fn (1.8)
gn = Bntn + (1= Bn) fn

hn = apwy, + (1 - an)fn

\

where the sequences u,, € Pg(fn), Uy € PpT(en), wy, € P;)r(gn).

In 2019, Ritika et al. [22] introduced RK-iteration for generalized nonexpansive mappings in CAT(0)

spaces and claimed that the iterative process introduced by them converges faster than some well known

iterative processes.

r0 € FE

Tnt1 € Top

v = T((1 — an)yn + anTyp) (1.9)
yn =T ((1 = Bn)zn + BnT'2n)

Pant et al. established some fixed point results for generalized nonexpansive type mappings in Banach spaces

(see [16, 17, [18]).

In [20], Panwar and Reena introduced a new iterative scheme named as AR-iteration for nonexpansive

mappings and by providing numerical examples proved that the AR-iteration converges faster than that of

Sahu-Thakur iteration and Thakur iteration in modular function spaces.

fiekE

frv1=Tygn

gn =T((1 — an) fn + @nThy) (1.10)
hp = T((1 = Bn) fn + BnTen)

€n = (1 - ’Yn)fn + ’Yann-

Motivated by the work done in the area of fixed point theory, we define a new iterative process named as

MP iteration to approximate the fixed points of p-nonexpansive mappings in modular function spaces. Also,
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we establish that MP iterative process converges faster than the existing well-known iterative process.

up € Bp
Un+1 = T2vn
v =T((1 — an)T'sp + anTwy) (1.11)

Wp = T((l - Bn)sn + /BnTSn)

Sn =T (1 — ) tun + T uy).

where the sequences {a,, }, {6, } and {75} in (0,1) are bounded away from both 0 and 1 and B, is a nonempty

p-bounded, p-closed, p-convex subset of modular function spaces.

2. Preliminaries

In this section, we recall some basic definitions and needed results to prove our results.

Let Q be a nonempty set and ) be a nontrivial o-algebra of subsets of 2. Let P be a nontrivial d-ring of
subsets of 2 which means that P is closed under countable intersection, finite union and differences. Suppose
that ENA € P for any E € P and A € > . Assume that there exists an increasing sequence of sets K,, € P
such that (2 = UK,,. By € we denote the linear space of all simple functions with support from P. Also M
denotes the space of all extended measurable functions, i.e., all functions f : Q — [—o00, 00| such that there
exists a sequence

{gn} C e, |gn| < |f] and gp(w) — f(w) for all w € Q.
We define

M={feMuy:|f(w)|<ocp—ae}.

The definition of modular was given by Musielak and Orlicz in [13].

Definition 2.1. [I3] Let X (over field R or C) be a vector space. A functional p : X — [0,00] is called a
modular if for arbitrary elements f, g € X, the following hold:

(i) p(f)=0<=f=0
(ii) p(af) = p(f) whenever |a| =1
(iii) p(ef + Bg) < p(f) + p(g) whenever a, 5 >0, a+f=1.

)
If we replace (iii)
(iv) plaf + B9) < ap(f) + Bplg) whenever a, >0, a+f =1,

Then modular p is called convex.

<p
by

Definition 2.2. [I3] If p is convex modular in X, then the set defined by
L,={feM:pAf) = 0as X — 0}

is called modular function space.
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Definition 2.3. [9] Let p : Mo, — [0,00] be a nontrivial, convex and even function. Then p is a regular
convex function pseudo modular if

(1.) p(0) = 0;

(2.) pis monotone, i.e., |f(w)| < |g(w)]| for any w € Q implies p(f) < p(g), where f,g € Moo;

(3.) pisorthogonally sub-additive, i.e., p(fxauB) < p(fxa)+p(fxp) forany A, B € > such that ANB # ¢,
J € Mc;

(4.) p has Fatou property, i.e., |fn(w)| T |f(w)| for w € Q implies p(fn) T p(f), where f € My;

(5.) pis order continuous in ¢, i.e., g, € € and |gn(w)| | 0, then p(gy,) | 0.

