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Abstract

This research article introduces a new iterative process called MP iteration and proves some convergence

and approximation results for the �xed points of ρ-nonexpansive mappings in modular function spaces. To

demonstrate that MP iterative process converges faster than some well-known existing iterative processes

for ρ-nonexpansive mappings, we construct some numerical examples. In the end, the concept of summably

almost T-stability for MP iterative process is discussed.
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1. Introduction

In recent years, the convergence results for the �xed points of mappings by using the iterative process have

been introduced and studied by many researchers. The authors always focus on three aspects as follows: the
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weak property of the constructed map, the speed of the iteration and the spatial constraints. When someone

establishes the existence of �xed point for some mapping then it is not easy to compute the value of that

�xed point and due to this reason we take help of an iterative process for �nding the value of �xed point.

In the past decades, a number of iterative processes have been developed to approximate the �xed points of

nonexpansive mappings.

Now, we give a brief introduction of the existing iterative processes. Throughout this section, let T :

E → E be any mapping where E is a nonempty subset of a Banach space X and {αn}, {βn} and {γn} are

the real sequences in (0, 1) satisfying some appropriate conditions where n ≥ 0.

As the Picard iterative process fails to converge to a �xed point of nonexpansive mapping, in 1953, Mann

[11] introduced the following iterative process to approximate the �xed points of nonexpansive mappings:
u1 ∈ E

un+1 = (1− αn)un + αnTun.

(1.1)

Later, it was discovered that Mann iterative process fails to converge a �xed point of pseudo-contractive

mapping. To overcome this drawback of Mann iterative procedure, in 1974, Ishikawa [7] introduced the

following two step iterative process to approximate the �xed points of pseudo-contractive mappings:
u1 ∈ E

un+1 = (1− αn)un + αnTvn

vn = (1− βn)un + βnTun.

(1.2)

In 2000, Noor [14] introduced the following three step iterative process for general variational inequalities:

u1 ∈ E

un+1 = (1− αn)un + αnTvn

vn = (1− βn)un + βnTwn

wn = (1− γn)un + γnTun.

(1.3)

It is well known that the Picard iterative process converges faster than the Mann iterative process for

contraction mappings (see Proposition 3.1 [2]). In 2007, Agarwal et al. [2] introduced the following two step

iterative process to approximate the �xed points of nearly asymptotically nonexpansive mappings:
u1 ∈ E

un+1 = (1− αn)Tun + αnTvn

vn = (1− βn)un + βnTun.

(1.4)
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They claimed that the iterative process de�ned by them converges to a �xed point of contraction mapping

with same rate of convergence as the Picard iterative process but converges faster than Mann iterative

process.

In 2014, Abbas and Nazir [1] introduced the following three step iterative process to approximate the

�xed points of nonexpansive mappings in uniformly convex Banach spaces:

u1 ∈ E

un+1 = (1− αn)Tvn + αnTwn

vn = (1− βn)Tun + βnTwn

wn = (1− γn)un + γnTun.

(1.5)

They also showed that this iterative process converges faster than all of Picard, Mann and Agarwal iterative

processes to a �xed point of contraction mapping.

In 2014, Thakur et al. [25] introduced the following iterative process, we call it Thakur iteration, to

approximate the �xed points of nonexpansive mappings:

u1 ∈ E

un+1 = (1− αn)Tun + αnTvn

vn = (1− βn)wn + βnTwn

wn = (1− γn)un + γnTun.

(1.6)

They also claimed that this iterative process converges faster than all of Picard, Mann, Ishikawa, Noor,

Agarwal and Abbas and Nazir iterative processes to a �xed point of contraction mapping in sense of Berinde

[3].

In 2016, Sahu et al. [21] and Thakur et al. [24] introduced the following iterative process to approximate

the �xed points of nonexpansive mappings in uniformly convex Banach spaces:

u1 ∈ E

un+1 = (1− αn)Twn + αnTvn

vn = (1− βn)wn + βnTwn

wn = (1− γn)un + γnTun.

(1.7)

The authors [21, 24] proved that this iterative process converges faster than all known iterative processes to

a �xed point of contraction mapping.

In 2019, Panwar and Reena [19] proved some approximation results for the �xed points of multivalued

ρ-quasi-nonexpansive mappings for a newly de�ned hybrid iterative process in modular function spaces as
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follows: 

f1 ∈ E

fn+1 ∈ P Tρ (hn)

en = γnun + (1− γn)fn

gn = βnvn + (1− βn)fn

hn = αnwn + (1− αn)fn

(1.8)

where the sequences un ∈ P Tρ (fn), vn ∈ P Tρ (en), wn ∈ P Tρ (gn).

