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ABSTRACT

Cellular Automata (CA) are simple mathematical systems which provide models for a variety of physical
processes. They show how minute changes and simple rules lead to enormous changes in the behaviour of a
system. They can also be used as computer graphics tools to produce arich reservoir of interesting figures. In
recent years, CA have attracked the attention of many scientists. Today, CA are used in many fields from
ecology to image processing. In this paper, it is shown that a large number of complex and interesting patterns
can be created with relatively ssimple CA rules.
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HUCRESEL OTOMATA VE BILGISAYAR GRAFIKLERI

OZET

Hiicresel Otomata (CA) cesitli fiziksel islemler icin model temin eden basit matematik sistemleridir. Onemsiz
veya kicik degisikliklerin ve basit kuralarin sistemlerin davraniglarinda nasil ¢ok biyik degisikliklere
yolagtigini gosterirler. ilging sekillerin zengin bir kaynagi olarak bilgisayar grafikleri araci olarak da
kullanilmaktadirlar. Son yillarda CA birgok bilim adaminin dikkatini ¢cekmistir. Gunimiizde CA ekolojiden
gorintu islemeye kadar birgok alanda kullanilir. Bu makalede oldukca basit CA kurallari ile gok sayida karmagik
ve harika modelin yaratilabilecegi gosterilmektedir.

Anahtar Kelimeler : Hiicresel otomata, Bilgisayar grafikleri
with a finite number of states which evolve in

discrete time steps, that is CA are discrete dynamical
systems (Gutowitz, 1995).

1. INTRODUCTION

A dynamic system is a process which evolves with
time. Some dynamic systems exhibit irregular
behaviour. Minute changes in inputs of such systems
may result in enormous differences in the outputs.
The term ‘chaos’ is used to describe this kind of
unstable behaviour. Cellular Automata (CA) are
useful to demonstrate the chaotic behaviour of
dynamic systems.

CA have roots back in science. Pascal’s triangle is
considered to be the first CA. CA’s recent
development is related to the invention of computing
machines. Konrad Zone, Stanishlaw Ulam, John
Von Neumann and Stephan Wolfram are the first
scientists to handle CA with today’s view
(Peitgen et dl., 1992).

CA are great models to analyse many natura

phenomena which exist in many fields. For example,
the interaction among ants to form a colony or the
interaction of water moleculesto form a fluid can
be modelled with CA. Most importantly, CA are
suitable to define natural processes in computational
terms, because, they consist of a finite grid of cells
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Today, CA have become a very important modelling
and simulation tool in science and technology from
physics, chemistry and biology, to computational
fluid dynamics in airplane and ship design,
philosophy and society. Because of ther
discreteness property, CA are suitable to design
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parallel agorithms. Their parallel evolution provides
performance improvements in simulations. For
example, a traffic simulation tekes only a few
minutes with the use of CA models. On the other
hand, simulations that use classical methods based
on counting the number of cars may take many days
(Wagner, 1995).

Mathematical properties of CA are popular research
subjects among mathematicians. CA exhibit traits of
self organisation, periodic stability and self
replication. These features have applications in
computer graphics. Simple rules which provide the
evolution of CA result in complex and beautiful
pictures (Peitgen and Saupe, 1989).

This paper is related to applications of CA in
computer graphics. In Section 2, we surveyed the
CA systems. Section 3 is on the applications of CA
in computer graphics. The implementation is given
in Section 4. Section 5 is the conclusion.

2. BACKGROUND
2. 1. Cellular Automata

A cédlular automaton (CAn) is an array of cells
which interact with each other. A CAn is defined by
its state, a set of rules, its neighbourhood and an
initial configuration. The state of a cell can be a
number or a property. For instance, if each cell of a
CAnN represents a part of a street, the state may
represent the number of cars at that location. Rules
define how cells interact with each other to change
their states. Neighbourhood is a group of cells in
interaction. Initial configuration of a CAn is the
initial state of its cells (Green, 1993).