Let p be a regular convex pseudo modular then p is regular convex function modular if p(f) = 0 implies
f =0 a.e. The class of all nonzero regular convex function modular on 2 is denoted by fR.
In 1988, Kozlowski introduced the following condition in modular function spaces:

Definition 2.4. [10] p € R is said to satisfy Ag-condition if sup,,~; p(2un, Dx) — 0 as k — oo whenever
{Dy} decreases to ¢ and sup,,~; p(un, Di) — 0 as k — oo. N

In 2012, the following lemma was proved by Dehaish and Kozlowski [5] to establish that generalized
Mann and Ishikawa iterative processes converge almost everywhere to a fixed point of asymptotic pointwise
nonexpansive mapping 7' in modular function spaces.

Lemma 2.5. [5] Let p € R satisfying (UUC1) and {t,,} C (0,1) be bounded away from both 0 and 1. If there
exists R > 0 such that

limy, 00 sUp p(u,) < R, limy, o0 sup p(v,) < R and
limy, 00 p(tntun + (1 — ty)v,) = R, then
limy, 00 p(Uy, — vy,) = 0.

The sequence {t,} C (0,1) is said to be bounded away from 0 if there exists a > 0 such that ¢, > a for all
n € N. Similarly the sequence {¢,} C (0, 1) is said to be bounded away from 1 if there exists b < 1 such that
t, <bfor all n € N.

In 1974, Senter and Dotson [23] gave a condition for nonexpansive mapping 7' that assures convergence
of certain iterates to fixed point T as follows:

Definition 2.6. [23] Let D be a subset of L,. Then T : D — D is said to satisfy condition (I) if there
exists a nondecreasing function v : [0,00) — [0, 00) with ¥(0) = 0,4 (r) > 0 for all r € (0, 00) such that

p(f =Tf) = v(dy(f, Fp(T))) for all f € D.
The following uniform convexity type properties of the function modular p is defined by Khamsi and

Kozlowski [§] in 2011:

Definition 2.7. [§] Let p be a nonzero regular convex function modular defined on €.

(i) Let 7 > 0,e > 0. Define Dy(r,e) = {(f,9) : f,9 € Ly, p(f) <7, p(g) <7, p(f —g) > er}.
Let 61(r,€) = inf {1 —1p (f—;g) :(f,9) € Di(r, 6)} if Dy(r,€e) # ¢ and d1(r,€) = 1if Di(r,€) = ¢. One
says that p satisfies (UC1) if for every r > 0,e > 0,d1(r,€) > 0.
Observe that for every D1(r,€) # ¢, € > 0 small enough.

(ii) One says that p satisfies (UUC1) if for every s > 0,¢e > 0, there exists n1(r, €) > 0 depending only on s
and e such that d;(r,€) > ni(r,€) > 0 for any r > s.

The following definition was given by Musielak in [12]:
Definition 2.8. [I2] Let p € R.

(a) A sequence {f,} is p-convergent to f, that is, f, — f if and only if p(f, — f) — 0 as n — co.
(b) A sequence {f,} is p-Cauchy sequence if p(f, — fm) — 0 as m,n — oc.
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(c) A set B C L, is called p-closed if for any sequence {f,} C B, the convergence f, — f asn — oo
implies that f belongs to B.
(d) Aset B C L, is called p-bounded if p-diameter is finite; the p-diameter of B is defined as
dp(B) = sup{p(f —g): f,g € B}.
(e) A set B C L, is called p-compact if for any sequence {f,} C B, there exists a subsequence {f,,} of
{fn} and f € B such that p(fn, — f) = 0 as k — oo.

Proposition 2.9. [9] Let p € R.

(t) L, is p-complete.

(it) p-balls B,(f,r) ={g9 € L, : p(f —g) <r} are p-closed.
(i15) If p(Afn) — 0O for X > 0 then there exists a subsequence {gn} of {fn} such that g, — 0p — a.e. as

n — oo.