In 2019, Ritika et al. [22] introduced RK-iteration for generalized nonexpansive mappings in CAT(0)

spaces and claimed that the iterative process introduced by them converges faster than some well known

iterative processes. 

x0 ∈ E

xn+1 ∈ Tvn

vn = T ((1− αn)yn + αnTyn)

yn = T ((1− βn)zn + βnTzn)

zn = T ((1− γn)xn + γnTxn).

(1.9)

Pant et al. established some �xed point results for generalized nonexpansive type mappings in Banach spaces

(see [16, 17, 18]).

In [20], Panwar and Reena introduced a new iterative scheme named as AR-iteration for nonexpansive

mappings and by providing numerical examples proved that the AR-iteration converges faster than that of

Sahu-Thakur iteration and Thakur iteration in modular function spaces.

f1 ∈ E

fn+1 = Tgn

gn = T ((1− αn)fn + αnThn)

hn = T ((1− βn)fn + βnTen)

en = (1− γn)fn + γnTfn.

(1.10)

Motivated by the work done in the area of �xed point theory, we de�ne a new iterative process named as

MP iteration to approximate the �xed points of ρ-nonexpansive mappings in modular function spaces. Also,
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we establish that MP iterative process converges faster than the existing well-known iterative process.

u1 ∈ Bρ

un+1 = T 2vn

vn = T ((1− αn)Tsn + αnTwn)

wn = T ((1− βn)sn + βnTsn)

sn = T ((1− γn)un + γnTun).

(1.11)

where the sequences {αn}, {βn} and {γn} in (0,1) are bounded away from both 0 and 1 and Bρ is a nonempty

ρ-bounded, ρ-closed, ρ-convex subset of modular function spaces.

2. Preliminaries

In this section, we recall some basic de�nitions and needed results to prove our results.

Let Ω be a nonempty set and
∑

be a nontrivial σ-algebra of subsets of Ω. Let P be a nontrivial δ-ring of

subsets of Ω which means that P is closed under countable intersection, �nite union and di�erences. Suppose

that E ∩A ∈ P for any E ∈ P and A ∈
∑
. Assume that there exists an increasing sequence of sets Kn ∈ P

such that Ω = ∪Kn. By ε we denote the linear space of all simple functions with support from P. AlsoM∞

denotes the space of all extended measurable functions, i.e., all functions f : Ω → [−∞,∞] such that there

exists a sequence

{gn} ⊂ ε, |gn| ≤ |f | and gn(w)→ f(w) for all w ∈ Ω.

We de�ne

M = {f ∈M∞ : |f(w)| <∞ ρ− a.e.}.

The de�nition of modular was given by Musielak and Orlicz in [13].

De�nition 2.1. [13] Let X (over �eld R or C) be a vector space. A functional ρ : X → [0,∞] is called a
modular if for arbitrary elements f, g ∈ X, the following hold:

(i) ρ(f) = 0⇐⇒ f = 0

(ii) ρ(αf) = ρ(f) whenever |α| = 1

(iii) ρ(αf + βg) ≤ ρ(f) + ρ(g) whenever α, β ≥ 0, α+ β = 1.

If we replace (iii) by

(iv) ρ(αf + βg) ≤ αρ(f) + βρ(g) whenever α, β ≥ 0, α+ β = 1.

Then modular ρ is called convex.

De�nition 2.2. [13] If ρ is convex modular in X, then the set de�ned by

Lρ = {f ∈M : ρ(λf)→ 0 as λ→ 0}

is called modular function space.
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De�nition 2.3. [9] Let ρ : M∞ → [0,∞] be a nontrivial, convex and even function. Then ρ is a regular
convex function pseudo modular if

(1.) ρ(0) = 0;

(2.) ρ is monotone, i.e., |f(w)| ≤ |g(w)| for any w ∈ Ω implies ρ(f) ≤ ρ(g), where f, g ∈M∞;
(3.) ρ is orthogonally sub-additive, i.e., ρ(fχA∪B) ≤ ρ(fχA)+ρ(fχB) for any A,B ∈

∑
such that A∩B 6= φ,

f ∈M∞;
(4.) ρ has Fatou property, i.e., |fn(w)| ↑ |f(w)| for w ∈ Ω implies ρ(fn) ↑ ρ(f), where f ∈M∞;
(5.) ρ is order continuous in ε, i.e., gn ∈ ε and |gn(w)| ↓ 0, then ρ(gn) ↓ 0.

Let ρ be a regular convex pseudo modular then ρ is regular convex function modular if ρ(f) = 0 implies
f = 0 a.e. The class of all nonzero regular convex function modular on Ω is denoted by R.

In 1988, Kozlowski introduced the following condition in modular function spaces:

De�nition 2.4. [10] ρ ∈ R is said to satisfy ∆2-condition if supn≥1 ρ(2un, Dk) → 0 as k → ∞ whenever
{Dk} decreases to φ and supn≥1 ρ(un, Dk)→ 0 as k →∞.