CA are deterministic, local and dynamic systems.
A CAn is deterministic, because given the initial
configuration and a rule, future states can be
uniquely determined. A CAn islocal, The state of a
cell at time t+1 is determined by a rule which is a
function of its own state and the states of its
neighbourhood at timet. A CAnis dynamic because
it evolves in discrete time steps. The rule is applied
to al cells in synchrony. The state of cells are
updated simultaneously and independently from one
another.

A CAn occupies a position in space and it is
organised according to a specific geometry. A CAn
can be 1, 2 or 3 dimensiona. 1 dimensional
configurations are organised as an array of cells. It is
possible to draw the succeeding steps of a 1
dimensional CA one below another and to obtain
layered forms. 2 dimensional CA are arranged as a

grid of cells. 3 dimensiona solid forms are not as
common as 1 or 2 dimensional organisations. Other
arrangements such as honeycomb forms are aso
sometimes used (Peitgen et al., 1992).

Many rules can be chosen from a large set of rules.
For example, for a 2-state 1 dimensional CA with a
neighbourhood template that includes a cell and its
immediate left and right cells, there will be 2° = 8
neighbourhood states (000, 001,....., 111) and a
choice of two states to map to for each of those,
yielding atotal of 223 =28= 256 possible rules. Let
the following rule be chosen from the rule set, as
givenin Table 1.

Table 1. Look up Tablefor CA in Figure 1
Neighbourhood Leadsto
000

001

010

011

100

101

110

(o] (e} 1 ol (e | o o (o)

111

Assuming the future evolutions are drawn one below
the other, the CAn in Figure 1 is obtained.

TimeO: . ......... 1..........
Timel: . ........ 111.........
Time2: .. ...... 1...2........
Time3: .. ... .. 111.2111.......
Timed: . ... .. 1...212...1......
Time5: . . ... 111.2111.2111.....
Time6: . ...21...212...1...1....

Figure 1. CA for therule set givenin Table 1. Here
zero isdenoted by “.”.

For a 2-state 2 dimensional template that includes a
cell and its orthogonal neighbours, there will be 2°
neighbourhood states and a choice of two states to
map to for each of those, leading to 2°° = 2%= 4
billion possible rules. Assume one of the possible
rules has been chosen and presented in the following
look up Table 2. The corresponding CA is given in
Figure 2.

Table 2. Look up Table for the CA Given in

Figure 2.

CSWNE [C |CSWNE |C |[CSWNE|C [CSWNE |C
00000 0 [01000 {1 [10000 [1 [11000 (1
00001 0 Jo1001 |1 10001 |1 [11001 |1
00010 0 [o1010 |1 10010 |1 [11010 |1
00011 0 [o1011 [1 [10011 |1 [11010 |1
00100 1 Jo1100 [0 [10100 |1 [11011 |1
00101 1 |o1101 |0 [10101 |1 (11100 |1
00110 1 Jo1110 [0 [10110 |1 [11101 |1
00111 1 Jo1111 o [10111 |1 [11111 |1
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Figure 2. CA for the look up table given in Table 2.
2. 2. Properties of Cellular Automata

CA systems have the following properties (Green,
1993):

1) Sdf organisation: To simulate the behaviour of
a cellular automaton; an initial configuration is
chosen and CA rules are applied in discrete
steps. If the resulting sequence of steps is
observed, it is seen that iteration leads to an
equilibrium behaviour which is independent of
the choice of the initial configuration. Even if
the system starts with a random arrangement of
states, the rules force patterns to emerge.

2) Lifelike behaviour: Studies show that even the
simplest linear CA behave in ways similar to
complex biological systems. For example, the
fate of any initial configuration of a CAn is
either
a to die out,

b. to become stable or cycle with fixed periods,
c. to grow indefinitely at afixed speed,
d. to grow and contract irregularly.