() If {fn} is p-a.e. convergent to f then p(f) < liminf, o p(fn). (This property is equivalent to Fatou
property.)

(v) If Lg = {f e L, : p(f,.) is order continuous} and S, = {f € L, : A\f € Lg forany A > 0}, then
S, C L) C Ly.

3. Convergence and Approximation Results

In the following section, some convergence and approximation results are proved for the fixed point of

p-nonexpansive mappings using MP iteration (1.11]).

Lemma 3.1. If B, # ¢ is a p-bounded, p-closed, p-convex subset of L, and T': B, — B, is a p-nonexpansive
mapping with F,(T') # ¢. For arbitrarily chosen u1 € B,, suppose {uy} is the sequence, generated by MP

iterative process (L.11)), then lim, o0 p(un, — p*) exists for any p* € F,(T).

Proof. Let p* € F,(T), where T is a p-nonexpansive mapping, then using Proposition and convexity of
p, we have

p(unt1 —p*) = p(T?vn = p*) < p(Tvn = p*) < plvy —p*). (3.1)
p(vn —p*) = p(T((1 — an)T'sy, + anTwy) — p*)
< p((1 = an)Tsp + anTw, — p*)
< (1= an)p(Tsp — p*) + anp(Tw, — p*)
< (1 —=an)p(sn —p") + anp(wy — p*).
p(vn —p*) < (L= an)p(sn —p*) + anp(wn — p*). (3.2)
p(wn —p*) = p(T((1 = Bn)sn + BnT'sn) — p*)
< p((l - 5n)3n + BnTsn - p*)
< (1= Bn)p(sn —p*) + Bup(Tsp — p*) < p(sn —p7).
p(wy —p*) < p(sn —p"). (3.3)
p(Sn - p*) = p(T((l - "Yn)un + 'YnTUn) - p*)
< p((1 = m)un + v Tun — p*)
< (1 = m)p(un —p*) + Yup(Tun — p*)
< (1 - 7n)p(un _p*) + "an(un _p*)'
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p(sn —p") < plun —p*). (3.4)

Using (3.3) and (3.4) in (3.2), we get p(vy, — p*) < p(u, — p*). Then from (3.1, we have
p(unt1 —p*) < p(un — p*). (3.5)
From (3.5), we conclude that {p(u, — p*)} is a bounded and nonincreasing sequence V p* € F,(T) which
implies that lim,,_,~ p(u, — p*) exists. O]

Theorem 3.2. Let p € R satisfy (UUC1), Ag-conditions and B, be a nonempty p-closed, p-convez subset
of L, and T : B, — B, be a p-nonexpansive mapping with F,(T) # ¢. Suppose {u,} is the sequence in B,
defined by MP iterative process (1.11). Then lim, o0 p(un — Tuy) = 0.

Proof. Let p* € F,(T). Using Lemma lim;, 00 p(upn, — p*) exists and let

nh_)IIOlO p(u, —p*) = K. (3.6)
From , and , we obtain
Jim sup p(v, —p) < lim sup p(up —p*) = K. (3.7)
Jim sup p(wy, —p*) < lim sup p(up —p*) = K. (3.8)
lim sup p(sp —p*) < lim sup p(up, —p*) = K. (3.9)

Also, p(Tup—p*) < p(un—p*), p(Tw,—p*) < p(wp—p*), p(Tv,—p*) < p(vp—p*) and p(T's,—p*) < p(s,—p*),
therefore

lim sup p(Tv, —p*) < K. (3.10)
n—oo

lim sup p(Tw, —p*) < K. (3.11)
n—oo

lim sup p(T's,, — p*) < K. (3.12)
n—oo

Using (3.1)), (3-2), (3.3) and B.4), p(un+1 — p*) < p(vn, — p*) < p(wy, — p*) < p(sn — p*) < p(uy, — p*) which

implies p(up+1 — p*) < p(sn — p*) < p(u, — p*) and hence

lim p(s, —p*) = K. (3.13)

n—oo

p(sn —p*) = p(T((1 = ym)un + v Tun) — p*)
< p((1 = yn)un + ymTun — p*)
p(sn — ") < p((1 =) (un — p*) + Y (Tun — p*)) < p(un —p*).