In 2012, the following lemma was proved by Dehaish and Kozlowski [5] to establish that generalized
Mann and Ishikawa iterative processes converge almost everywhere to a �xed point of asymptotic pointwise
nonexpansive mapping T in modular function spaces.

Lemma 2.5. [5] Let ρ ∈ R satisfying (UUC1) and {tn} ⊂ (0, 1) be bounded away from both 0 and 1. If there
exists R > 0 such that

limn→∞ sup ρ(un) ≤ R, limn→∞ sup ρ(vn) ≤ R and
limn→∞ ρ(tnun + (1− tn)vn) = R, then

limn→∞ ρ(un − vn) = 0.

The sequence {tn} ⊂ (0, 1) is said to be bounded away from 0 if there exists a > 0 such that tn ≥ a for all
n ∈ N. Similarly the sequence {tn} ⊂ (0, 1) is said to be bounded away from 1 if there exists b < 1 such that
tn ≤ b for all n ∈ N.

In 1974, Senter and Dotson [23] gave a condition for nonexpansive mapping T that assures convergence
of certain iterates to �xed point T as follows:

De�nition 2.6. [23] Let D be a subset of Lρ. Then T : D → D is said to satisfy condition (I) if there
exists a nondecreasing function ψ : [0,∞)→ [0,∞) with ψ(0) = 0, ψ(r) > 0 for all r ∈ (0,∞) such that

ρ(f − Tf) ≥ ψ(dρ(f, Fρ(T ))) for all f ∈ D.
The following uniform convexity type properties of the function modular ρ is de�ned by Khamsi and

Kozlowski [8] in 2011:

De�nition 2.7. [8] Let ρ be a nonzero regular convex function modular de�ned on Ω.

(i) Let r > 0, ε > 0. De�ne D1(r, ε) = {(f, g) : f, g ∈ Lρ, ρ(f) ≤ r, ρ(g) ≤ r, ρ(f − g) ≥ εr}.
Let δ1(r, ε) = inf

{
1− 1

rρ
(
f+g
2

)
: (f, g) ∈ D1(r, ε)

}
if D1(r, ε) 6= φ and δ1(r, ε) = 1 if D1(r, ε) = φ. One

says that ρ satis�es (UC1) if for every r > 0, ε > 0, δ1(r, ε) > 0.
Observe that for every D1(r, ε) 6= φ, ε > 0 small enough.

(ii) One says that ρ satis�es (UUC1) if for every s ≥ 0, ε > 0, there exists η1(r, ε) > 0 depending only on s
and ε such that δ1(r, ε) > η1(r, ε) > 0 for any r > s.

The following de�nition was given by Musielak in [12]:

De�nition 2.8. [12] Let ρ ∈ R.

(a) A sequence {fn} is ρ-convergent to f, that is, fn → f if and only if ρ(fn − f)→ 0 as n→∞.

(b) A sequence {fn} is ρ-Cauchy sequence if ρ(fn − fm)→ 0 as m,n→∞.
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(c) A set B ⊂ Lρ is called ρ-closed if for any sequence {fn} ⊂ B, the convergence fn → f as n → ∞
implies that f belongs to B.

(d) A set B ⊂ Lρ is called ρ-bounded if ρ-diameter is �nite; the ρ-diameter of B is de�ned as
δρ(B) = sup{ρ(f − g) : f, g ∈ B}.

(e) A set B ⊂ Lρ is called ρ-compact if for any sequence {fn} ⊂ B, there exists a subsequence {fnk
} of

{fn} and f ∈ B such that ρ(fnk
− f)→ 0 as k →∞.

Proposition 2.9. [9] Let ρ ∈ R.

(i) Lρ is ρ-complete.

(ii) ρ-balls Bρ(f, r) = {g ∈ Lρ : ρ(f − g) ≤ r} are ρ-closed.
(iii) If ρ(λfn) → 0 for λ > 0 then there exists a subsequence {gn} of {fn} such that gn → 0 ρ − a.e. as

n→∞.

(iv) If {fn} is ρ-a.e. convergent to f then ρ(f) ≤ lim infn→∞ ρ(fn). (This property is equivalent to Fatou
property.)

(v) If L0
ρ = {f ∈ Lρ : ρ(f, .) is order continuous} and Sρ = {f ∈ Lρ : λf ∈ L0

ρ for any λ > 0}, then
Sρ ⊆ L0

ρ ⊆ Lρ.

3. Convergence and Approximation Results

In the following section, some convergence and approximation results are proved for the �xed point of

ρ-nonexpansive mappings using MP iteration (1.11).