3) Therma behaviour: In general, models that
force a change of state for few configurations,
tend to freeze into fixed patterns, whereas
models that change the cells states in most
combinations tend to behave in a more active
gaseous way.

4) Parallel evolution: At each time step, the cells
change their states simultaneously; meaning that
CA evolve in a parallel manner. This property
provides performance improvements in
simulations. CA are useful in designing parallel
processing agorithms due to their paralel
evolution property.

Properties of CA can easily be observed in a very
popular CA called the Game of Life, invented in the
1970s by John Horton Conway. Game of Lifeisa?2
dimensional analogue of basic process in living
systems. A cell ina 2 dimensional grid is either dead
(0) or dive (1). The state of each cell changes from
one generation to the next depending on the state of
its immediate neighbours and its own state. The
rules governing these changes are designed to mimic
population change. Life like behaviour of the Game
of Life can easily be seen by examining its
evolution. A cell which is aive at one step will
remain alive in the next step when precisely 2 or 3
cells among its 8 neighbours in a square lattice are
aive. If more than 3 neighbours are alive, the cell
will die from overcrowding. If fewer than 2
neighbours are dlive, the cel will die from
loneliness. A dead cell will come to life when
surrounded by exactly 3 live neighbours. All cells
change their states simultaneously, which means that
Game of Life has a parallel evolution. Starting from
an arbitrary initial pattern, the rules produce patterns
quickly. Thisisthe proof of the self organisation in
Game of Life. Configurations either disappear
entirely or bresk up into isolated patterns that are
either static or cycle between different forms with a
fixed period, being the indicator of the thermal
behaviour of Gameof Life (Green, 1993).

Some interesting patterns are observed throughout
the evolution of Game of Life. Those are namely,
blinkers, starships and guns. Blinkers are a group of
cells which reproduces themselves periodically.
Gliders move in certain directions. Sarships leave a
trace of blinkers. Guns periodically eect gliders
(Peitgen et all., 1992).

3. CELLULAR AUTOMATA AND
COMPUTER GRAPHICS

The increasing prominence of computer graphics has
led to the rapid development of CA systems.
Computer graphics is important for CA studies for
two reasons: First CA ae perfect tools for
simulating natural phenomena and evolution of CA
systems can easily be demonstrated with graphic
tools. For example, reaction diffusion studies has
progressed rapidly with CA simulations using
computer graphics. The second reason is that CA
represent appealing and mathematically interesting
patterns. CA show how simple mathematical rules
lead to a huge number of images which contain
symmetry and stochasticity. Some CA are
reminiscent of carpet designs, ceramic tile mosaics
and brick patterns from Mosques.

Miihendisiik Bilimleri Dergis 1999 5 (1) 927-931
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CA figures contain mathematically interesting
properties. Scaling symmetry is one of those
properties. CA patterns are invariant under changes
of scale. When examined carefully, it is noticed that
the same basic shape is found at another place in
another size. Scaling symmetry is also observed in
many natural phenomena such as condensed matter
physics, diffusion and polymer growth. That is why
CA serve asvisua and physical models for this type
of structures. In addition to scaling symmetry, CA
patterns contain infinite details, traits of self
organization, periodic stability, etc.

With the growing popularity of CA in both computer
graphics and the modeling of physical systems, an
easy-to-use system for CA programming was
needed. Dana Eckart from Radford University
developed a CA programming language: Cellang.
Cellang compiler generates code for both
uniprocessor and shared memory multiprocessor
systems. The entire system is written in C and the
compiler produces C as an intermediate code,
making the system highly portable. Cellang works
under both UNIX and DOS operating system and
currently supports the viewing of automata with
either X Windows (UNIX), IRIS Graphics Library
(UNIX),VGA(DOS) (Eckart, 1997).

4. IMPLEMENTATION

In this section, some CA rules are introduced and
the corresponding CA are given in Figure4. The
rules are implemented on a PC with C language.