Applying limit and using (3.6) and (3.13]), we get

lim p((1 =) (un —p*) + W (Tun —p*)) = K. (3.14)
n—oo
Equations (3.6, (3.14) and Lemma establish that
limy, 00 p(ty, — T'uy) = 0. O

Theorem 3.3. Let p € R satisfy (UUCI1), Ag-conditions. If B, # ¢ is a p-compact, p-convex subset of L,
and T : B, — B, is p-nonexpansive mapping. Suppose that {u,} is a sequence in B, defined by MP iterative

process (L.11)), then {u,} is p-convergent to a fized point of T
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Proof. Due to p-compactness B,, there exists a subsequence {uy, } of {u,} such that limy_,o p(tpn, —w) =0
for w € B,. Using continuity p-nonexpansive mapping and convexity of p, we have

w—Tw) W— Uy,  Up, — LUy, Tup, —Tw
p< 3 >_p< 5 T3 T3

1 1
p(w - unk) + gp(u”k - Tunk) + gp(Tunk - Tw)

3
< p(w - unk) + p(unk - Tunk) + p(Tunk - Tw)'

Using Theorem and continuity of T, p (@) — 0 as k — oo, that is, p (@) = 0 which shows that

w is a fixed point of 7. This proves that {u,} p-converges to a fixed point of 7' O

Theorem 3.4. Let p € R satisfy (UUC1), Aa-condition and B, be a nonempty p-compact, p-convex subset
of L, and T : B, — B, be a p-nonexzpansive mapping satisfying condition (I). If {u,} is a sequence in B,
defined by MP iterative process (1.11), then {u,} is p-convergent to a fized point of T.

Proof. Using Lemma [3.1] limy, ;00 p(un — p*) exists V p* € Fy(T).
If lim,—y00 p(upn, — p*) = 0, then nothing to do. Assume that lim, o p(u, — p*) = K > 0. By the same
lemma,
p(tunt1 —p*) < p(uy, — p*) for all p* € F,(T).
= dp(unt1, Fy(T)) < dp(un, Fp(T))
50, limy, o0 dp(up, F,(T)) exists. By Theorem and condition (I),

0= lim dy(u, Tun) > Tim (dy(un, Fy(T))).
Since ¢ is increasing function and ¢(0) = 0, therefore, lim,, o0 d,(tn, F,(T')) = 0. We now prove that {u,}
is p-Cauchy sequence in B,,.
Let € > 0 be arbitrary. Then there exists an integer mgo € N such that d,(un, F,(T)) < §, for all n > mq.
Particularly, inf{p(fm, — p*) : p* € F,(T)} < 5. Thus, there exists a py € F,(T) such that p(um, — po) < €.
Now, for all m,n > mg, we have

1

U, — U 1
P <m2n) < §p(um - pO) + Qp(un - pO)

1 1
< 5P(tmg = po) + 5p(Umy = po) < €.

Since Asg-condition is satisfied by p, therefore by Proposition {un} is a p-Cauchy sequence in B,. Due
to completeness of L, and p-closedness of B,, then there must exists an u € B, such that p(u, —u) —
0 as n — oco. Hence, {u,} p-converges to a fixed point of 7' O

4. Numerical Examples

In this section, we provide numerical examples to establish the fact that the rate of convergence of MP

iteration (1.11)) is faster than that of Sahu-Thakur iteration (1.7)), Thakur iteration (1.6)), RK iteration (1.9))
and AR iteration ((1.10). To prove our claim, we consider the following examples:

Example 4.1. Let the real number system R be the space modulared as p(u) = |u|. It follows that p satisfies
(UUC1) and As-condition. Define B, = {u € L, : 0 < u < oo} and a mapping T : B, — B, as T = “F2.