Lemma 3.1. If Bρ 6= φ is a ρ-bounded, ρ-closed, ρ-convex subset of Lρ and T : Bρ → Bρ is a ρ-nonexpansive
mapping with Fρ(T ) 6= φ. For arbitrarily chosen u1 ∈ Bρ, suppose {un} is the sequence, generated by MP
iterative process (1.11), then limn→∞ ρ(un − p∗) exists for any p∗ ∈ Fρ(T ).

Proof. Let p∗ ∈ Fρ(T ), where T is a ρ-nonexpansive mapping, then using Proposition 2.9 and convexity of
ρ, we have

ρ(un+1 − p∗) = ρ(T 2vn − p∗) ≤ ρ(Tvn − p∗) ≤ ρ(vn − p∗). (3.1)

ρ(vn − p∗) = ρ(T ((1− αn)Tsn + αnTwn)− p∗)
≤ ρ((1− αn)Tsn + αnTwn − p∗)
≤ (1− αn)ρ(Tsn − p∗) + αnρ(Twn − p∗)
≤ (1− αn)ρ(sn − p∗) + αnρ(wn − p∗).

ρ(vn − p∗) ≤ (1− αn)ρ(sn − p∗) + αnρ(wn − p∗). (3.2)

ρ(wn − p∗) = ρ(T ((1− βn)sn + βnTsn)− p∗)
≤ ρ((1− βn)sn + βnTsn − p∗)
≤ (1− βn)ρ(sn − p∗) + βnρ(Tsn − p∗) ≤ ρ(sn − p∗).

ρ(wn − p∗) ≤ ρ(sn − p∗). (3.3)

ρ(sn − p∗) = ρ(T ((1− γn)un + γnTun)− p∗)
≤ ρ((1− γn)un + γnTun − p∗)
≤ (1− γn)ρ(un − p∗) + γnρ(Tun − p∗)
≤ (1− γn)ρ(un − p∗) + γnρ(un − p∗).
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ρ(sn − p∗) ≤ ρ(un − p∗). (3.4)

Using (3.3) and (3.4) in (3.2), we get ρ(vn − p∗) ≤ ρ(un − p∗). Then from (3.1), we have

ρ(un+1 − p∗) ≤ ρ(un − p∗). (3.5)

From (3.5), we conclude that {ρ(un − p∗)} is a bounded and nonincreasing sequence ∀ p∗ ∈ Fρ(T ) which
implies that limn→∞ ρ(un − p∗) exists.

Theorem 3.2. Let ρ ∈ R satisfy (UUC1), ∆2-conditions and Bρ be a nonempty ρ-closed, ρ-convex subset
of Lρ and T : Bρ → Bρ be a ρ-nonexpansive mapping with Fρ(T ) 6= φ. Suppose {un} is the sequence in Bρ
de�ned by MP iterative process (1.11). Then limn→∞ ρ(un − Tun) = 0.

Proof. Let p∗ ∈ Fρ(T ). Using Lemma 3.1, limn→∞ ρ(un − p∗) exists and let

lim
n→∞

ρ(un − p∗) = K. (3.6)

From (3.2), (3.3) and (3.4), we obtain

lim
n→∞

sup ρ(vn − p∗) ≤ lim
n→∞

sup ρ(un − p∗) = K. (3.7)

lim
n→∞

sup ρ(wn − p∗) ≤ lim
n→∞

sup ρ(un − p∗) = K. (3.8)

lim
n→∞

sup ρ(sn − p∗) ≤ lim
n→∞

sup ρ(un − p∗) = K. (3.9)

Also, ρ(Tun−p∗) ≤ ρ(un−p∗), ρ(Twn−p∗) ≤ ρ(wn−p∗), ρ(Tvn−p∗) ≤ ρ(vn−p∗) and ρ(Tsn−p∗) ≤ ρ(sn−p∗),
therefore

lim
n→∞

sup ρ(Tvn − p∗) ≤ K. (3.10)

lim
n→∞

sup ρ(Twn − p∗) ≤ K. (3.11)

lim
n→∞

sup ρ(Tsn − p∗) ≤ K. (3.12)

Using (3.1), (3.2), (3.3) and (3.4), ρ(un+1 − p∗) ≤ ρ(vn − p∗) ≤ ρ(wn − p∗) ≤ ρ(sn − p∗) ≤ ρ(un − p∗) which
implies ρ(un+1 − p∗) ≤ ρ(sn − p∗) ≤ ρ(un − p∗) and hence

lim
n→∞

ρ(sn − p∗) = K. (3.13)

ρ(sn − p∗) = ρ(T ((1− γn)un + γnTun)− p∗)
≤ ρ((1− γn)un + γnTun − p∗)

ρ(sn − p∗) ≤ ρ((1− γn)(un − p∗) + γn(Tun − p∗)) ≤ ρ(un − p∗).