The growth process can easily be observed and a
different figure is obtained at each time step. The
initial configuration is a random distribution of aive
cells for the CA in Figure 4a. For other examples,
the initial configuration is given in Figure 3. In the
examples, 1s correspond to alive cells whereas Os
correspond to dead cells.

[oNeoNoNeoNe)
[oNeoNoNeoNe)
OO r OO
[oNeoNoNoNe)
[oNeoNoNeoNe)

Figure 3. Initiadl configuration for
displayed in Figure 4b-4f

examples

In Figure 4a, if five or more neighbours are dive,
the cell becomes or remain alive. Otherwise, it will
die or remain dead. Starting from a random
distribution of aive cells, the system evolves as a
stable pattern after some time steps. In the CA in
Figure 4b, a cell becomes aive if only one of its

orthogonal neighbours is 1. One important
characteristics of the system isthat no cellsdie.

In Figure 4c, two rules are applied in order
throughout the evolution of CA. Let n denote the
number of time steps passed. The states of cells are
determined at the (n + 1) th step according to the
following rules.

1. A cel becomes dive if only one of its
orthogonal neighborsisalive for evenn.

2. A cell becomes dive if only one of its eight
neighborsisaivefor odd n .

The rule applied in Figure 4d is the same as the rule
applied in Figure 4c except that the conditions that n
mod 6 = 0 and n mod 6 != 0 determine the evolution
of the pattern.

Inthe CA givenin Figure 4e, acell becomes dlive if
only one of its neighbours is aive. Otherwise, it is
unchanged.

In Figure 4f, a cell and its orthogonal neighbors are
taken into account. If the number of dive cells
among these 5 cells is an even number, the cell dies
or remain dead. Otherwise the cell becomes or
remains alive. CAs in Figure 5 are obtained from
the combinations of rules of Figures 4b, 4c, 4e, 4f.
The difference between the two patterns is due to
using the rules in different orders with different
numbers of iterations.

(b)

%
P
+

(d)

(€ (f)

Figure 4. Examples of different CA rules

The initial state of CAn is random distribution of
divecdls.

A CAnwhere no cellsare allowed to die.

A CAn obtained by applying two rules in order.
Same CAn as given in (c) with the exception that the
evolution of the pattern is determined by n mod 6.

A CAn where a cell becomes alive if only one of its
neighboursisalive.

A CAn that takes different shapes at each time step.
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Figure 5. CA examples with different combinations
of rules

5. CONCLUSIONS

CA provide a rich reservoir of beautiful and
complex patterns. In contrast to the simplicity of
rules, a large number of intricate figures are
obtained. For example, for a system with two states

and eight neighbors for a cell, 2"9= 10" rules can
be defined.

CA portraits contain beauty and complexity which
mathematicians were not able to fully appreciate
before the age of computers (Pickover,1989).
Growth process can be easily observed by running
CA on a high speed personal computer. CAn can be
run for a specified length of time. During the growth
process, many different patterns for a single CAn
may be obtained at each step. In Figure 6, the
growth of the CAn given in Figure 4f is shown for
time steps 1, 5, 7, 10, 15, 20, 24, 27, 30, 32, 37, 40,
43, 47, 50, 55, 58.

Figure 6. Growth of the CAn givenin Figure 4f

In Section 3, it is stated that CA patterns contain
scaling symmetry and infinite details. Existence of
scaling symmetry and infinite details is the main
characteristic of fractals. Therefore, it can be
concluded that CA are examples of fractals.

Another important feature of CA is their parallel
evolution. At each time step, all cells change their
states simultaneously according to their own states
and the states of their neighbours at the previous
step. Therefore, parallel programming environments
speed up the evolution of CA patterns. Parallel CA
programming is very promising for time consuming
simulations of natural phenomena. Our study is
continuing aong this direction.
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