Clearly, B, is a nonempty p-compact, p-bounded and p-convex subset of L, = R and T is p-nonezpansive
T

mapping with Fy(T) # ¢. Let 1 : [0,00) — [0,00) be a nondecreasing continuous function by (r) = 7.
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Now, we show that T' satisfies condition (I), that is, p(u — Tw) > ¥(d,(u, F,(T))), V u € B,.
If ue (0,2) then

1o 52)

2
_ ‘u— u+2‘ _ u—2‘
2 2 '
0l (1, F)(T))) = (dy(u. 21))
—v(u-2 =",

If ue F,(T) = {2} then clearly p(u — Tu) = 0 =1(d,(u, F,(T))). When u € (2,00) then

p(u—TU)=p<u—u+2>

2
B u+2) u—2
_‘“_ 2 ‘_ 9
P(dp(u, Fy(T))) = ¢(dp(u, {2}))
= (u—2) = "2

From above calculations, for all u € B,, we have p(u — Tu) > (d,(u, F,(T))). We now prove that T is a
P-NONETPANSIVE MAPPING.

2 2
p(Tu —Tv) = |Tu —Tv| = utes vt
2 2
= U;U < p(u —v).

Therefore, T is p-nonexpansive mapping. In last, we show that {uy,} is p-convergent to the fized point of T
by constructing a table. In table |1}, the rate of convergence of MP iteration (L.11) with RK iteration (1.9),

AR-iteration (1.10), Sahu- Thakur iteration (1.7) and Thakur iteration (1.6)) is compared and figure[4.1] shows

the graphical representation of comparison of rate of convergence of iterative processes (1.6)), (1.7)), (1.9) and
(1),

Example 4.2. Letl the real number system R be the space modulared as p(u) = |u|. It follows that p is
satisfying (UUC1) and Ag-conditions. Define B, = {u € L,: 0 <u < oo} and T : B, — B, as T = 243,
Clearly, B, is a nonempty p-compact, p-bounded, p-convex subset of L, = R and T is a p-nonezpansive
mapping with Fy(T) # ¢. Let 1 : [0,00) — [0,00) be a nondecreasing continuous function by y(r) = 7.
Now, we show that T satisfies condition (I), that is, p(u — Tu) > (d,(u, F,(T))), V u € B,. Ifu € (0,3)
then

P(U—Tu):p<u_2U;3>
-2 15
b(d,y(u, Fp(T))) = ¥(d,(u, {3}))
—vu-3) =",




A. Panwar, R. Morwal, S. Kumar, Adv. Theory Nonlinear Anal. Appl. 6 (2022), 229-{245

239

Table 1: Comparison of rate of convergence various iterations

MP iteration

RK iteration

AR-iteration

Sahu-Thakur iteration

Thakur iteration

0~ O U W N B

DO N BN DN DD R e e e e
QU W N R O O OO Tk WNR~RO

[\
(=]

6
2.064453125
2.001038551
2.000016734

2.00000027
2.000000004
2

DD DN DN DO DN DD DN DD DN DND DN BND DN ND DN DN NN

6
2.10546875
2.002780914
2.000073325
2.000001933
2.000000051
2.000000001
2

DD DN DN DD DN DD DN DN DN NN NN NN

6
2.5859375
2.085830688
2.012572855
2.001841727
2.000269784
2.000039519
2.000005789
2.000000848
2.000000124
2.000000018
2.000000003
2

NN DO DN DD DN DD DN DD DN DN NN

6
3.3125
2.430664063
2.141311646
2.046367884
2.015214462
2.004992245
2.00163808
2.000537495
2.000176366
2.00005787
2.000018989
2.000006231
2.000002044
2.000000671
2.00000022
2.000000072
2.000000024
2.000000008
2.000000003
2.000000001
2

DN DN DN DN

6
3.5625
2.610351563
2.238418579
2.093132257
2.036379788
2.014210855
2.005551115
2.002168404
2.000847033
2.000330872
2.000129247
2.000050487
2.000019722
2.000007704
2.000003009
2.000001175
2.000000459
2.000000179
2.00000007
2.000000027
2.000000011
2.000000004
2.000000002
2.000000001
2
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Figure 4.1: Rate of convergence of various iterations

B MP iteration

W RK iteration
AR-iteration

M Sahu-Thakur iteration

M Thakur iteration

= {3} then clearly p(u — Tu) = 0 = (d,(u, F,(T))).