Applying limit and using (3.6) and (3.13), we get

lim
n→∞

ρ((1− γn)(un − p∗) + γn(Tun − p∗)) = K. (3.14)

Equations (3.6), (3.14) and Lemma 2.5 establish that
limn→∞ ρ(un − Tun) = 0.

Theorem 3.3. Let ρ ∈ R satisfy (UUC1), ∆2-conditions. If Bρ 6= φ is a ρ-compact, ρ-convex subset of Lρ
and T : Bρ → Bρ is ρ-nonexpansive mapping. Suppose that {un} is a sequence in Bρ de�ned by MP iterative
process (1.11), then {un} is ρ-convergent to a �xed point of T .
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Proof. Due to ρ-compactness Bρ, there exists a subsequence {unk
} of {un} such that limk→∞ ρ(unk

− w) = 0
for w ∈ Bρ. Using continuity ρ-nonexpansive mapping and convexity of ρ, we have

ρ

(
w − Tw

3

)
= ρ

(
w − unk

3
+
unk
− Tunk

3
+
Tunk

− Tw
3

)
≤ 1

3
ρ(w − unk

) +
1

3
ρ(unk

− Tunk
) +

1

3
ρ(Tunk

− Tw)

≤ ρ(w − unk
) + ρ(unk

− Tunk
) + ρ(Tunk

− Tw).

Using Theorem 3.2 and continuity of T , ρ
(
w−Tw

3

)
→ 0 as k → ∞, that is, ρ

(
w−Tw

3

)
= 0 which shows that

w is a �xed point of T . This proves that {un} ρ-converges to a �xed point of T .

Theorem 3.4. Let ρ ∈ R satisfy (UUC1), ∆2-condition and Bρ be a nonempty ρ-compact, ρ-convex subset
of Lρ and T : Bρ → Bρ be a ρ-nonexpansive mapping satisfying condition (I). If {un} is a sequence in Bρ
de�ned by MP iterative process (1.11), then {un} is ρ-convergent to a �xed point of T .

Proof. Using Lemma 3.1, limn→∞ ρ(un − p∗) exists ∀ p∗ ∈ Fρ(T ).
If limn→∞ ρ(un − p∗) = 0, then nothing to do. Assume that limn→∞ ρ(un − p∗) = K > 0. By the same
lemma,

ρ(un+1 − p∗) ≤ ρ(un − p∗) for all p∗ ∈ Fρ(T ).
=⇒ dρ(un+1, Fρ(T )) ≤ dρ(un, Fρ(T ))

so, limn→∞ dρ(un, Fρ(T )) exists. By Theorem 3.2 and condition (I),

0 = lim
n→∞

dρ(un, Tun) ≥ lim
n→∞

ψ(dρ(un, Fρ(T ))).

Since φ is increasing function and φ(0) = 0, therefore, limn→∞ dρ(un, Fρ(T )) = 0. We now prove that {un}
is ρ-Cauchy sequence in Bρ.
Let ε > 0 be arbitrary. Then there exists an integer m0 ∈ N such that dρ(un, Fρ(T )) < ε

2 , for all n ≥ m0.
Particularly, inf{ρ(fm0 − p∗) : p∗ ∈ Fρ(T )} < ε

2 . Thus, there exists a p0 ∈ Fρ(T ) such that ρ(um0 − p0) < ε.
Now, for all m,n ≥ m0, we have

ρ

(
um − un

2

)
≤ 1

2
ρ(um − p0) +

1

2
ρ(un − p0)

≤ 1

2
ρ(um0 − p0) +

1

2
ρ(um0 − p0) ≤ ε.

Since ∆2-condition is satis�ed by ρ, therefore by Proposition 2.9, {un} is a ρ-Cauchy sequence in Bρ. Due
to completeness of Lρ and ρ-closedness of Bρ, then there must exists an u ∈ Bρ such that ρ(un − u) →
0 as n→∞. Hence, {un} ρ-converges to a �xed point of T .

4. Numerical Examples

In this section, we provide numerical examples to establish the fact that the rate of convergence of MP

iteration (1.11) is faster than that of Sahu-Thakur iteration (1.7), Thakur iteration (1.6), RK iteration (1.9)

and AR iteration (1.10). To prove our claim, we consider the following examples:

Example 4.1. Let the real number system R be the space modulared as ρ(u) = |u|. It follows that ρ satis�es
(UUC1) and ∆2-condition. De�ne Bρ = {u ∈ Lρ : 0 ≤ u < ∞} and a mapping T : Bρ → Bρ as T = u+2

2 .
Clearly, Bρ is a nonempty ρ-compact, ρ-bounded and ρ-convex subset of Lρ = R and T is ρ-nonexpansive
mapping with Fρ(T ) 6= φ. Let ψ : [0,∞)→ [0,∞) be a nondecreasing continuous function by ψ(r) = r

4 .
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Now, we show that T satis�es condition (I), that is, ρ(u− Tu) ≥ ψ(dρ(u, Fρ(T ))), ∀ u ∈ Bρ.
If u ∈ (0, 2) then

ρ(u− Tu) = ρ

(
u− u+ 2

2

)
=

∣∣∣∣u− u+ 2

2

∣∣∣∣ =

∣∣∣∣u− 2

2

∣∣∣∣ .
ψ(dρ(u, Fρ(T ))) = ψ(dρ(u, {2}))

= ψ(|u− 2|) =

∣∣∣∣u− 2

4

∣∣∣∣ .
If u ∈ Fρ(T ) = {2} then clearly ρ(u− Tu) = 0 = ψ(dρ(u, Fρ(T ))). When u ∈ (2,∞) then

ρ(u− Tu) = ρ

(
u− u+ 2

2

)
=

∣∣∣∣u− u+ 2

2

∣∣∣∣ =
u− 2

2
.

ψ(dρ(u, Fρ(T ))) = ψ(dρ(u, {2}))

= ψ(|u− 2|) =
u− 2

4
.

From above calculations, for all u ∈ Bρ, we have ρ(u − Tu) ≥ ψ(dρ(u, Fρ(T ))). We now prove that T is a
ρ-nonexpansive mapping.

ρ(Tu− Tv) = |Tu− Tv| =
∣∣∣∣u+ 2

2
− v + 2

2

∣∣∣∣
=

∣∣∣∣u− v2

∣∣∣∣ ≤ ρ(u− v).

Therefore, T is ρ-nonexpansive mapping. In last, we show that {un} is ρ-convergent to the �xed point of T
by constructing a table. In table 1, the rate of convergence of MP iteration (1.11) with RK iteration (1.9),
AR-iteration (1.10), Sahu-Thakur iteration (1.7) and Thakur iteration (1.6) is compared and �gure 4.1 shows
the graphical representation of comparison of rate of convergence of iterative processes (1.6), (1.7), (1.9) and
(1.11).

Example 4.2. Let the real number system R be the space modulared as ρ(u) = |u|. It follows that ρ is
satisfying (UUC1) and ∆2-conditions. De�ne Bρ = {u ∈ Lρ : 0 ≤ u < ∞} and T : Bρ → Bρ as T = 2u+3

3 .
Clearly, Bρ is a nonempty ρ-compact, ρ-bounded, ρ-convex subset of Lρ = R and T is a ρ-nonexpansive
mapping with Fρ(T ) 6= φ. Let ψ : [0,∞)→ [0,∞) be a nondecreasing continuous function by ψ(r) = r

4 .
Now, we show that T satis�es condition (I), that is, ρ(u − Tu) ≥ ψ(dρ(u, Fρ(T ))), ∀ u ∈ Bρ. If u ∈ (0, 3)
then

ρ(u− Tu) = ρ

(
u− 2u+ 3

3

)
=

∣∣∣∣u− 2u+ 3

3

∣∣∣∣ =

∣∣∣∣u− 3

3

∣∣∣∣ .
ψ(dρ(u, Fρ(T ))) = ψ(dρ(u, {3}))

= ψ(|u− 3|) =

∣∣∣∣u− 3

4

∣∣∣∣ .



A. Panwar, R. Morwal, S. Kumar, Adv. Theory Nonlinear Anal. Appl. 6 (2022), 229�245. 239

Table 1: Comparison of rate of convergence various iterations

n MP iteration RK iteration AR-iteration Sahu-Thakur iteration Thakur iteration

1 6 6 6 6 6
2 2.064453125 2.10546875 2.5859375 3.3125 3.5625
3 2.001038551 2.002780914 2.085830688 2.430664063 2.610351563
4 2.000016734 2.000073325 2.012572855 2.141311646 2.238418579
5 2.00000027 2.000001933 2.001841727 2.046367884 2.093132257
6 2.000000004 2.000000051 2.000269784 2.015214462 2.036379788
7 2 2.000000001 2.000039519 2.004992245 2.014210855
8 2 2 2.000005789 2.00163808 2.005551115
9 2 2 2.000000848 2.000537495 2.002168404
10 2 2 2.000000124 2.000176366 2.000847033
11 2 2 2.000000018 2.00005787 2.000330872
12 2 2 2.000000003 2.000018989 2.000129247
13 2 2 2 2.000006231 2.000050487
14 2 2 2 2.000002044 2.000019722
15 2 2 2 2.000000671 2.000007704
16 2 2 2 2.00000022 2.000003009
17 2 2 2 2.000000072 2.000001175
18 2 2 2 2.000000024 2.000000459
19 2 2 2 2.000000008 2.000000179
20 2 2 2 2.000000003 2.00000007
21 2 2 2 2.000000001 2.000000027
22 2 2 2 2 2.000000011
23 2 2 2 2 2.000000004
24 2 2 2 2 2.000000002
25 2 2 2 2 2.000000001
26 2 2 2 2 2
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Figure 4.1: Rate of convergence of various iterations

If u ∈ Fρ(T ) = {3} then clearly ρ(u− Tu) = 0 = ψ(dρ(u, Fρ(T ))).
When u ∈ (3,∞) then

ρ(u− Tu) = ρ

(
u− 2u+ 3

3

)
=

∣∣∣∣u− 2u+ 3

3

∣∣∣∣ =
u− 3

3
.