If ue F,(T)
(3,00) then

When u €

p(u—Tu):p(u_2u;3)

2u+3’_u—3

U

3 3
Ul F(T))) = i(dy(u, (3)))
= (u—3) =17,

3

From above calculations, p(u — Tu) > (d,(u, Fy(T))) for all w € B,. We now prove that T is a p-
NONETPANSIVE MaAPPIng.

p(Tu ~Tv) = |Tu—To| = | - -

plu—v)=|u—v|= p(Tu—Tv) < |u—v|.

2u + 3 2’0—1—3‘ _‘2(u—v)

Therefore, T is p-nonerpansive mapping. In the end, we show that {u,} is p-convergent to the fixed point
of T by constructing a table. In table @ the rate of convergence of MP iteration (1.11)) with RK ileration

(1.9), AR-iteration (L.10), Sahu-Thakur iteration (L.7) and Thakur iteration (1.6) is compared and figure
shows the graphical representation of comparison of rate of convergence of iterative processes (1.6]), (1.7)),

[L9) and (T1D).
5. Stability Results

In the following of section, first we define the concept of T-stability, almost T-stability, summably almost
T-stability of an iterative process in modular function spaces. Then we prove some stability results for our
newly defined MP iterative process (1.11). In the end, we construct an example to establish the concept of

summably almost T-stability for MP iterative process.
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Table 2: Comparison of rate of convergence of various iterations

MP iteration

RK iteration

AR-iteration

Sahu-Thakur iteration

Thakur iteration

0 ] O U= W N =B

e
W ko ©

20
21
22
23

3:5
4:5
5:5
6:5

77
78

15
4.024234111
3.087421293
3.007461656
3.000636874
3.000054359

3.00000464
3.000000396
3.000000034
3.000000003

3
3
3

15
4.371742112
3.156806369
3.017924825

3.00204902
3.000234227
3.000026775
3.000003061

3.00000035

3.00000004
3.000000005
3.000000001

3

15
6.588477366
4.073097484
3.320898836
3.095961518
3.028696311
3.008581339
3.002566162
3.000767384
3.000229478
3.000068623
3.000020521
3.000006137

3.000000001
3
3
3

15
82TTTTTIT8
4.731770833
3.568237305
3.186452866
3.061179847
3.020074637

3.00658699
3.002161356
3.000709195
3.000232705
3.000076356
3.000025054

3.00000001
3.000000003
3.000000001

3

15
11.77777778
9.420781893
7.696683051
6.435536676
5.513031458
4.838235974
4.344635573
3.983576021
3.719467645
3.526277259
3.384962069
3.281592625

3.031553288

3.023080646

3.016883065
3.01234965

3.0002:89798
3.0000:12709
3.0000:00557
3.000(;00024

3.000000001
3
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Figure 4.2: Rate of convergence of various iterations

B MP iteration

M RK iteration

AR-iteration

B 53hu-Thakur iteration

B Thakur iteration

Definition 5.1. Let B, be a nonempty p-bounded, p-closed and p-convex subset of a modular function
space L, and T': B, — B, be an operator. Assume that u; € B, and u,41 = f(T,uy) defines an iteration
process which generate a sequence {u,}22; C D. Suppose that {u,}7>; converges to u* € F,(T) # ¢ and
{vn}52, is any bounded sequence in B,. Put €, = p(vn41 — f(T,vp)).

1. The iterative process {u,}5°; defined by up41 = f(T',uy) is said to be T-stable on B,, if lim,, o €, = 0
if and only if lim,, o v, = u*.
2. The iterative process {un}pe; defined by u,41 = f(T,u,) is said to be almost T-stable on B, if

Yoo | €n < oo implies that limy, e vy = u*.

3. The iteration process {u,}>> defined by up4+1 = f(T, uy) is said to be summably almost T-stable on
B, if and only if Y>> | €, < oo implies that Y7, p(v, — u*) < 0.

Remark 5.2. Any fixed point iteration {uy} which is almost T-stable is also summably almost T-stable, since
o0
Zp(yn—x) < oo = lim y, =x.
el n—oo

But converse need not be true (see Example 4.1 [15]).
Now, we show that MP iteration process (|I.11]) is summably almost T-stable.

Theorem 5.3. Let p € R satisfy (UUC1) and As-condition. Let B, # ¢ be a p-closed, p-bounded and
convex subset of L,. LetT : B, — B, be p-nonezpansive mapping. Let {u,} C B, be defined by the iterative
process (1.11). Then, {uy,} is summably almost T-stable.

Proof. Let €y, = p(un+1— f(T,uy)). Suppose p* € F,(T) and {u, } is any arbitrary sequence. Using definition
of p-nonexpansive mapping and convexity of p, we have the following computations
punt1 = p*) = pluntr — f(T,un) + f(T',un) = p*)
< plunt1 — f(T,un)) + p(f (T, un) — p¥)
en + p(T?v, — p*)
en + p(Tvn —p*)
én + p(vn —p7)

ININ A
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pP(Ung1 —p*) < €n + p(vn —p*).

T((1 — an)Tsp + anTw,) — p¥)
(1 = an)Tsp + anTw, —p*)
1- an)P(TSn - p*) + anp(Twn - p*)

T((1 = Bn)sn + BnTsn) — p*)
(1= Bn)sn + BuT'sn —p*)

— Bn)p(sn —p*) + Bu(Tsn — p*)
Sn—p")

=
g
3
|
]
*
~—
I
= =

VARRVANNVAN
=

—~
—_

(wy, —p*) < p(sn —p*).

B

(T((1 = ) un + T uy) — p¥)
(1 = y)un + Yo Tupn — p*)
1 — ) p(un — p*) + Y (Tup — p*)

IAN A IA

=
<
3
|
i~}
*
~—

p(sn —p") < p(un — p°).
Using (5.2), (5.3) and (5.4) in (5.1)), we obtain
p(unt1 —p") < en + plun — pF).

By lemma 1 [4], the iteration process ([1.11)) is summably almost T-stable.

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

O

Example 5.4. Let the real number system R be space modulared as p(u) = |u|. It follows that p satisfies
(UUCI) and Az-conditions. Let B, = {u € L,:0<wu <oo}. DefineT : B, — B, asT = 4. Clearly, T is
a p-nonezpansive mapping with F,(T) # ¢ and B, is a nonempty p-compact, p-bounded and convex subset
of L, =R. Now, we show that the iteration process (1.11)) is summably almost T-stable. Let {v,} = {%} be

any bounded sequence. For convenience, taking oy, = B = Yn = % Therefore,

5) 25 125
Wnp = gun, VUp = 275611”, ’U/n+1 = @Un

€n = P(Un+1 - f(Tv un))

B 1 125 1
P\ nF1 8102 n

B 1 125 1
n+1 8192 n
1 125 1 1

T — <
n+1l 8192 n n
Hence, lim,,_,o0 €, = 0. Therefore, the iterative process (1.11)) is summably almost T-stable.
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6. Conclusion

We have proved some fixed point convergence results for p-nonexpansive mappings using MP iteration

in modular function spaces and provided two numerical examples to empathize the validity of our results.

With the help of some graphical representations (see figures and , we can conclude that MP iterative

process converges faster than that of some well known iterative processes. Summably almost T-stability of

MP iteration is also discussed with a supporting example. We may suggest to the readers that one can prove

some fixed point convergence results for generalized nonexpansive mappings using MP iteration.
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