ψ(dρ(u, Fρ(T ))) = ψ(dρ(u, {3}))

= ψ(|u− 3|) =
u− 3

3
.

From above calculations, ρ(u − Tu) ≥ ψ(dρ(u, Fρ(T ))) for all u ∈ Bρ. We now prove that T is a ρ-
nonexpansive mapping.

ρ(Tu− Tv) = |Tu− Tv| =
∣∣∣∣2u+ 3

3
− 2v + 3

3

∣∣∣∣ =

∣∣∣∣2(u− v)

3

∣∣∣∣ .
ρ(u− v) = |u− v| =⇒ ρ(Tu− Tv) ≤ |u− v|.

Therefore, T is ρ-nonexpansive mapping. In the end, we show that {un} is ρ-convergent to the �xed point
of T by constructing a table. In table 2, the rate of convergence of MP iteration (1.11) with RK iteration
(1.9), AR-iteration (1.10), Sahu-Thakur iteration (1.7) and Thakur iteration (1.6) is compared and �gure
4.2 shows the graphical representation of comparison of rate of convergence of iterative processes (1.6), (1.7),
(1.9) and (1.11).

5. Stability Results

In the following of section, �rst we de�ne the concept of T-stability, almost T-stability, summably almost

T-stability of an iterative process in modular function spaces. Then we prove some stability results for our

newly de�ned MP iterative process (1.11). In the end, we construct an example to establish the concept of

summably almost T-stability for MP iterative process.
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Table 2: Comparison of rate of convergence of various iterations

n MP iteration RK iteration AR-iteration Sahu-Thakur iteration Thakur iteration

1 15 15 15 15 15
2 4.024234111 4.371742112 6.588477366 8.277777778 11.77777778
3 3.087421293 3.156806369 4.073097484 4.731770833 9.420781893
4 3.007461656 3.017924825 3.320898836 3.568237305 7.696683051
5 3.000636874 3.00204902 3.095961518 3.186452866 6.435536676
6 3.000054359 3.000234227 3.028696311 3.061179847 5.513031458
7 3.00000464 3.000026775 3.008581339 3.020074637 4.838235974
8 3.000000396 3.000003061 3.002566162 3.00658699 4.344635573
9 3.000000034 3.00000035 3.000767384 3.002161356 3.983576021
10 3.000000003 3.00000004 3.000229478 3.000709195 3.719467645
11 3 3.000000005 3.000068623 3.000232705 3.526277259
12 3 3.000000001 3.000020521 3.000076356 3.384962069
13 3 3 3.000006137 3.000025054 3.281592625
...

...
...

...
...

...
20 3 3 3.000000001 3.00000001 3.031553288
21 3 3 3 3.000000003 3.023080646
22 3 3 3 3.000000001 3.016883065
23 3 3 3 3 3.01234965
...

...
...

...
...

...
35 3 3 3 3 3.000289798
...

...
...

...
...

...
45 3 3 3 3 3.000012709
...

...
...

...
...

...
55 3 3 3 3 3.000000557
...

...
...

...
...

...
65 3 3 3 3 3.000000024
...

...
...

...
...

...
77 3 3 3 3 3.000000001
78 3 3 3 3 3
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Figure 4.2: Rate of convergence of various iterations

De�nition 5.1. Let Bρ be a nonempty ρ-bounded, ρ-closed and ρ-convex subset of a modular function
space Lρ and T : Bρ → Bρ be an operator. Assume that u1 ∈ Bρ and un+1 = f(T, un) de�nes an iteration
process which generate a sequence {un}∞n=1 ⊂ D. Suppose that {un}∞n=1 converges to u∗ ∈ Fρ(T ) 6= φ and
{vn}∞n=1 is any bounded sequence in Bρ. Put εn = ρ(vn+1 − f(T, vn)).

1. The iterative process {un}∞n=1 de�ned by un+1 = f(T, un) is said to be T-stable on Bρ if limn→∞ εn = 0
if and only if limn→∞ vn = u∗.

2. The iterative process {un}∞n=1 de�ned by un+1 = f(T, un) is said to be almost T-stable on Bρ if∑∞
n=1 εn <∞ implies that limn→∞ vn = u∗.

3. The iteration process {un}∞n=1 de�ned by un+1 = f(T, un) is said to be summably almost T-stable on
Bρ if and only if

∑∞
n=1 εn <∞ implies that

∑∞
n=1 ρ(vn − u∗) <∞.

Remark 5.2. Any �xed point iteration {un} which is almost T-stable is also summably almost T-stable, since

∞∑
n=1

ρ(yn − x) <∞⇒ lim
n→∞

yn = x.

But converse need not be true (see Example 4.1 [15]).

Now, we show that MP iteration process (1.11) is summably almost T-stable.

Theorem 5.3. Let ρ ∈ R satisfy (UUC1) and ∆2-condition. Let Bρ 6= φ be a ρ-closed, ρ-bounded and
convex subset of Lρ. Let T : Bρ → Bρ be ρ-nonexpansive mapping. Let {un} ⊂ Bρ be de�ned by the iterative
process (1.11). Then, {un} is summably almost T-stable.

Proof. Let εn = ρ(un+1−f(T, un)). Suppose p∗ ∈ Fρ(T ) and {un} is any arbitrary sequence. Using de�nition
of ρ-nonexpansive mapping and convexity of ρ, we have the following computations

ρ(un+1 − p∗) = ρ(un+1 − f(T, un) + f(T, un)− p∗)
≤ ρ(un+1 − f(T, un)) + ρ(f(T, un)− p∗)
≤ εn + ρ(T 2vn − p∗)
≤ εn + ρ(Tvn − p∗)
≤ εn + ρ(vn − p∗)
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ρ(un+1 − p∗) ≤ εn + ρ(vn − p∗). (5.1)

ρ(vn − p∗) = ρ(T ((1− αn)Tsn + αnTwn)− p∗)
≤ ρ((1− αn)Tsn + αnTwn − p∗)
≤ (1− αn)ρ(Tsn − p∗) + αnρ(Twn − p∗)
≤ ρ(sn − p∗) + ρ(wn − p∗)

ρ(vn − p∗) ≤ ρ(sn − p∗) + ρ(wn − p∗). (5.2)

ρ(wn − p∗) = ρ(T ((1− βn)sn + βnTsn)− p∗)
≤ ρ((1− βn)sn + βnTsn − p∗)
≤ (1− βn)ρ(sn − p∗) + βn(Tsn − p∗)
≤ ρ(sn − p∗)

ρ(wn − p∗) ≤ ρ(sn − p∗). (5.3)

ρ(sn − p∗) = ρ(T ((1− γn)un + γnTun)− p∗)
≤ ρ((1− γn)un + γnTun − p∗)
≤ (1− γn)ρ(un − p∗) + γn(Tun − p∗)
≤ ρ(un − p∗)

ρ(sn − p∗) ≤ ρ(un − p∗). (5.4)

Using (5.2), (5.3) and (5.4) in (5.1), we obtain

ρ(un+1 − p∗) ≤ εn + ρ(un − p∗). (5.5)

By lemma 1 [4], the iteration process (1.11) is summably almost T-stable.

Example 5.4. Let the real number system R be space modulared as ρ(u) = |u|. It follows that ρ satis�es
(UUC1) and ∆2-conditions. Let Bρ = {u ∈ Lρ : 0 ≤ u <∞}. De�ne T : Bρ → Bρ as T = u

4 . Clearly, T is
a ρ-nonexpansive mapping with Fρ(T ) 6= φ and Bρ is a nonempty ρ-compact, ρ-bounded and convex subset
of Lρ = R. Now, we show that the iteration process (1.11) is summably almost T-stable. Let {vn} =

{
1
n

}
be

any bounded sequence. For convenience, taking αn = βn = γn = 1
2 . Therefore,

wn =
5

8
un, vn =

25

256
un, un+1 =

125

8192
un.

εn = ρ(un+1 − f(T, un))

= ρ

(
1

n+ 1
− 125

8192
· 1

n

)
=

∣∣∣∣ 1

n+ 1
− 125

8192
· 1

n

∣∣∣∣
=

1

n+ 1
− 125

8192
· 1

n
<

1

n

Hence, limn→∞ εn = 0. Therefore, the iterative process (1.11) is summably almost T-stable.
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6. Conclusion

We have proved some �xed point convergence results for ρ-nonexpansive mappings using MP iteration

in modular function spaces and provided two numerical examples to empathize the validity of our results.

With the help of some graphical representations (see �gures 4.1 and 4.2), we can conclude that MP iterative

process converges faster than that of some well known iterative processes. Summably almost T-stability of

MP iteration is also discussed with a supporting example. We may suggest to the readers that one can prove

some �xed point convergence results for generalized nonexpansive mappings using MP iteration.
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